Reticulum Mainly Localized in the Endoplasmic Predominantly

Total Page:16

File Type:pdf, Size:1020Kb

Reticulum Mainly Localized in the Endoplasmic Predominantly Human Cathepsin W, a Cysteine Protease Predominantly Expressed in NK Cells, Is Mainly Localized in the Endoplasmic Reticulum This information is current as of September 24, 2021. Thomas Wex, Frank Bühling, Heike Wex, Dagmar Günther, Peter Malfertheiner, Ekkehard Weber and Dieter Brömme J Immunol 2001; 167:2172-2178; ; doi: 10.4049/jimmunol.167.4.2172 http://www.jimmunol.org/content/167/4/2172 Downloaded from References This article cites 44 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/167/4/2172.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Human Cathepsin W, a Cysteine Protease Predominantly Expressed in NK Cells, Is Mainly Localized in the Endoplasmic Reticulum1 Thomas Wex,2,3*† Frank Bu¨hling,2§ Heike Wex,*‡ Dagmar Gu¨nther,¶ Peter Malfertheiner,† Ekkehard Weber,¶ and Dieter Bro¨mme3* Human cathepsin W (also called lymphopain) is a recently described papain-like cysteine protease of unknown function whose gene expression was found to be restricted to cytotoxic cells. Here we demonstrate that cathepsin W is expressed predominantly in NK cells and, to a lesser extent, in CTLs. Quantitative RT-PCR revealed that NK cells contained ϳ21 times more cathepsin W transcript than CTLs. The predominant expression of cathepsin W in NK cells was further confirmed by Western blot analysis and immunohistochemistry. IL-2-mediated stimulation of NK cells and CTLs revealed a stronger up-regulation of the cathepsin Downloaded from W gene and protein expression in NK cells (7-fold) than in CTLs (2-fold). Transfection experiments of HeLa cells and biochemical analyses revealed that cathepsin W is exclusively “high mannose-type” glycosylated and is mainly targeted to the endoplasmic reticulum (ER). Interestingly, the ER localization of cathepsin W was also found in NK cells, in which colocalization studies revealed an overlapping staining of cathepsin W and Con A, an ER-specific lectin. Furthermore, subcellular fractionation of cathepsin W-expressing cells confirmed the ER localization and showed that cathepsin W is membrane associated. Based on the results of this study, cathepsin W might represent a putative component of the ER-resident proteolytic machinery. The constitutive http://www.jimmunol.org/ expression in NK cells and the stronger up-regulation of cathepsin W by IL-2 in NK cells than CTLs suggest that cathepsin W is not just a marker of cytotoxic cells but is, rather, specifically expressed in NK cells. The Journal of Immunology, 2001, 167: 2172–2178. atural killer cells and CD8ϩ CTLs represent two major found in both NK cells and CTLs. Here, binding of a target cell by cell populations involved in the initial immune response a CTL or NK cell stimulates a Ca2ϩ-dependent degranulation pro- N against tumors, viral infections, and allografts (1–3). cess in the effector cell that leads to a release of a “death cocktail,” However, despite the common ability of NK cells and CTLs to lyse causing the subsequent lysis of target cells (5, 8). by guest on September 24, 2021 target cells, there are differences between both cell types. Whereas The most prominent components of this death mixture are per- NK cells exist as preactivated cytotoxic cells capable of mediating forin and a family of serine proteases termed granzymes, which are their effector function without depending on presented antigenic both known to be specifically expressed in CTLs and NK cells (9). peptides (MHC class I independent) (2, 3), CTLs mostly have to be Besides the granzymes, there are also cysteine proteases involved activated by Ag-derived peptides bound to the MHC class I com- in the secretory pathway. Dipeptidyl peptidase I (synonymous with plex, and therefore, they are considered to act MHC class I de- cathepsin C) was shown to be the only enzyme capable of pro- pendently (3, 4). In general, two different cytotoxic pathways are cessing progranzymes into their active forms by removing a Glu- known (reviewed in Ref. 5). The first, the perforin-independent Glu dipeptide from the proforms (10, 11). Furthermore, the mem- 2ϩ lytic pathway, occurs in Ca -free conditions and was found pre- bers of the caspase family mediate the downstream events that dominantly in CTLs. This way is triggered through cell surface finally lead to the death of the target cell (12). Interestingly, some receptors such as Fas/Apo-1 (CD95) and TNFR (CD97) (6, 7). The other cysteine protease-related proteins such as the CTL Ag 2-␤ second, the secretory mechanism, is perforin dependent and was (13), the cysteine protease inhibitor leukocystatin (14), and cathep- sin W (15) were found to be predominantly expressed in cytotoxic *Department of Human Genetics, Mount Sinai School of Medicine, New York, NY cells, suggesting specific functions of these proteins. The potential 10029; Departments of †Gastroenterology, Hepatology, and Infectious Diseases and involvement of other cysteine proteases in cytotoxic processes is ‡Pediatric Hematology and Oncology, and §Institute of Immunology, Otto-von-Gu- ericke University, Magdeburg, Germany; and ¶Medical Faculty, Institute of Physio- further supported by data showing the blocking of TCR-induced logical Chemistry, Martin Luther University Halle-Wittenberg, Wittenberg, Germany death of T cells by papain-like-specific protease inhibitors (16). Received for publication February 29, 2000. Accepted for publication June 7, 2001. Recently, the cDNA encoding a novel papain-like cysteine pro- The costs of publication of this article were defrayed in part by the payment of page tease, designated cathepsin W (also referred to as lymphopain), charges. This article must therefore be hereby marked advertisement in accordance was cloned and further characterized by our group and others (15, with 18 U.S.C. Section 1734 solely to indicate this fact. 17). Protein sequence alignments showed that this enzyme is a 1 This work was supported by a fellowship (We/2170/2-1) and in part by the SFB 387 (project B7) of the Deutsche Forschungsgemeinschaft (Germany). member of the papain superfamily, and that all major structural features such as the positions of the amino acids forming the cat- 2 T.W. and F.B. contributed equally to this work. alytic triad, the putative cleavage sites for the signal sequence, and 3 Address correspondence and reprint requests to Dr. Thomas Wex, Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke Univer- the propeptide are in accordance with other members of this pro- sity, Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany. E-mail address: tease family (15). The in vivo gene expression of cathepsin W [email protected] or Dr. Dieter Bro¨mme, Department of Hu- man Genetics, Mount Sinai School of Medicine, Box 1498, Fifth Avenue at 100th studied by Northern blot analyses revealed a high abundance of the Street, New York, NY 10029. E-mail address: [email protected] corresponding mRNA in peripheral cytotoxic cells and related cell Copyright © 2001 by The American Association of Immunologists 0022-1767/01/$02.00 The Journal of Immunology 2173 ϩ lines only, whereas other hematopoetic cells such as CD4 T cells, Triton X-100 (three times for 20 min), the cells were treated with anti- B cells (CD19ϩ), and monocytes (CD14ϩ) did not contain signif- mouse IgG-FITC or anti-mouse IgG-tetramethylrhodamine isothiocyanate icant amounts of cathepsin W mRNA (15, 17). (TRITC), which were both obtained from Sigma (St. Louis, MO) and used as recommended by the manufacturer. After five washing steps with PBS/T In this study, we describe the cellular and subcellular localiza- containing 0.05% Triton X-100, cells were mounted using Fluoromount-G tion and regulation of endogenous cathepsin W, which is predom- (Southern Biotechnology Associates, Birmingham, AL) and viewed with a inantly expressed in NK cells and was found to be up-regulated by fluorescence microscope (Eclipse E-800; Nikon, Melville, NY). IL-2. Furthermore, we provided evidence that endogenous cathep- sin W might be mainly localized in the endoplasmic reticulum Electrophoresis and Western blot analysis 4 (ER), a novel compartment for papain-like proteases. In general, SDS-PAGE was conducted by following the method of Lae- mmli (20). Briefly, samples were heated in reducing sample buffer at 95°C Materials and Methods for 5 min and subjected to SDS-PAGE (Fisher Scientific). Electrophoresis Expression of recombinant cathepsin W was performed at 50 V for 30 min and 120 V for another 1.5 h using the Mini Gel system (Bio-Rad, Hercules, CA). Prestained protein benchmarker Previously cloned cathepsin W cDNA (15) was used as a template for PCR (Life Technologies) was used as the molecular mass standard. Proteins amplifications with Pfu polymerase (Stratagene, La Jolla, CA) using the were electroblotted onto nitrocellulose membrane (Fisher Scientific) at 35 following primers that contained either a HindIII or XbaI restriction site for Vfor3h(4°C) using the buffer system that contained 25 mM Tris, 192 cloning (primer 1, 5Ј-AAA AAG CTT ACC GGC ATG GCA CTG ACT mM glycine, and 20% (v/v) methanol.
