Crystal Structure of Cathepsin X: a Flip–Flop of the Ring of His23

Total Page:16

File Type:pdf, Size:1020Kb

Crystal Structure of Cathepsin X: a Flip–Flop of the Ring of His23 st8308.qxd 03/22/2000 11:36 Page 305 Research Article 305 Crystal structure of cathepsin X: a flip–flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease Gregor Guncar1, Ivica Klemencic1, Boris Turk1, Vito Turk1, Adriana Karaoglanovic-Carmona2, Luiz Juliano2 and Dušan Turk1* Background: Cathepsin X is a widespread, abundantly expressed papain-like Addresses: 1Department of Biochemistry and v mammalian lysosomal cysteine protease. It exhibits carboxy-monopeptidase as Molecular Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia and 2Departamento de well as carboxy-dipeptidase activity and shares a similar activity profile with Biofisica, Escola Paulista de Medicina, Rua Tres de cathepsin B. The latter has been implicated in normal physiological events as Maio 100, 04044-020 Sao Paulo, Brazil. well as in various pathological states such as rheumatoid arthritis, Alzheimer’s disease and cancer progression. Thus the question is raised as to which of the *Corresponding author. E-mail: [email protected] two enzyme activities has actually been monitored. Key words: Alzheimer’s disease, carboxypeptidase, Results: The crystal structure of human cathepsin X has been determined at cathepsin B, cathepsin X, papain-like cysteine 2.67 Å resolution. The structure shares the common features of a papain-like protease enzyme fold, but with a unique active site. The most pronounced feature of the Received: 1 November 1999 cathepsin X structure is the mini-loop that includes a short three-residue Revisions requested: 8 December 1999 insertion protruding into the active site of the protease. The residue Tyr27 on Revisions received: 6 January 2000 one side of the loop forms the surface of the S1 substrate-binding site, and Accepted: 7 January 2000 His23 on the other side modulates both carboxy-monopeptidase as well as Published: 29 February 2000 carboxy-dipeptidase activity of the enzyme by binding the C-terminal carboxyl group of a substrate in two different sidechain conformations. Structure 2000, 8:305–313 Conclusions: The structure of cathepsin X exhibits a binding surface that will 0969-2126/00/$ – see front matter © 2000 Elsevier Science Ltd. All rights reserved. View metadata, citationassist and insimilar the design papers of at specificcore.ac.uk inhibitors of cathepsin X as well as of cathepsin brought to you by CORE B and thereby help to clarify the physiological roles of both proteases. provided by Repositório Institucional UNIFESP Introduction pathological processes such as tumor malignancy and pro- Cathepsin X belongs to the group of lysosomal cysteine gression (reviewed in [16–18]), muscular dystrophy [19], proteases, which constitute a numerous and important part rheumatoid arthritis [20], osteoporosis and other bone dis- of the family of papain-like enzymes (clan CA; reviewed orders [2,10,21] and Alzheimer’s disease [22]. in [1]). The research interest in this field is increasing rapidly, together with the number of identified enzymes, Cathepsin X was discovered only recently [23–25] and its as it becomes evident that lysosomal cysteine proteases biochemical characterization is just emerging [25–27]. It is are, besides being involved in intracellular protein catabo- the only known lysosomal cysteine protease exhibiting lism, also involved in a number of important cellular carboxy-monopeptidase activity. Besides carboxy- processes [2,3]. Currently 11 human cathepsins are known monopeptidase activity cathepsin X also exhibits carboxy- at the sequence level (B, C, F, H, K, L, O, S, V, W and X). dipeptidase activity and is readily inhibited by CA074, Some of them are expressed in a wide variety of cells (B, previously known as the specific inhibitor of cathepsin B, C, F, H, L, O and X), whereas others (S, K, V and W) are which is the only known carboxy-dipeptidase among lyso- tissue-specific and have been shown to be or proposed to somal cysteine proteases (I.K. et al., unpublished observa- be involved in more specialized processes (reviewed in tions). The inhibitor has been used as a standard tool to [3]). They are involved in invariant chain processing and assess functions of cathepsin B in numerous in vivo and in antigen presentation [4–7], in bone remodeling [8–10] and vitro studies, for example in relation with exocytosis [28] in proteolytic processing of various proteins [11], among and cancer (reviewed in [16,18,29]). Similarly, the implica- these the most important being thyroglobulin [12–14] and tion of cathepsin X in the development of Alzheimer’s granzyme B [15]. Whereas the former is an important disease is based on the use of inhibitors [27] and therefore source of thyroglobulin hormones the latter is involved in requires confirmation. the activation of the cell death proteases, the caspases (reviewed in [3]). Besides their normal