The P53-Cathepsin Axis Cooperates with ROS to Activate Programmed Necrotic Death Upon DNA Damage

Total Page:16

File Type:pdf, Size:1020Kb

The P53-Cathepsin Axis Cooperates with ROS to Activate Programmed Necrotic Death Upon DNA Damage The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage Ho-Chou Tua,1, Decheng Rena,1, Gary X. Wanga, David Y. Chena, Todd D. Westergarda, Hyungjin Kima, Satoru Sasagawaa, James J.-D. Hsieha,b, and Emily H.-Y. Chenga,b,c,2 aDepartment of Medicine, Molecular Oncology, bSiteman Cancer Center, and cDepartment of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 Edited by Stuart A. Kornfeld, Washington University School of Medicine, St. Louis, MO, and approved November 25, 2008 (received for review August 19, 2008) Three forms of cell death have been described: apoptosis, autophagic cells that are deprived of the apoptotic gateway to mediate cyto- cell death, and necrosis. Although genetic and biochemical studies chrome c release for caspase activation (Fig. S1) (9–11, 19, 20). have formulated a detailed blueprint concerning the apoptotic net- Despite the lack of caspase activation (20), DKO cells eventually work, necrosis is generally perceived as a passive cellular demise succumb to various death signals manifesting a much slower death resulted from unmanageable physical damages. Here, we conclude an kinetics compared with wild-type cells (Fig. 1A, Fig. S2, and data active de novo genetic program underlying DNA damage-induced not shown). To investigate the mechanism(s) underlying BAX/ necrosis, thus assigning necrotic cell death as a form of ‘‘programmed BAK-independent cell death, we first examined the morphological cell death.’’ Cells deficient of the essential mitochondrial apoptotic features of the dying DKO cells. Electron microscopy uncovered effectors, BAX and BAK, ultimately succumbed to DNA damage, signature characteristics of necrosis in DKO cells after DNA exhibiting signature necrotic characteristics. Importantly, this geno- damage, including the loss of plasma membrane integrity, the toxic stress-triggered necrosis was abrogated when either transcrip- spillage of intracellular contents, the swelling of organelles, the tion or translation was inhibited. We pinpointed the p53-cathepsin appearance of translucent cytosolic compartment, and the forma- axis as the quintessential framework underlying necrotic cell death. tion of intracellular vacuoles (Fig. 1B). We next determined one of p53 induces cathepsin Q that cooperates with reactive oxygen species the biochemical hallmarks of necrosis-the release of high mobility (ROS) to execute necrosis. Moreover, we presented the in vivo group box I (HMGB1) protein, a proinflammatory cytokine (21). evidence of p53-activated necrosis in tumor allografts. Current study lays the foundation for future experimental and therapeutic discov- HMGB1 functions in the nucleus as an architectural chromatin- eries aimed at ‘‘programmed necrotic death.’’ binding factor that bends DNA, stabilizes nucleosomes, and facil- itates transcription, whereas outside the cell it is a potent mediator necrosis ͉ BAX ͉ BAK ͉ apoptosis ͉ caspase-independent cell death of inflammation, cell migration and metastasis (22). Indeed, HMGB1 was released into the culture medium when DKO cells died upon DNA insults (Fig. 1C). Analyses revealed a 2-step release ells constantly interpret environmental cues before making a of HMGB1-it first translocated from the nucleus to the cytosol Ϸ8 correct life versus death decision to assure proper operation of C h after genotoxic stress (Fig. 1D), followed by the diffusion to the all biological processes (1). Impaired or overactive death results in extracellular milieu once the plasma membrane integrity was lost human illness including cancer, autoimmune disorders, neurode- C generative diseases, stroke, and myocardial infarction (2). Research (Fig. 1 ). Double staining of necrotic cells with Annexin-V and PI focused on the cell death/survival control provides a vantage point have been shown in dsRNA- and TNF-induced