Cathepsin L2, a Novel Human Cysteine Proteinase Produced by Breast and Colorectal Carcinomas1

Total Page:16

File Type:pdf, Size:1020Kb

Cathepsin L2, a Novel Human Cysteine Proteinase Produced by Breast and Colorectal Carcinomas1 [CANCERRESEARCH58,1624-1630, April 15. 19981 Advances in Brief Cathepsin L2, a Novel Human Cysteine Proteinase Produced by Breast and Colorectal Carcinomas1 Ifligo Santamarla, Gloria Velasco, Maite Cazorla, Antonio Fueyo, Elias Campo, and Carlos López-Otmn2 Departamento de Bioquimica y Biolog(a Molecular (I .S., G. V., C. L-O.J and Biolog(a Funcional (A F], Facultad de Medicina. Universidad de Oviedo, 33006 Oviedo. and Departamento de Anatom(a Patoldgica, Hospital Clmnico—Barcelona,08036Barcelona, [M. C., E. C.!, Spain Abstract (3); (b) cathepsin L (4); (c) cathepsin H (5); (d) cathepsin S (6); (e) cathepsin C (7); (/) cathepsin 0 (8); (g) cathepsin K (9); and (h) We have identified and cloned a new member of the papain family of cathepsin W (10). Furthermore, several groups have described the cysteine proteinases from a human brain eDNA library. The isolated existence of additional cysteine proteinases including cathepsins M, cDNA codes for a polypeptide of 334 amino acids that exhibits all of the structural features characteristic of cysteine proteinases, including the N, P. and T, which were originally identified because of their degrad active site cysteine residue essential for peptide hydrolysis. PairWise corn ing activity on specific substrates such as aldolase, collagen, prom parisons of this amino acid sequence with the remaining human cysteine sulin, or tyrosine aminotransferase, but whose characterization at the proteinases identified to date showed a high percentage of identity (78%) molecular level has not yet been reported (11—14). with cathepsin L; the percentage of identity with all other members of the Structural comparisons between the different members of the cys family was much lower (<40%). On the basis of these structural charac teine proteinase family have shown that they are synthesized as teristics, we have tentatively called this novel protein cathepsin L2. The preproenzymes, which are processed to the corresponding proen eDNA encoding the mature cathepsin L2 was expressed In Escherichia zymes and targeted to the lysosomes by the mannose 6-phosphate coli, and after purification, the recombinant protein was able to degrade signal attached to them. However, in some cases, the precursors of the synthetic peptide benzyloxycarbonyl-L-phenylalanyl-L-arginine-7- these lysosomal enzymes escape from this processing pathway and amido-4-rnethylcoumarln, which is commonly used as a substrate for cysteine proteinases. Cathepsin L2 proteolytic activity on this substrate continue along the secretory route, entering storage granules and wasabolishedby trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane,finally being released into the extracellular space (15). Amino acid an inhibitor of cysteine proteinases, thus providing additional evidence sequence comparisons between all members of the family have re that the isolated eDNA encodes a functional cysteine proteinase. Northern vealed that they are not closely related; the percentage of identity blot analysis of polyadenylated RNAs isolated from a variety of human between them is less than 50%. Nevertheless, in their amino acid tissues demonstrated that cathepsin L2 is predominantly expressed in the sequences, all of them contain a series of amino acids that is abso thymus and testis. This finding is in marked contrast with the wide tissue lutely conserved and essential for their catalytic activity (1). distribution of most cysteine protelnases characterized to date, including Because it seems clear that cysteine proteinases play essential roles cathepsin L, and suggests that cathepsin L2 may play a specialized role in in both normal and pathological conditions, including tumor pro the thymus and testis. Expression analysis of cathepsin L2 in human cesses, over the last few years, we have been interested in examining tumors revealed a widespread expression in colorectal and breast carci nomas but not in normal colon or mammary gland or in peritumoral the possibility that additional, uncharactenzed members of this family tissues. Cathepsin L2 was also expressed by colorectal and breast cancer of proteolytic enzymes could be produced by human tumors. This cell lines