physiological roles, A structural investigation of the active site of cathepsin X is, lysosomal cysteine proteases are involved in a number of therefore, a mandatory step for understanding the specific st8308.qxd 03/22/2000 11:36 Page 306 306 Structure 2000, Vol 8 No 3 features of cathepsin X in order to establish the structural (Figure 1). The two domains interact along an extended basis of the specificity of similar cathepsins, in particular interface, reminiscent of a book with the spine in front. At cathepsin B. This will enable us to design substrates and the top the two domains separate and form a ‘V-shaped’ inhibitors that will address specifically only the desired active-site cleft with the reactive site residues, Cys31 and enzyme. It has already been suggested, from sequence data His180, each coming from a different domain. and a substrate study [26], that a short insertion of residues 24–26, which constitutes the tip of the mini-loop placed in The structure of cathepsin X, as judged from a number of the immediate vicinity of the reactive site, must be superimposed pairs, is rather similar to the structures of involved in interaction with substrate. It was also suggested human cathepsin K, rat cathepsin B, zymogen of cathepsin [26] that the mini-loop residue His23 is involved in recogni- L and papain (yielding respectively 145, 148, 146 and 141 tion and binding of the C-terminal carboxylic group of a equipositioned Cα pairs at a threshold distance of 1.5 Å). bound substrate. The crystal structure of cathepsin X pre- It is less similar to cathepsin L, actinidin, glycyl-endopep- sented here has enabled us to elucidate the structural basis tidase I and cruzipain (yielding 122, 116, 128 and 130 of the mechanism by which cathepsin X exhibits both pairs) and least similar to human cathepsin B and porcine carboxy-monopeptidase and carboxy-dipeptidase activity. cathepsin H (with 89 and 73 pairs; Figure 2). Although by numerical criteria the structure of cathepsin X does not Results superimpose on the structure of cathepsin B as well as on Overall structure those of other related enzymes, a visual inspection reveals The structure of human cathepsin X comprises the that the structures of cathepsin B, and to a smaller extent sequence of the whole mature single-chain protein of 242 cathepsin H, are the most similar in the position and archi- amino acid residues, which are numbered consecutively tecture of the surface loops to the structure of cathepsin X. from Leu1 to Val242. The asymmetric unit of orthorhom- Some outstanding loops of the cathepsin X structure bic crystals contains two molecules. The three-dimen- (110–123 and 189–193) appear at similar positions to some sional structures of the two molecules are almost identical. cathepsin B loops (132–139 and 208–212). Particularly The complete chains of both molecules, with the excep- striking is the exposed position of the ring of Phe115, tion of a few sidechain residues, are well resolved in the placed at the tip of the 110–123 loop. The short three- electron-density maps. The superimposed structures show residue insertion (Ile24, Pro25 and Gln26) appears to be of a root mean square deviation (rmsd) of 0.55 Å for all Cα particular importance for the specificity of cathepsin X. It atoms; when only residues included into noncrystallo- is located within the mini-loop (Figure 3), an otherwise graphic symmetry (NCS) constraints are used for Cα atom conserved loop between Gln19 and Cys25 (using papain superposition (235 residues), the resulting rms fitting pro- numbering), forming the wall of the S2′ substrate-binding cedure yields a considerably lower value (0.26 Å). site [32]. An exception is the loop of glycyl-endopepti- dase, in which a tyrosine residue replaces the conserved The structure possesses the typical fold of a papain-like Ser21 (papain numbering). cysteine protease, a two domain structure [30,31]. The predominant secondary structural features of the N-termi- The mature form of human cathepsin X contains 11 cys- nal domain on the left, or L domain, are α helices, whereas teine residues. Ten of them are involved in disulfide bonds the C-terminal domain, or R domain, has a β-barrel fold (28–71, 65–103, 93–109, 112–118 and 153–235). The only Figure 1 Structure of cathepsin X. (a) Ribbon diagram of cathepsin X (blue shown as orange sticks. The figure was prepared using the program ribbons) in the standard view with the mini-loop shown in green. The RIBBONS [52]. (b) A stereo plot of the Cα trace of cathepsin X. The His23, Tyr27 mini-loop sidechains are shown in green and the dotted lines represent disulphide bridges. Cys31 catalytic residue sidechain in yellow. Disulfide bridges are st8308.qxd 03/22/2000 11:36 Page 307 Research Article Crystal structure of human cathepsin X Guncv ar et al. 307 Figure 2 Structural based alignment of the sequences of cathepsin X (catx) with cathepsin B (1huc [33]), cathepsin H (8pch [34]), cathepsin L (1icf [53]) and papain (9pap [54]).