necrosis (ref. 23 and T. Vanden Berghe and P. Vandenabeele, personal communica- for the development of therapeutic agents that specifically trigger CELL BIOLOGY or prevent cell death (3, 4). Based on the morphological features, tions). By analogy, the dying Bax and Bak DKO cells were stained 3 forms of cell death have been described: apoptosis, autophagic cell positively with both Annexin-V and propidium iodide (Fig. S2). death, and necrosis (5–7). Among the 3 distinct forms of cell death, Although some cells displayed increased double-membrane auto- apoptosis is best studied. The evolutionarily conserved signaling phagosomes and conversion of LC3-I to LC3-II was observed (Fig. cascade, consisting of the BCL-2 family, the adaptor protein Apaf-1, S3), knockdown of Beclin1 and ATG5 provided minimal protection and the caspase family, outlines the essential apoptotic network (8). at 3 days after DNA damage (Fig. S4). Furthermore, over- The ‘‘activator’’ BH3-only molecules, BID, BIM, and PUMA, expression of BCL-2 or BCL-XL had no effects, supporting that convey apoptotic signals to trigger homo-oligomerization of mul- DNA damage-induced death in DKO cells is not caused by mito- tidomain proapoptotic BAX and BAK, which in turn permeabilize chondrion-dependent apoptosis (Fig. S5A). Remarkably, DNA mitochondria, leading to the efflux of cytochrome c, the assembly damage-induced necrosis in DKO cells was completely blocked by of apoptosome, and the ultimate activation of caspases (9–11). either actinomycin D (ActD) or cycloheximide (CHX) that inhibits Autophagy serves as either a survival or a death mechanism transcription and translation, respectively (Fig. 2 A and B). More- depending upon the context of the signaling events (12). Although over, transient cycloheximide treatment enhanced the clonogenic necrosis is generally perceived as an unavoidable consequence of extreme physicochemical stress, recent studies have indicated a molecular control of tumor necrosis factor (TNF)/Fas and DNA Author contributions: H.-C.T., D.R., and E.H.-Y.C. designed research; H.-C.T., D.R., G.X.W., alkylation induced necrosis (13–18). However, whether necrosis D.Y.C., H.K., and S.S. performed research; H.-C.T., D.R., G.X.W., D.Y.C., T.D.W., J.J.-D.H., and triggered by other intrinsic death signals is similarly regulated and E.H.-Y.C. analyzed data; and E.H.-Y.C. wrote the paper. more importantly, whether necrotic cell death recruits de novo The authors declare no conflict of interest. genetic programs in analogy to apoptosis remain undetermined. This article is a PNAS Direct Submission. 1 H.-C.T. and D.R. contributed equally to this work. Results 2 To whom correspondence should be addressed. E-mail: [email protected]. DNA Damage Activates a de Novo Genetic Program to Execute This article contains supporting information online at www.pnas.org/cgi/content/full/ Necrotic Death in Bax and Bak DKO Cells. To interrogate nonapo- 0808173106/DCSupplemental. ptotic cell death, we used Bax and Bak double-knockout (DKO) © 2009 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0808173106 PNAS ͉ January 27, 2009 ͉ vol. 106 ͉ no. 4 ͉ 1093–1098 Downloaded by guest on September 26, 2021 p53 Transactivates Cathepsin Q to Trigger Necrotic Death in Bax and Bak DKO Cells. To pinpoint the responsible transcription factor(s) in orchestrating this necrotic program, we investigated several candi- dates known to control cell death and identified p53 as the key necrotic programmer. Overexpression of a dominant negative mutant of p53 or retrovirus-mediated stable knockdown of p53 protected DKO cells from DNA damage-induced necrosis (Fig. 2 D and E and Fig. S6). To identify the molecular signatures underlying the observed necrosis, we performed gene expressing profiling on DKO cells upon DNA damage and recognized up- regulation of several lysosomal cysteine proteases including cathep- sin F, H, and Q, but not cathepsin B and L (data not shown). The observed induction of cathepsin F, H, and Q was confirmed by quantitative RT-PCR analyses (Fig. 3A). Importantly, the