as well as by some tumors of diverse origin, including ovarian search for new human cysteine proteinases led us to identify cathepsin and renal carcinomas. These results open the possibility that this novel 0, which was originallycloned from a breastcarcinomabut is widely enzyme may be involved in tumor processes, as already reported for other distributed in human tissues (8). Furthermore, we have recently re cysteine proteinases, including cathepsin L. ported the cloning and characterization of human bleomycin hydro lase, a cytosolic cysteine proteinase that is distantly related to other Introduction members of the papain family and is involved in chemotherapy The cysteine proteinases are a family of enzymes involved in many resistance (16). In this study, we describe the molecular cloning and normal cellular processes, including the turnover of intracellular pro complete nucleotide sequence3 of a cDNA encoding a novel member teins, prohormone activation, and bone remodeling (1). In addition, it of this family of enzymes, which has tentatively been called cathepsin has been suggested that these proteolytic enzymes play important L2. We also report the expression of the cDNA in Escherichia coli roles in a number of pathological conditions such as Alzheimer's and demonstrate that recombinant cathepsin L2 is a functional cys disease, pulmonary emphysema, rheumatoid arthritis, muscular dys teine proteinase. Furthermore, we analyze its expression in human trophy, and cancer invasion and metastasis (1, 2). At present, eight tissues, showing that it is mainly expressed in the thymus and testis. human cysteine proteinases of the papain family have been isolated Finally, we present evidence that cathepsin L2 is widely expressed in and characterized at the amino acid sequence level: (a) cathepsin B colorectal and breast carcinomas. Received I 1/21/97; accepted 2/25/98. Materials and Methods The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with Materials. cDNA libraries from human brain, mouse embryo, and mouse 18 U.S.C. Section 1734 solely to indicate this fact. brain constructed in Agtll and Northern blots containing poly(A)@ RNAs t Supported by Grant 5AF97—0258 from the Comisión Interministerial de Ciencia y Tecnologla, Grant BMH4-CT96-00l7 from European Union-BIOMED II, Maraton TV3 prepared from different human tissues and cancer cell lines were purchased Cancer (to E. C.), and Glaxo-Wellcome, Spain. I. S. is a recipient of a fellowship from from Clontech (Palo Alto, CA). Restriction endonucleases and other reagents Ministerio de Educacióny Ciencia (Spain). used for molecular cloning were from Boehringer Mannheim (Mannheim, 2 To whom requests for reprints should be addressed, at Departamento de Bio quimica y BiologIa Molecular, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain. Phone: 34-85-104201; Fax: 34-85-103564/34-85-232255; E-mail: 3 The nucleotide sequence reported in this paper has been submitted to the GenBank/ [email protected]. European Molecular Biology Laboratory Data Bank with accession number Y14734. 1624 Downloaded from cancerres.aacrjournals.org on October 1, 2021. © 1998 American Association for Cancer Research. CATHEPSIN L2 IN HUMAN TUMORS Germany). Oligonucleotides were synthesized by the phosphoramidite method volume of PBS, lysed by using a French press, and centrifuged at 20,000 X g in an Applied Biosystems DNA synthesizer (model 392 A) and used directly for 20 mm at 4°C.The soluble extract was treated with glutathione-Sepharose after synthesis. Double-stranded DNA probes were radiolabeled with 4B and eluted with glutathione elution buffer [10 mMreduced glutathione in 50 [cs-32P]dCTP (3000 Ci/mmol) from Amersham (Amersham, Buckinghamshire, mM Tris-HC1 (pH 8.0)]. United Kingdom) using a commercial random-priming kit purchased from Enzyme Assays. The enzymatic activity of purified cathepsin L2 produced Pharmacia LKB Biotechnology AB (Uppsala, Sweden). Synthetic peptides in E. coli was measured by using 20 @.tMZ-Phe-Arg-AMC or Z-Arg-Arg-AMC Z-Phe-Arg-AMC4 and Z-Arg-Arg-AMC were from BACHEM, Inc. (Buben as the substrate and following the procedure described by Barrett and Kirschke dorf, Switzerland), and proteinase inhibitor E-64 was from Sigma (St. Louis, (17) with minor modifications. Assays were performed at 30°C in 100 mM MO). sodium acetate buffer (pH 4.5) containing 10 mM DTT and 2 mM EDTA. Screening of a Human Brain cDNA