Recommended publications
  • Supplementary Data
    Supplementary Data for Quantitative Changes in the Mitochondrial Proteome from Subjects with Mild Cognitive Impairment, Early Stage and Late Stage Alzheimer’s disease Table 1 - 112 unique, non-redundant proteins identified and quantified in at least two of the three analytical replicates for all three disease stages. Table 2 - MCI mitochondrial samples, Protein Summary Table 3 - MCI mitochondrial samples, Experiment 1 Table 4 - MCI mitochondrial samples, Experiment 2 Table 5 - MCI mitochondrial samples, Experiment 3 Table 6 - EAD Mitochondrial Study, Protein Summary Table 7 - EAD Mitochondrial Study, Experiment 1 Table 8 - EAD Mitochondrial Study, Experiment 2 Table 9 - EAD Mitochondrial Study, Experiment 3 Table 10 - LAD Mitochondrial Study, Protein Summary Table 11 - LAD Mitochondrial Study, Experiment 1 Table 12 - LAD Mitochondrial Study, Experiment 2 Table 13 - LAD Mitochondrial Study, Experiment 3 Supplemental Table 1. 112 unique, non-redundant proteins identified and quantified in at least two of the three analytical replicates for all three disease stages. Description Data MCI EAD LAD AATM_HUMAN (P00505) Aspartate aminotransferase, mitochondrial precursor (EC Mean 1.43 1.70 1.31 2.6.1.1) (Transaminase A) (Glutamate oxaloacetate transaminase 2) [MASS=47475] SEM 0.07 0.09 0.09 Count 3.00 3.00 3.00 ACON_HUMAN (Q99798) Aconitate hydratase, mitochondrial precursor (EC 4.2.1.3) Mean 1.24 1.61 1.19 (Citrate hydro-lyase) (Aconitase) [MASS=85425] SEM 0.05 0.17 0.18 Count 3.00 2.00 3.00 ACPM_HUMAN (O14561) Acyl carrier protein, mitochondrial
    [Show full text]
  • The International Journal of Biochemistry & Cell Biology
    The International Journal of Biochemistry & Cell Biology 41 (2009) 1685–1696 Contents lists available at ScienceDirect The International Journal of Biochemistry & Cell Biology journal homepage: www.elsevier.com/locate/biocel Cathepsin X cleaves the C-terminal dipeptide of alpha- and gamma-enolase and impairs survival and neuritogenesis of neuronal cells Natasaˇ Obermajer a,b,∗, Bojan Doljak a, Polona Jamnik c,Ursaˇ Pecarˇ Fonovic´ a, Janko Kos a,b a University of Ljubljana, Faculty of Pharmacy, Askerceva 7, 1000 Ljubljana, Slovenia b Jozef Stefan Institute, Department of Biotechnology, Jamova 39, 1000 Ljubljana, Slovenia c University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia article info abstract Article history: The cysteine carboxypeptidase cathepsin X has been recognized as an important player in degenerative Received 22 January 2009 processes during normal aging and in pathological conditions. In this study we identify isozymes alpha- Received in revised form 17 February 2009 and gamma-enolases as targets for cathepsin X. Cathepsin X sequentially cleaves C-terminal amino acids Accepted 18 February 2009 of both isozymes, abolishing their neurotrophic activity. Neuronal cell survival and neuritogenesis are, Available online 6 March 2009 in this way, regulated, as shown on pheochromocytoma cell line PC12. Inhibition of cathepsin X activity increases generation of plasmin, essential for neuronal differentiation and changes the length distribution Keywords: of neurites, especially in the early phase of neurite outgrowth. Moreover, cathepsin X inhibition increases Cathepsin X Enolase neuronal survival and reduces serum deprivation induced apoptosis, particularly in the absence of nerve Neuritogenesis growth factor. On the other hand, the proliferation of cells is decreased, indicating induction of differ- Neuronal cell survival entiation.