up- regulation of these cathepsins was abrogated when p53 was knocked down, positioning p53 in orchestrating the cathepsin program (Fig. 3A). The importance of individual cathepsins in necrosis was investigated with shRNA-mediated stable knockdown of respective cathepsins (Fig. S7). Knockdown of cathepsin Q, but not F or H, protected DKO cells from DNA damage-induced necrosis acti- vated by etoposide (Fig. 3B). Furthermore, deficiency of cathepsin Q also protected DKO cells from UV- and camptothecin-induced necrosis (Fig. 3C and data not shown). Although cathepsin Q was barely detected by anti-cathepsin Q Western blot, DNA damage induced up-regulation of cathepsin Q protein that was readily detectable (Fig. S7D and S8A). Real time RT-PCR revealed a ubiquitous, mostly low-level expression of cathepsin Q in all mouse tissues except lung where no message was detected (Fig. S8B), which contrasts the prior reported placenta-restricted expression (24). Indeed, the expression of cathepsin Q protein could be detected in bone marrow (Fig. S8C). To directly link p53 to the transactivation of cathepsin Q, we searched for consensus p53 binding sites based on the p53MH algorithm (25) and identified one candidate p53-binding site located at the intron 1 of cathepsin Q. Indeed, intron 1 but not the promoter of cathepsin Q responded to p53-mediated transactivation (Fig. 3D). Moreover, mutation of the identified p53-binding site abolished its responsiveness to p53 (Fig. 3D). Taken together, our data uncovered an active genetic pro- gram, the p53-cathepsin Q axis, which initiates ‘‘programmed necrotic death’’ in response to DNA damage. ROS Cooperates with p53-Cathepsin Q to Execute DNA Damage- Induced Necrotic Death. Because cathepsin Q is homologous to cathepsin L and no specific cathepsin Q inhibitors are available, we used a cathepsin L inhibitor to chemically probe the cathepsin Q executed necrosis. Cathepsin L inhibitor, z-FY-CHO, significantly inhibited necrotic death in DKO cells despite the minor toxicity associated with the chemical (Fig. 3E). Of note, other cathepsin Fig. 1. DNA damage activates necrotic death in Bax and Bak DKO cells.
Recommended publications
  • Cathepsin B-Independent Abrogation of Cell Death by CA-074-Ome Upstream of Lysosomal Breakdown
    Cell Death and Differentiation (2004) 11, 1357–1360 & 2004 Nature Publishing Group All rights reserved 1350-9047/04 $30.00 www.nature.com/cdd Letter to the Editor Cathepsin B-independent abrogation of cell death by CA-074-OMe upstream of lysosomal breakdown Cell Death and Differentiation (2004) 11, 1357–1360. doi:10.1038/sj.cdd.4401493 Published online 6 August 2004 Dear Editor, Recent progress provided compelling evidence for the major cence microscope observation (not shown). Overall cell death role of lysosomal cathepsin proteases in cell death pathways (apoptosis þ necrosis) was also significantly diminished by especially when caspase activity is suppressed.1,2 Cathepsin the caspase inhibitor (Po0,05), but without major effect B, a ubiquitous endopeptidase and ectodipeptidase, was (mean percentage of cell death for staurosporine: 92.1; for shown to be a component of TNF-a cell death signaling,3 as staurosporine þ Z-VAD(OMe)-FMK: 62.3; n ¼ 7) (Figure 1f). well as an executor protease in caspase-compromised cells To explore if various cellular compartments are involved in induced to undergo apoptosis4 or necrosis.5 DEVD-ase-independent cell death, acidity of endolysosomes L-trans-epoxysuccinyl-Ile-Pro-OH propylamide (CA-074) is and the inner membrane potential of mitochondria were a highly specific inhibitor of cathepsin B.6 The methylated measured by appropriate fluorescent dyes and flow cytometry variant, CA-074-OMe, was shown to penetrate into cells more (Figure 1b–e). A remarkable decline of acidic compartments easily than the parental molecule,7 whereas it loosened its was detected by acridine orange in the major population of cathepsin B specificity reacting with other, unidentified staurosporine þ Z-VAD(OMe)-FMK-treated cells (Figure 1b).