Recommended publications
  • The International Journal of Biochemistry & Cell Biology
    The International Journal of Biochemistry & Cell Biology 41 (2009) 1685–1696 Contents lists available at ScienceDirect The International Journal of Biochemistry & Cell Biology journal homepage: www.elsevier.com/locate/biocel Cathepsin X cleaves the C-terminal dipeptide of alpha- and gamma-enolase and impairs survival and neuritogenesis of neuronal cells Natasaˇ Obermajer a,b,∗, Bojan Doljak a, Polona Jamnik c,Ursaˇ Pecarˇ Fonovic´ a, Janko Kos a,b a University of Ljubljana, Faculty of Pharmacy, Askerceva 7, 1000 Ljubljana, Slovenia b Jozef Stefan Institute, Department of Biotechnology, Jamova 39, 1000 Ljubljana, Slovenia c University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia article info abstract Article history: The cysteine carboxypeptidase cathepsin X has been recognized as an important player in degenerative Received 22 January 2009 processes during normal aging and in pathological conditions. In this study we identify isozymes alpha- Received in revised form 17 February 2009 and gamma-enolases as targets for cathepsin X. Cathepsin X sequentially cleaves C-terminal amino acids Accepted 18 February 2009 of both isozymes, abolishing their neurotrophic activity. Neuronal cell survival and neuritogenesis are, Available online 6 March 2009 in this way, regulated, as shown on pheochromocytoma cell line PC12. Inhibition of cathepsin X activity increases generation of plasmin, essential for neuronal differentiation and changes the length distribution Keywords: of neurites, especially in the early phase of neurite outgrowth. Moreover, cathepsin X inhibition increases Cathepsin X Enolase neuronal survival and reduces serum deprivation induced apoptosis, particularly in the absence of nerve Neuritogenesis growth factor. On the other hand, the proliferation of cells is decreased, indicating induction of differ- Neuronal cell survival entiation.
    [Show full text]
  • Alimentary Tract Proteinases of the Southern Corn
    Durham E-Theses Alimentary tract proteinases of the Southern corn rootworm (Diabrotica undecimpunctata howardi) and the potential of potato Kunitz proteinase inhibitors for larval control. Macgregor, James Mylne How to cite: Macgregor, James Mylne (2001) Alimentary tract proteinases of the Southern corn rootworm (Diabrotica undecimpunctata howardi) and the potential of potato Kunitz proteinase inhibitors for larval control., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3808/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Alimentary tract proteinases of the Southern corn rootworm (Diabrotica undecimpunctata howardi) and the potential of potato Kunitz proteinase inhibitors for larval control. The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. A thesis submitted by James Mylne Macgregor B.Sc.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • The Use of Fluorescence Resonance Energy Transfer (FRET) Peptides for Measurement of Clinically Important Proteolytic Enzymes
    “main” — 2009/7/27 — 13:55 — page 381 — #1 Anais da Academia Brasileira de Ciências (2009) 81(3): 381-392 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc The use of Fluorescence Resonance Energy Transfer (FRET) peptides for measurement of clinically important proteolytic enzymes ADRIANA K. CARMONA, MARIA APARECIDA JULIANO and LUIZ JULIANO Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo Rua 3 de Maio, 100, 04044-020 São Paulo, SP, Brasil Manuscript received on June 30, 2008; accepted for publication on September 9, 2008; contributed by LUIZ JULIANO* ABSTRACT Proteolytic enzymes have a fundamental role in many biological processes and are associated with multiple patholog- ical conditions. Therefore, targeting these enzymes may be important for a better understanding of their function and development of therapeutic inhibitors. Fluorescence Resonance Energy Transfer (FRET) peptides are convenient tools for the study of peptidases specificity as they allow monitoring of the reaction on a continuous basis, providing arapid method for the determination of enzymatic activity. Hydrolysis of a peptide bond between the donor/acceptor pair generates fluorescence that permits the measurement of the activity of nanomolar concentrations of the enzyme.The assays can be performed directly in a cuvette of the fluorimeter or adapted for determinations in a 96-well fluorescence plate reader. The synthesis of FRET peptides containing ortho-aminobenzoic acid (Abz) as fluorescent group and 2,4-dinitrophenyl (Dnp) or N-(2,4-dinitrophenyl)ethylenediamine (EDDnp) as quencher was optimized by our group and became an important line of research at the Department of Biophysics of the Federal University of São Paulo.