    [Show full text]
  • Helical Domain That Prevents Access to the Substrate-Binding Cleft
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Researchprovided Article by Elsevier1193 - Publisher Connector The prosequence of procaricain forms an a-helical domain that prevents access to the substrate-binding cleft Matthew R Groves, Mark AJ Taylor, Mandy Scott, Nicola J Cummings Richard W Pickersgill* and John A Jenkins* Background: Cysteine proteases are involved in a variety of cellular processes Address: Department of Food Macromolecular including cartilage degradation in arthritis, the progression of Alzheimer’s Science, Institute of Food Research, Earley Gate, disease and cancer invasion: these enzymes are therefore of immense biological Whiteknights Road, Reading, RG6 6BZ, UK. importance. Caricain is the most basic of the cysteine proteases found in the *Corresponding authors. latex of Carica papaya. It is a member of the papain superfamily and is E-mail: [email protected] homologous to other plant and animal cysteine proteases. Caricain is naturally [email protected] expressed as an inactive zymogen called procaricain. The inactive form of the Key words: caricain, cysteine protease, density protease contains an inhibitory proregion which consists of an additional 106 modification, X-ray structure, zymogen N-terminal amino acids; the proregion is removed upon activation. Received: 25 June 1996 Results: The crystal structure of procaricain has been refined to 3.2 Å Revisions requested: 23 July 1996 Revisions received: 12 August 1996 resolution; the final model consists of three non-crystallographically related Accepted: 28 August 1996 molecules. The proregion of caricain forms a separate globular domain which binds to the C-terminal domain of mature caricain.
    [Show full text]
  • Data Sheet Cathepsin V Inhibitor Screening Assay Kit Catalog #79589 Size: 96 Reactions
    6405 Mira Mesa Blvd Ste. 100 San Diego, CA 92121 Tel: 1.858.202.1401 Fax: 1.858.481.8694 Email: [email protected] Data Sheet Cathepsin V Inhibitor Screening Assay Kit Catalog #79589 Size: 96 reactions BACKGROUND: Cathepsin V, also called Cathepsin L2, is a lysosomal cysteine endopeptidase with high sequence homology to cathepsin L and other members of the papain superfamily of cysteine proteinases. Its expression is regulated in a tissue-specific manner and is high in thymus, testis and cornea. Expression analysis of cathepsin V in human tumors revealed widespread expression in colorectal and breast carcinomas, suggesting a possible role in tumor processes. DESCRIPTION: The Cathepsin V Inhibitor Screening Assay Kit is designed to measure the protease activity of Cathepsin V for screening and profiling applications. The Cathepsin V assay kit comes in a convenient 96-well format, with purified Cathepsin V, its fluorogenic substrate, and Cathepsin buffer for 100 enzyme reactions. In addition, the kit includes the cathepsin inhibitor E- 64 for use as a control inhibitor. COMPONENTS: Catalog # Component Amount Storage 80009 Cathepsin V 10 µg -80 °C Fluorogenic Cathepsin Avoid 80349 Substrate 1 (5 mM) 10 µl -20 °C multiple *4X Cathepsin buffer 2 ml -20 °C freeze/thaw E-64 (1 mM) 10 µl -20 °C cycles! 96-well black microplate * Add 120 µl of 0.5 M DTT before use. MATERIALS OR INSTRUMENTS REQUIRED BUT NOT SUPPLIED: 0.5 M DTT in aqueous solution Adjustable micropipettor and sterile tips Fluorescent microplate reader APPLICATIONS: Great for studying enzyme kinetics and screening small molecular inhibitors for drug discovery and HTS applications.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • The Use of Fluorescence Resonance Energy Transfer (FRET) Peptides for Measurement of Clinically Important Proteolytic Enzymes