    [Show full text]
  • Solutions to Detect Apoptosis and Pyroptosis
    Powerful Tools for In vitro Fluorescent Imaging in Cancer Research Jackie Carville May 11, 2016 About Us Products and Services • Custom Assay Services – Immunoassay design and development – Antibody purification/conjugation • Consumable Reagents – ELISA Solutions – Cell-permeant Fluorescent Probes for detection of cell death • Products for research use only. Not for use in diagnostic procedures. ELISA Solutions • ELISA Wash Buffer • PBS • Substrates • Stop Solutions • Plates • Coating Buffers • Blocking Buffers • Conjugate Stabilizers • Assay Diluents • Sample Diluents Custom Services • Antibody Conjugation • Immunoassay Design • Immunoassay Development • Lyophilization • Plate Coating Overview of ICT’s Fluorescent Probes FOR DETECTION OF: • Active caspases • Caspases/Cathepsins in real time • Mitochondrial Health • Cytotoxicity • Serine Proteases Today’s Agenda • FLICA • FLISP • Magic Red • Cell Viability • Mito PT • Oxidative Stress • Cytotoxicity FLICA • FLICA – Fluorescent Labeled Inhibitor of Caspases • In vitro, whole cell detection of caspase activity in apoptotic or caspase-positive cells • Available in green, red, and far red assays FLICA Cancer Research Applications • FLICA is the most accurate and sensitive method of apoptosis detection • Can identify four stages of cell death in one sample • Detect poly caspase activity or individual caspase enzymes How FLICA A. INACTIVE CASPASE (ZYMOGEN) works… prodomain B. CASPASE PROCESSING FMK Fluorescent Reporter YVAD tag C. ACTIVATED CASPASE (HETERO-TETRAMER) D. BINDING OF FLICA Sample
    [Show full text]
  • The Osteoclast-Associated Protease Cathepsin K Is Expressed in Human Breast Carcinoma1
    CANCER RESEARCH57. 5386-5390. December I, 19971 The Osteoclast-associated Protease Cathepsin K Is Expressed in Human Breast Carcinoma1 Amanda J. Littlewood-Evans,' Graeme Bilbe, Wayne B. Bowler, David Farley, Brenda Wlodarski, Toshio Kokubo, Tetsuya Inaoka, John Sloane, Dean B. Evans, and James A. Gallagher Novartis Pharina AG, CH-4002 Base!. Switzerland (A. I. L-E., G. B., D. F., D. B. El; Human Bone Cell Research Group, Department of Human Anatomy and Cell Biology 1W. B. B., B. W., J. A. G.J, and Department of Pathology If. S.), University of Liverpool, Liverpool 5.69 3BX, United Kingdom [W. B. B., B. W., J. S., J. A. G.]; and Takarazuka Research Institute, Novartis Pharma lid., Takarazuka 665, Japan IT. K., T. LI ABSTRACT (ZR75—l,Hs578Tduct, BT474, ZR75—30,BT549, and T-47D), adenocarci noma (MDA-MB-231, SK-BR3, MDA-MB-468, and BT2O), and breast car Human cathepsin K is a novel cysteine protease previously reported cinoma[MVLNandMTLN,transfectedMCF-7-derivedclonesobtainedfrom to be restricted in its expression to osteoclasts. Immunolocalization of Dr. J. C. Nicolas (Unit de Recherches sur Ia Biochemie des Steroides Insern cathepsin K in breast tumor bone metastases revealed that the invading U58, Montpelier, France), and MCF-7]. The MCF-7 cells were obtained from breast cancer cells expressed this protease, albeit at a lower intensity two different sources, ATCC and Dr. Roland Schuele (Tumor Klinik, Freiburg, than in osteoclasts. In situ hybridization and immunolocalization stud Germany). These are indicated in the figure legend as clone 1 (ATCC) and ies were subsequently conducted to demonstrate cathepsin K mRNA clone 2 (Dr.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • P53 and the Cathepsin Proteases As Co-Regulators of Cancer and Apoptosis
    cancers Review Making Connections: p53 and the Cathepsin Proteases as Co-Regulators of Cancer and Apoptosis Surinder M. Soond 1,*, Lyudmila V. Savvateeva 1, Vladimir A. Makarov 1, Neonila V. Gorokhovets 1, Paul A. Townsend 2 and Andrey A. Zamyatnin, Jr. 1,3,4,* 1 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; [email protected] (L.V.S.); [email protected] (V.A.M.); gorokhovets_n_v@staff.sechenov.ru (N.V.G.) 2 Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, and the NIHR Manchester Biomedical Research Centre, Manchester M13 9PL, UK; [email protected] 3 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia 4 Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia * Correspondence: [email protected] (S.M.S.); [email protected] (A.A.Z.J.) Received: 6 October 2020; Accepted: 19 November 2020; Published: 22 November 2020 Simple Summary: This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the p53 and cathepsin proteins. While it has been demonstrated that the p53 protein can directly induce the leakage of cathepsin proteases from the lysosome, directly triggering cell death, little is known about what factors set the threshold at which the lysosome can become permeabilized. It appears that the expression levels of cathepsin proteases may be central to this process, with some of them being transcriptionally regulated by p53.