    [Show full text]
  • Crystal Structure of Cathepsin X: a Flip–Flop of the Ring of His23
    st8308.qxd 03/22/2000 11:36 Page 305 Research Article 305 Crystal structure of cathepsin X: a flip–flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease Gregor Guncar1, Ivica Klemencic1, Boris Turk1, Vito Turk1, Adriana Karaoglanovic-Carmona2, Luiz Juliano2 and Dušan Turk1* Background: Cathepsin X is a widespread, abundantly expressed papain-like Addresses: 1Department of Biochemistry and v mammalian lysosomal cysteine protease. It exhibits carboxy-monopeptidase as Molecular Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia and 2Departamento de well as carboxy-dipeptidase activity and shares a similar activity profile with Biofisica, Escola Paulista de Medicina, Rua Tres de cathepsin B. The latter has been implicated in normal physiological events as Maio 100, 04044-020 Sao Paulo, Brazil. well as in various pathological states such as rheumatoid arthritis, Alzheimer’s disease and cancer progression. Thus the question is raised as to which of the *Corresponding author. E-mail: [email protected] two enzyme activities has actually been monitored. Key words: Alzheimer’s disease, carboxypeptidase, Results: The crystal structure of human cathepsin X has been determined at cathepsin B, cathepsin X, papain-like cysteine 2.67 Å resolution. The structure shares the common features of a papain-like protease enzyme fold, but with a unique active site. The most pronounced feature of the Received: 1 November 1999 cathepsin X structure is the mini-loop that includes a short three-residue Revisions requested: 8 December 1999 insertion protruding into the active site of the protease. The residue Tyr27 on Revisions received: 6 January 2000 one side of the loop forms the surface of the S1 substrate-binding site, and Accepted: 7 January 2000 His23 on the other side modulates both carboxy-monopeptidase as well as Published: 29 February 2000 carboxy-dipeptidase activity of the enzyme by binding the C-terminal carboxyl group of a substrate in two different sidechain conformations.