    “main” — 2009/7/27 — 13:55 — page 381 — #1 Anais da Academia Brasileira de Ciências (2009) 81(3): 381-392 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc The use of Fluorescence Resonance Energy Transfer (FRET) peptides for measurement of clinically important proteolytic enzymes ADRIANA K. CARMONA, MARIA APARECIDA JULIANO and LUIZ JULIANO Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo Rua 3 de Maio, 100, 04044-020 São Paulo, SP, Brasil Manuscript received on June 30, 2008; accepted for publication on September 9, 2008; contributed by LUIZ JULIANO* ABSTRACT Proteolytic enzymes have a fundamental role in many biological processes and are associated with multiple patholog- ical conditions. Therefore, targeting these enzymes may be important for a better understanding of their function and development of therapeutic inhibitors. Fluorescence Resonance Energy Transfer (FRET) peptides are convenient tools for the study of peptidases specificity as they allow monitoring of the reaction on a continuous basis, providing arapid method for the determination of enzymatic activity. Hydrolysis of a peptide bond between the donor/acceptor pair generates fluorescence that permits the measurement of the activity of nanomolar concentrations of the enzyme.The assays can be performed directly in a cuvette of the fluorimeter or adapted for determinations in a 96-well fluorescence plate reader. The synthesis of FRET peptides containing ortho-aminobenzoic acid (Abz) as fluorescent group and 2,4-dinitrophenyl (Dnp) or N-(2,4-dinitrophenyl)ethylenediamine (EDDnp) as quencher was optimized by our group and became an important line of research at the Department of Biophysics of the Federal University of São Paulo.
    [Show full text]
  • Felipe Jun Fuzita Molecular Physiology of Digestion In
    FELIPE JUN FUZITA MOLECULAR PHYSIOLOGY OF DIGESTION IN ARACHNIDA: FUNCTIONAL AND COMPARATIVE-EVOLUTIONARY APPROACHES Thesis presented to the Programa de Pós-Graduação Interunidades em Biotecnologia USP/Instituto Butantan/IPT, to obtain the Title of Doctor in Biotechnology. São Paulo 2014 FELIPE JUN FUZITA MOLECULAR PHYSIOLOGY OF DIGESTION IN ARACHNIDA: FUNCTIONAL AND COMPARATIVE-EVOLUTIONARY APPROACHES Thesis presented to the Programa de Pós-Graduação Interunidades em Biotecnologia USP/Instituto Butantan/IPT, to obtain the Title of Doctor in Biotechnology. Concentration area: Biotechnology Advisor: Dr. Adriana Rios Lopes Rocha Corrected version. The original electronic version is available either in the library of the Institute of Biomedical Sciences and in the Digital Library of Theses and Dissertations of the University of Sao Paulo (BDTD). São Paulo 2014 DADOS DE CATALOGAÇÃO NA PUBLICAÇÃO (CIP) Serviço de Biblioteca e Informação Biomédica do Instituto de Ciências Biomédicas da Universidade de São Paulo © reprodução total Fuzita, Felipe Jun. Molecular physiology of digestion in Arachnida: functional and comparative-evolutionary approaches / Felipe Jun Fuzita. -- São Paulo, 2014. Orientador: Profa. Dra. Adriana Rios Lopes Rocha. Tese (Doutorado) – Universidade de São Paulo. Instituto de Ciências Biomédicas. Programa de Pós-Graduação Interunidades em Biotecnologia USP/IPT/Instituto Butantan. Área de concentração: Biotecnologia. Linha de pesquisa: Bioquímica, biologia molecular, espectrometria de massa. Versão do título para o português: Fisiologia molecular da digestão em Arachnida: abordagens funcional e comparativo-evolutiva. 1. Digestão 2. Aranha 3. Escorpião 4. Enzimologia 5. Proteoma 6. Transcriptoma I. Rocha, Profa. Dra. Adriana Rios Lopes I. Universidade de São Paulo. Instituto de Ciências Biomédicas. Programa de Pós-Graduação Interunidades em Biotecnologia USP/IPT/Instituto Butantan III.