    [Show full text]
  • Crystal Structure of Cathepsin X: a Flip–Flop of the Ring of His23
    st8308.qxd 03/22/2000 11:36 Page 305 Research Article 305 Crystal structure of cathepsin X: a flip–flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease Gregor Guncar1, Ivica Klemencic1, Boris Turk1, Vito Turk1, Adriana Karaoglanovic-Carmona2, Luiz Juliano2 and Dušan Turk1* Background: Cathepsin X is a widespread, abundantly expressed papain-like Addresses: 1Department of Biochemistry and v mammalian lysosomal cysteine protease. It exhibits carboxy-monopeptidase as Molecular Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia and 2Departamento de well as carboxy-dipeptidase activity and shares a similar activity profile with Biofisica, Escola Paulista de Medicina, Rua Tres de cathepsin B. The latter has been implicated in normal physiological events as Maio 100, 04044-020 Sao Paulo, Brazil. well as in various pathological states such as rheumatoid arthritis, Alzheimer’s disease and cancer progression. Thus the question is raised as to which of the *Corresponding author. E-mail: [email protected] two enzyme activities has actually been monitored. Key words: Alzheimer’s disease, carboxypeptidase, Results: The crystal structure of human cathepsin X has been determined at cathepsin B, cathepsin X, papain-like cysteine 2.67 Å resolution. The structure shares the common features of a papain-like protease enzyme fold, but with a unique active site. The most pronounced feature of the Received: 1 November 1999 cathepsin X structure is the mini-loop that includes a short three-residue Revisions requested: 8 December 1999 insertion protruding into the active site of the protease. The residue Tyr27 on Revisions received: 6 January 2000 one side of the loop forms the surface of the S1 substrate-binding site, and Accepted: 7 January 2000 His23 on the other side modulates both carboxy-monopeptidase as well as Published: 29 February 2000 carboxy-dipeptidase activity of the enzyme by binding the C-terminal carboxyl group of a substrate in two different sidechain conformations.