    [Show full text]
  • Inhibition of Mitochondrial Complex II in Neuronal Cells Triggers Unique
    www.nature.com/scientificreports OPEN Inhibition of mitochondrial complex II in neuronal cells triggers unique pathways culminating in autophagy with implications for neurodegeneration Sathyanarayanan Ranganayaki1, Neema Jamshidi2, Mohamad Aiyaz3, Santhosh‑Kumar Rashmi4, Narayanappa Gayathri4, Pulleri Kandi Harsha5, Balasundaram Padmanabhan6 & Muchukunte Mukunda Srinivas Bharath7* Mitochondrial dysfunction and neurodegeneration underlie movement disorders such as Parkinson’s disease, Huntington’s disease and Manganism among others. As a corollary, inhibition of mitochondrial complex I (CI) and complex II (CII) by toxins 1‑methyl‑4‑phenylpyridinium (MPP+) and 3‑nitropropionic acid (3‑NPA) respectively, induced degenerative changes noted in such neurodegenerative diseases. We aimed to unravel the down‑stream pathways associated with CII inhibition and compared with CI inhibition and the Manganese (Mn) neurotoxicity. Genome‑wide transcriptomics of N27 neuronal cells exposed to 3‑NPA, compared with MPP+ and Mn revealed varied transcriptomic profle. Along with mitochondrial and synaptic pathways, Autophagy was the predominant pathway diferentially regulated in the 3‑NPA model with implications for neuronal survival. This pathway was unique to 3‑NPA, as substantiated by in silico modelling of the three toxins. Morphological and biochemical validation of autophagy markers in the cell model of 3‑NPA revealed incomplete autophagy mediated by mechanistic Target of Rapamycin Complex 2 (mTORC2) pathway. Interestingly, Brain Derived Neurotrophic Factor
    [Show full text]
  • Untersuchung Zur Selektivität Der Hemmung Von Cathepsin L-Ähnlichen Cysteinproteasen Durch Die Dazugehörigen Propeptide
    Untersuchung zur Selektivität der Hemmung von Cathepsin L-ähnlichen Cysteinproteasen durch die dazugehörigen Propeptide Dissertation zur Erlangung des akademischen Grades doctor medicinae dentariae (Dr. med. dent.) vorgelegt dem Rat der Medizinischen Fakultät der Friedrich-Schiller-Universität Jena von Yvonne Benedix, geboren am 05. Februar 1979 in Karl-Marx-Stadt Gutachter 1 Gutachter 2 Gutachter 3 Tag der öffentlichen Verteidigung Inhaltsverzeichnis 3 Abkürzungsverzeichnis 5 Zusammenfassung 7 1. Einleitung 9 2. Materialien und Methodik 16 2.1. Materialien 16 2.1.1. Antibiotika, Chemikalien, Enzyme, Standards und Substrate 16 2.1.2. Kits zur Bearbeitung von DNA 17 2.1.3. Verwendete Vektoren und Bakterienstämme 17 2.1.4. Geräte 18 2.1.5. Spezielle Computerprogramme 19 2.2. Molekularbiologische Methoden 19 2.2.1. Amplifizierung der Proregionen von Cathepsin H und L 19 mittels PCR 2.2.2. DNA-Trennung im Agarosegel und Extraktion 21 2.2.3. Klonierung, Ligation, Transformation und DNA-Isolierung 21 2.2.4. DNA-Seqzenzanalyse 25 2.3. Proteinchemische Methoden 26 2.3.1. Expression und Reinigung der rekombinanten Propeptide 26 2.3.2. Reinigung der Einschlusskörperchen durch Saccharose- Dichtegradientenzentrifugation 27 2.3.3. Endreinigung des Propeptids durch Gelfiltration 28 2.3.4. Charakterisierung der rekombinanten Propeptide 29 2.3.5. Massenspektrometrie durch MALDI-TOF 31 2.4. Kinetische Messung 31 2.4.1. Testdurchführung 31 2.4.2. Bestimmung des KM-Wertes 33 2.4.3. Bestimmung der Inhibitionskonstanten Ki und koff 34 3. Ergebnisse 37 3.1. Herstellung der Propeptide von Cathepsin H (kurz), Cathepsin H (lang) und Cathepsin L 37 3.1.1.