    [Show full text]
  • Food Proteins Are a Potential Resource for Mining
    Hypothesis Article: Food Proteins are a Potential Resource for Mining Cathepsin L Inhibitory Drugs to Combat SARS-CoV-2 Ashkan Madadlou1 1Wageningen Universiteit en Research July 20, 2020 Abstract The entry of SARS-CoV-2 into host cells proceeds by a two-step proteolysis process, which involves the lysosomal peptidase cathepsin L. Inhibition of cathepsin L is therefore considered an effective method to prevent the virus internalization. Analysis from the perspective of structure-functionality elucidates that cathepsin L inhibitory proteins/peptides found in food share specific features: multiple disulfide crosslinks (buried in protein core), lack or low contents of a-helix structures (small helices), and high surface hydrophobicity. Lactoferrin can inhibit cathepsin L, but not cathepsins B and H. This selective inhibition might be useful in fine targeting of cathepsin L. Molecular docking indicated that only the carboxyl-terminal lobe of lactoferrin interacts with cathepsin L and that the active site cleft of cathepsin L is heavily superposed by lactoferrin. Food protein-derived peptides might also show cathepsin L inhibitory activity. Abstract The entry of SARS-CoV-2 into host cells proceeds by a two-step proteolysis process, which involves the lyso- somal peptidase cathepsin L. Inhibition of cathepsin L is therefore considered an effective method to prevent the virus internalization. Analysis from the perspective of structure-functionality elucidates that cathepsin L inhibitory proteins/peptides found in food share specific features: multiple disulfide crosslinks (buried in protein core), lack or low contents of a-helix structures (small helices), and high surface hydrophobicity. Lactoferrin can inhibit cathepsin L, but not cathepsins B and H.
    [Show full text]
  • Cells T+ HLA-DR + Processing in Human CD4 Cathepsin S
    Cathepsin S Regulates Class II MHC Processing in Human CD4 + HLA-DR+ T Cells This information is current as Cristina Maria Costantino, Hidde L. Ploegh and David A. of September 26, 2021. Hafler J Immunol 2009; 183:945-952; Prepublished online 24 June 2009; doi: 10.4049/jimmunol.0900921 http://www.jimmunol.org/content/183/2/945 Downloaded from References This article cites 47 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/183/2/945.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Cathepsin S Regulates Class II MHC Processing in Human CD4؉ HLA-DR؉ T Cells1 Cristina Maria Costantino,* Hidde L. Ploegh,† and David A. Hafler2* Although it has long been known that human CD4؉ T cells can express functional class II MHC molecules, the role of lysosomal proteases in the T cell class II MHC processing and presentation pathway is unknown.