    [Show full text]
  • Functional Analysis of Two Barley C1A Peptidases, Hvpap-1 and Hvpap-19, in Response to Stress and in Germination
    UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AGRONÓMICA, ALIMENTARIA Y DE BIOSISTEMAS Functional analysis of two barley C1A peptidases, HvPap-1 and HvPap-19, in response to stress and in germination TESIS DOCTORAL ANDREA GÓMEZ SÁNCHEZ Licenciada en Biología Máster en Agrobiotecnología 2020 Departamento de Biotecnología ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AGRONÓMICA, ALIMENTARIA Y DE BIOSISTEMAS UNIVERSIDAD POLITÉCNICA DE MADRID Doctoral Thesis: Functional analysis of two barley C1A peptidases, HvPap-1 and HvPap-19, in response to stress and in germination. Author: Andrea Gómez Sánchez, Licenciada en Biología Directors: Isabel Díaz Rodríguez, Catedrática de Universidad Pablo Gónzalez-Melendi de León, Profesor Titular de Universidad +- UNIVERSIDAD POLITÉCNICA DE MADRID Tribunal nombrado por el Magfco. y Excmo. Sr. Rector de la Universidad Politécnica de Madrid, el día de de 2020. Presidente: Secretario: Vocal: Vocal: Vocal: Suplente: Suplente: Realizado el acto de defensa y lectura de Tesis el día de de 2020 en el Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA). EL PRESIDENTE LOS VOCALES EL SECRETARIO A mis padres ACKNOWLEDGEMENTS This Thesis has been performed in the Molecular Plant-Insect Interaction laboratory at the “Centro de Biotecnología y Genómica de Plantas (CBGP UPM-INIA)”, awarded with the accreditation as Centre of Excellence Severo Ochoa. The Spanish “Ministerio de Economía y Competitividad (MINECO)” through a grant “Formación del Personal Investigador” (BES-2012-051962) associated to the project BIO2014-53508-R has supported this work. A short-term stay in the Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) in Gatersleben (Germany) was funded by MINECO (BES- 2015-072192). I greatly acknowledge Dr.
    [Show full text]
  • Cells T+ HLA-DR + Processing in Human CD4 Cathepsin S
    Cathepsin S Regulates Class II MHC Processing in Human CD4 + HLA-DR+ T Cells This information is current as Cristina Maria Costantino, Hidde L. Ploegh and David A. of September 26, 2021. Hafler J Immunol 2009; 183:945-952; Prepublished online 24 June 2009; doi: 10.4049/jimmunol.0900921 http://www.jimmunol.org/content/183/2/945 Downloaded from References This article cites 47 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/183/2/945.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Cathepsin S Regulates Class II MHC Processing in Human CD4؉ HLA-DR؉ T Cells1 Cristina Maria Costantino,* Hidde L. Ploegh,† and David A. Hafler2* Although it has long been known that human CD4؉ T cells can express functional class II MHC molecules, the role of lysosomal proteases in the T cell class II MHC processing and presentation pathway is unknown.
    [Show full text]
  • Cysteine Cathepsins: from Structure, Function and Regulation to New Frontiers☆
    Biochimica et Biophysica Acta 1824 (2012) 68–88 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbapap Review Cysteine cathepsins: From structure, function and regulation to new frontiers☆ Vito Turk a,b,⁎⁎, Veronika Stoka a, Olga Vasiljeva a, Miha Renko a, Tao Sun a,1, Boris Turk a,b,c,Dušan Turk a,b,⁎ a Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia b Center of Excellence CIPKEBIP, Ljubljana, Slovenia c Center of Excellence NIN, Ljubljana, Slovenia article info abstract Article history: It is more than 50 years since the lysosome was discovered. Since then its hydrolytic machinery, including Received 16 August 2011 proteases and other hydrolases, has been fairly well identified and characterized. Among these are the cyste- Received in revised form 3 October 2011 ine cathepsins, members of the family of papain-like cysteine proteases. They have unique reactive-site prop- Accepted 4 October 2011 erties and an uneven tissue-specific expression pattern. In living organisms their activity is a delicate balance Available online 12 October 2011 of expression, targeting, zymogen activation, inhibition by protein inhibitors and degradation. The specificity of their substrate binding sites, small-molecule inhibitor repertoire and crystal structures are providing new Keywords: fi Cysteine cathepsin tools for research and development. Their unique reactive-site properties have made it possible to con ne the Protein inhibitor targets simply by the use of appropriate reactive groups. The epoxysuccinyls still dominate the field, but now Cystatin nitriles seem to be the most appropriate “warhead”.