    [Show full text]
  • Cysteine Cathepsins: from Structure, Function and Regulation to New Frontiers☆
    Biochimica et Biophysica Acta 1824 (2012) 68–88 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbapap Review Cysteine cathepsins: From structure, function and regulation to new frontiers☆ Vito Turk a,b,⁎⁎, Veronika Stoka a, Olga Vasiljeva a, Miha Renko a, Tao Sun a,1, Boris Turk a,b,c,Dušan Turk a,b,⁎ a Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia b Center of Excellence CIPKEBIP, Ljubljana, Slovenia c Center of Excellence NIN, Ljubljana, Slovenia article info abstract Article history: It is more than 50 years since the lysosome was discovered. Since then its hydrolytic machinery, including Received 16 August 2011 proteases and other hydrolases, has been fairly well identified and characterized. Among these are the cyste- Received in revised form 3 October 2011 ine cathepsins, members of the family of papain-like cysteine proteases. They have unique reactive-site prop- Accepted 4 October 2011 erties and an uneven tissue-specific expression pattern. In living organisms their activity is a delicate balance Available online 12 October 2011 of expression, targeting, zymogen activation, inhibition by protein inhibitors and degradation. The specificity of their substrate binding sites, small-molecule inhibitor repertoire and crystal structures are providing new Keywords: fi Cysteine cathepsin tools for research and development. Their unique reactive-site properties have made it possible to con ne the Protein inhibitor targets simply by the use of appropriate reactive groups. The epoxysuccinyls still dominate the field, but now Cystatin nitriles seem to be the most appropriate “warhead”.
    [Show full text]
  • Cathepsins and Their Involvement in Immune Responses
    Review article: Medical intelligence | Published 20 July 2010, doi:10.4414/smw.2010.13042 Cite this as: Swiss Med Wkly. 2010;140:w13042 Cathepsins and their involvement in immune responses Sébastien Conus, Hans-Uwe Simon Institute of Pharmacology, University of Bern, Bern, Switzerland Correspondence to: cleaving proteases (= caspases) which cleave a wide range Sébastien Conus Ph.D. of cellular substrates [5]. Institute of Pharmacology Besides caspases, cathepsins have recently been shown University of Bern to be associated with cell death regulation [6–12] and vari- Friedbühlstrasse 49 3010 Bern ous other physiological and pathological processes, such as Switzerland maturation of the MHC class II complex, bone remodel- [email protected] ling, keratinocyte differentiation, tumour progression and metastasis, rheumatoid arthritis and osteoarthritis, as well Summary as atherosclerosis [13, 14] (table 1). Thus, cathepsins ap- pear to play a significant role in immune responses. In this The immune system is composed of an enormous variety of review we discuss recent advances addressing the role of cells and molecules that generate a collective and coordin- lysosomal proteases in the diverse aspects of the immune ated response on exposure to foreign antigens, called the response, and also the involvement of cathepsins in the immune response. Within the immune response, endo-lyso- pathogenesis of diseases in which these proteases seem not somal proteases play a key role. In this review we cover to be properly under control. specific roles of cathepsins in innate and adaptive immu- nity, as well as their implication in the pathogenesis of sev- The cathepsin family eral diseases. Lysosomes are membrane-bound organelles which repres- Key words: adaptive and innate immunity; apoptosis; ent the main degradative compartment in eukaryotic cells.
    [Show full text]
  • Cysteine Cathepsin Proteases: Regulators of Cancer Progression and Therapeutic Response
    REVIEWS Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response Oakley C. Olson1,2 and Johanna A. Joyce1,3,4 Abstract | Cysteine cathepsin protease activity is frequently dysregulated in the context of neoplastic transformation. Increased activity and aberrant localization of proteases within the tumour microenvironment have a potent role in driving cancer progression, proliferation, invasion and metastasis. Recent studies have also uncovered functions for cathepsins in the suppression of the response to therapeutic intervention in various malignancies. However, cathepsins can be either tumour promoting or tumour suppressive depending on the context, which emphasizes the importance of rigorous in vivo analyses to ascertain function. Here, we review the basic research and clinical findings that underlie the roles of