    [Show full text]
  • Deficiency for the Cysteine Protease Cathepsin L Promotes Tumor
    Oncogene (2010) 29, 1611–1621 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc ORIGINAL ARTICLE Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis J Dennema¨rker1,6, T Lohmu¨ller1,6, J Mayerle2, M Tacke1, MM Lerch2, LM Coussens3,4, C Peters1,5 and T Reinheckel1,5 1Institute for Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany; 2Department of Gastroenterology, Endocrinology and Nutrition, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany; 3Department of Pathology, University of California, San Francisco, CA, USA; 4Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA and 5Ludwig Heilmeyer Comprehensive Cancer Center and Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany To define a functional role for the endosomal/lysosomal Introduction cysteine protease cathepsin L (Ctsl) during squamous carcinogenesis, we generated mice harboring a constitutive Proteases have traditionally been thought to promote Ctsl deficiency in addition to epithelial expression of the invasive growth of carcinomas, contributing to the the human papillomavirus type 16 oncogenes (human spread and homing of metastasizing cancer cells (Dano cytokeratin 14 (K14)–HPV16). We found enhanced tumor et al., 1999). Proteases that function outside tumor cells progression and metastasis in the absence of Ctsl. As have been implicated in these processes because of their tumor progression in K14–HPV16 mice is dependent well-established release from tumors, causing the break- on inflammation and angiogenesis, we examined immune down of basement membranes and extracellular matrix. cell infiltration and vascularization without finding any Thus, extracellular proteases may in part facilitate effect of the Ctsl genotype.
    [Show full text]
  • Peptidoglycan Crosslinking Relaxation Plays An
    Peptidoglycan Crosslinking Relaxation Plays an Important Role in Staphylococcus aureus WalKR-Dependent Cell Viability Aurelia Delauné, Olivier Poupel, Adeline Mallet, Yves-Marie Coïc, Tarek Msadek, Sarah Dubrac To cite this version: Aurelia Delauné, Olivier Poupel, Adeline Mallet, Yves-Marie Coïc, Tarek Msadek, et al.. Peptidoglycan Crosslinking Relaxation Plays an Important Role in Staphylococcus aureus WalKR-Dependent Cell Vi- ability. PLoS ONE, Public Library of Science, 2011, 6 (2), pp.e17054. 10.1371/journal.pone.0017054. pasteur-02870016 HAL Id: pasteur-02870016 https://hal-pasteur.archives-ouvertes.fr/pasteur-02870016 Submitted on 16 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Peptidoglycan Crosslinking Relaxation Plays an Important Role in Staphylococcus aureus WalKR- Dependent Cell Viability Aurelia Delaune1,2, Olivier Poupel1,2, Adeline Mallet3, Yves-Marie Coic4,5, Tarek Msadek1,2*, Sarah Dubrac1,2 1 Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France, 2 CNRS, URA 2172, Paris, France, 3 Institut Pasteur, Ultrastructural Microscopy Platform, Imagopole, Paris, France, 4 Institut Pasteur, Chemistry of Biomolecules, Department of Structural Biology and Chemistry, Paris, France, 5 CNRS, URA 2128, Paris, France Abstract The WalKR two-component system is essential for viability of Staphylococcus aureus, a major pathogen.
    [Show full text]
  • A Cysteine Protease Inhibitor Blocks SARS-Cov-2 Infection of Human and Monkey Cells
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.347534; this version posted October 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A cysteine protease inhibitor blocks SARS-CoV-2 infection of human and monkey cells Drake M. Mellott,1 Chien-Te Tseng,3 Aleksandra Drelich,3 Pavla Fajtová,4,5 Bala C. Chenna,1 Demetrios H. Kostomiris1, Jason Hsu,3 Jiyun Zhu,1 Zane W. Taylor,2,9 Vivian Tat,3 Ardala Katzfuss,1 Linfeng Li,1 Miriam A. Giardini,4 Danielle Skinner,4 Ken Hirata,4 Sungjun Beck4, Aaron F. Carlin,8 Alex E. Clark4, Laura Beretta4, Daniel Maneval6, Felix Frueh,6 Brett L. Hurst,7 Hong Wang,7 Klaudia I. Kocurek,2 Frank M. Raushel,2 Anthony J. O’Donoghue,4 Jair Lage de Siqueira-Neto,4 Thomas D. Meek1.*, and James H. McKerrow#4,* Departments of Biochemistry and Biophysics1 and Chemistry,2 Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, 3Department of Microbiology and Immunology, University of Texas, Medical Branch, 3000 University Boulevard, Galveston, Texas, 77755-1001, 4Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 5Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic, 6Selva Therapeutics, and 7Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, Utah, 84322, 8Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA.9Current address: Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99353.
    [Show full text]