    [Show full text]
  • A Cysteine Protease Inhibitor Blocks SARS-Cov-2 Infection of Human and Monkey Cells
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.347534; this version posted October 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A cysteine protease inhibitor blocks SARS-CoV-2 infection of human and monkey cells Drake M. Mellott,1 Chien-Te Tseng,3 Aleksandra Drelich,3 Pavla Fajtová,4,5 Bala C. Chenna,1 Demetrios H. Kostomiris1, Jason Hsu,3 Jiyun Zhu,1 Zane W. Taylor,2,9 Vivian Tat,3 Ardala Katzfuss,1 Linfeng Li,1 Miriam A. Giardini,4 Danielle Skinner,4 Ken Hirata,4 Sungjun Beck4, Aaron F. Carlin,8 Alex E. Clark4, Laura Beretta4, Daniel Maneval6, Felix Frueh,6 Brett L. Hurst,7 Hong Wang,7 Klaudia I. Kocurek,2 Frank M. Raushel,2 Anthony J. O’Donoghue,4 Jair Lage de Siqueira-Neto,4 Thomas D. Meek1.*, and James H. McKerrow#4,* Departments of Biochemistry and Biophysics1 and Chemistry,2 Texas A&M University, 301 Old Main Drive, College Station, Texas 77843, 3Department of Microbiology and Immunology, University of Texas, Medical Branch, 3000 University Boulevard, Galveston, Texas, 77755-1001, 4Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 5Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic, 6Selva Therapeutics, and 7Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, Utah, 84322, 8Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA.9Current address: Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99353.
    [Show full text]
  • Cysteine Cathepsin Proteases: Regulators of Cancer Progression and Therapeutic Response
    REVIEWS Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response Oakley C. Olson1,2 and Johanna A. Joyce1,3,4 Abstract | Cysteine cathepsin protease activity is frequently dysregulated in the context of neoplastic transformation. Increased activity and aberrant localization of proteases within the tumour microenvironment have a potent role in driving cancer progression, proliferation, invasion and metastasis. Recent studies have also uncovered functions for cathepsins in the suppression of the response to therapeutic intervention in various malignancies. However, cathepsins can be either tumour promoting or tumour suppressive depending on the context, which emphasizes the importance of rigorous in vivo analyses to ascertain function. Here, we review the basic research and clinical findings that underlie the roles of cathepsins in cancer, and provide a roadmap for the rational integration of cathepsin-targeting agents into clinical treatment. Extracellular matrix Our contemporary understanding of cysteine cathepsin tissue homeostasis. In fact, aberrant cathepsin activity (ECM). The ECM represents the proteases originates with their canonical role as degrada- is not unique to cancer and contributes to many disease multitude of proteins and tive enzymes of the lysosome. This view has expanded states — for example, osteoporosis and arthritis4, neuro­ macromolecules secreted by considerably over decades of research, both through an degenerative diseases5, cardiovascular disease6, obe- cells into the extracellular
    [Show full text]
  • Kinetic Properties and Characterization of Purified Proteases from Pacific Whiting
    AN ABSTRACT OF THE THESIS OF JuWen Wu for the degree of Master of Science in Food Science and Technology presented on March 10. 1994 . Title: Kinetic Properties and Characterization of Purified Proteases from Pacific Whiting (Merluccius productus) . Abstract approved: ._ ■^^HaejWg An Kinetic properties of the two proteases, causing textural degradation of Pacific whiting (Merluccius productus) during heating, were compared and characterized with the synthetic substrate, Z-Phe-Arg-NMec. Pacific whiting P-I and P-II showed the highest specificity on Z-Phe-Arg-NMec, specific substrate for cathepsin L. The Km of 1 preactivated P-I and P-II were 62.98 and 76.02 (^M), and kcat, 2.38 and 1.34 (s" ) against Z-Phe-Arg-NMec at pH 7.0 and 30°C, respectively. Optimum pH stability for preactivated P-I and P-II is between 4.5 and 5.5. Both enzymes showed similar pH- induced preactivation profiles at 30oC. The maximal activity for both enzymes was obtained by preactivating the enzyme at a range of pH 5.5 to 7.5. The highest activation rate for both enzymes was determined at pH 7.5. At pH 5.5, the rate to reach the maximal activity was the slowest, but the activity was stable up to 1 hr. P-I and P-II shared similar temperature profiles at pH 5.5 and pH 7.0 studied. Optimum temperatures at pH 5.5 and 7.0 for both proteases on the same substrate were 550C. Significant thermal inactivation for both enzymes was shown at 750C.
    [Show full text]