cathepsins in cancer, and provide a roadmap for the rational integration of cathepsin-targeting agents into clinical treatment. Extracellular matrix Our contemporary understanding of cysteine cathepsin tissue homeostasis. In fact, aberrant cathepsin activity (ECM). The ECM represents the proteases originates with their canonical role as degrada- is not unique to cancer and contributes to many disease multitude of proteins and tive enzymes of the lysosome. This view has expanded states — for example, osteoporosis and arthritis4, neuro­ macromolecules secreted by considerably over decades of research, both through an degenerative diseases5, cardiovascular disease6, obe- cells into the extracellular
    [Show full text]
  • Chapter 11 Cysteine Proteases
    CHAPTER 11 CYSTEINE PROTEASES ZBIGNIEW GRZONKA, FRANCISZEK KASPRZYKOWSKI AND WIESŁAW WICZK∗ Faculty of Chemistry, University of Gdansk,´ Poland ∗[email protected] 1. INTRODUCTION Cysteine proteases (CPs) are present in all living organisms. More than twenty families of cysteine proteases have been described (Barrett, 1994) many of which (e.g. papain, bromelain, ficain , animal cathepsins) are of industrial impor- tance. Recently, cysteine proteases, in particular lysosomal cathepsins, have attracted the interest of the pharmaceutical industry (Leung-Toung et al., 2002). Cathepsins are promising drug targets for many diseases such as osteoporosis, rheumatoid arthritis, arteriosclerosis, cancer, and inflammatory and autoimmune diseases. Caspases, another group of CPs, are important elements of the apoptotic machinery that regulates programmed cell death (Denault and Salvesen, 2002). Comprehensive information on CPs can be found in many excellent books and reviews (Barrett et al., 1998; Bordusa, 2002; Drauz and Waldmann, 2002; Lecaille et al., 2002; McGrath, 1999; Otto and Schirmeister, 1997). 2. STRUCTURE AND FUNCTION 2.1. Classification and Evolution Cysteine proteases (EC.3.4.22) are proteins of molecular mass about 21-30 kDa. They catalyse the hydrolysis of peptide, amide, ester, thiol ester and thiono ester bonds. The CP family can be subdivided into exopeptidases (e.g. cathepsin X, carboxypeptidase B) and endopeptidases (papain, bromelain, ficain, cathepsins). Exopeptidases cleave the peptide bond proximal to the amino or carboxy termini of the substrate, whereas endopeptidases cleave peptide bonds distant from the N- or C-termini. Cysteine proteases are divided into five clans: CA (papain-like enzymes), 181 J. Polaina and A.P. MacCabe (eds.), Industrial Enzymes, 181–195.
    [Show full text]
  • Surface Cathepsin B Protects Cytotoxic Lymphocytes from Self-Destruction After Degranulation
    Surface Cathepsin B Protects Cytotoxic Lymphocytes from Self-destruction after Degranulation Kithiganahalli N. Balaji,1 Norbert Schaschke,2 Werner Machleidt,3 Marta Catalfamo,1 and Pierre A. Henkart1 1Experimental Immunology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892 2Max Planck Institut fur Biochemie, 82152 Martinsried, Germany 3Adolf Butenandt Institut fur Physiologische Chemie, Physikalische Biochemie und Zellbiologie, Ludwig Maximilians Universitat, 80336 Munich, Germany Abstract The granule exocytosis cytotoxicity pathway is the major molecular mechanism for cytotoxic T lymphocyte (CTL) and natural killer (NK) cytotoxicity, but the question of how these cyto- toxic lymphocytes avoid self-destruction after secreting perforin has remained unresolved. We show that CTL and NK cells die within a few hours if they are triggered to degranulate in the presence of nontoxic thiol cathepsin protease inhibitors. The potent activity of the imper- meant, highly cathepsin B–specific membrane inhibitors CA074 and NS-196 strongly impli- cates extracellular cathepsin B. CTL suicide in the presence of cathepsin inhibitors requires the granule exocytosis cytotoxicity pathway, as it is normal with CTLs from gld mice, but does not occur in CTLs from perforin knockout mice. Flow cytometry shows that CTLs express low to undetectable levels of cathepsin B on their surface before degranulation, with a substantial rapid increase after T cell receptor triggering. Surface cathepsin B eluted from live CTL after degranulation by calcium chelation is the single chain processed form of active cathepsin B. Degranulated CTLs are surface biotinylated by the cathepsin B–specific affinity reagent NS-196, which exclusively labels immunoreactive cathepsin B. These experiments support a model in which granule-derived surface cathepsin B provides self-protection for degranulating cytotoxic lymphocytes.
    [Show full text]