Library. After searching the Gen Substrate hydrolysis was monitored in a Cytofluor 2350 fluorometer (Milli Bank database of human ESTs for sequences with homology to human cys pore, Bedford, MA) at excitation and emission wavelengths of 360 and 460 teine proteinases, we identified a mouse sequence (AA013726; deposited by nm, respectively. For inhibition assays, the reaction mixture was preincubated M. Marra et aL, WashingtonUniversity-HowardHughesMedicalInstitute with 20 @.LME-64at 30°Cfor 15 mmn, and the remaining activity was deter Mouse EST Project) that, when translated, showed a significant similarity to mined using the fluorogenic substrate Z-Phe-Arg-AMC as described previ amino acid sequences previously determined for other cathepsins. This DNA ously. As a positive control of enzyme assays, we used recombinant
Recommended publications
  • Supplementary Data
    Supplementary Data for Quantitative Changes in the Mitochondrial Proteome from Subjects with Mild Cognitive Impairment, Early Stage and Late Stage Alzheimer’s disease Table 1 - 112 unique, non-redundant proteins identified and quantified in at least two of the three analytical replicates for all three disease stages. Table 2 - MCI mitochondrial samples, Protein Summary Table 3 - MCI mitochondrial samples, Experiment 1 Table 4 - MCI mitochondrial samples, Experiment 2 Table 5 - MCI mitochondrial samples, Experiment 3 Table 6 - EAD Mitochondrial Study, Protein Summary Table 7 - EAD Mitochondrial Study, Experiment 1 Table 8 - EAD Mitochondrial Study, Experiment 2 Table 9 - EAD Mitochondrial Study, Experiment 3 Table 10 - LAD Mitochondrial Study, Protein Summary Table 11 - LAD Mitochondrial Study, Experiment 1 Table 12 - LAD Mitochondrial Study, Experiment 2 Table 13 - LAD Mitochondrial Study, Experiment 3 Supplemental Table 1. 112 unique, non-redundant proteins identified and quantified in at least two of the three analytical replicates for all three disease stages. Description Data MCI EAD LAD AATM_HUMAN (P00505) Aspartate aminotransferase, mitochondrial precursor (EC Mean 1.43 1.70 1.31 2.6.1.1) (Transaminase A) (Glutamate oxaloacetate transaminase 2) [MASS=47475] SEM 0.07 0.09 0.09 Count 3.00 3.00 3.00 ACON_HUMAN (Q99798) Aconitate hydratase, mitochondrial precursor (EC 4.2.1.3) Mean 1.24 1.61 1.19 (Citrate hydro-lyase) (Aconitase) [MASS=85425] SEM 0.05 0.17 0.18 Count 3.00 2.00 3.00 ACPM_HUMAN (O14561) Acyl carrier protein, mitochondrial
    [Show full text]
  • Alimentary Tract Proteinases of the Southern Corn
    Durham E-Theses Alimentary tract proteinases of the Southern corn rootworm (Diabrotica undecimpunctata howardi) and the potential of potato Kunitz proteinase inhibitors for larval control. Macgregor, James Mylne How to cite: Macgregor, James Mylne (2001) Alimentary tract proteinases of the Southern corn rootworm (Diabrotica undecimpunctata howardi) and the potential of potato Kunitz proteinase inhibitors for larval control., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3808/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Alimentary tract proteinases of the Southern corn rootworm (Diabrotica undecimpunctata howardi) and the potential of potato Kunitz proteinase inhibitors for larval control. The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. A thesis submitted by James Mylne Macgregor B.Sc.
    [Show full text]
  • Data Sheet Cathepsin V Inhibitor Screening Assay Kit Catalog #79589 Size: 96 Reactions
    6405 Mira Mesa Blvd Ste. 100 San Diego, CA 92121 Tel: 1.858.202.1401 Fax: 1.858.481.8694 Email: [email protected] Data Sheet Cathepsin V Inhibitor Screening Assay Kit Catalog #79589 Size: 96 reactions BACKGROUND: Cathepsin V, also called Cathepsin L2, is a lysosomal cysteine endopeptidase with high sequence homology to cathepsin L and other members of the papain superfamily of cysteine proteinases. Its expression is regulated in a tissue-specific manner and is high in thymus, testis and cornea. Expression analysis of cathepsin V in human tumors revealed widespread expression in colorectal and breast carcinomas, suggesting a possible role in tumor processes. DESCRIPTION: The Cathepsin V Inhibitor Screening Assay Kit is designed to measure the protease activity of Cathepsin V for screening and profiling applications. The Cathepsin V assay kit comes in a convenient 96-well format, with purified Cathepsin V, its fluorogenic substrate, and Cathepsin buffer for 100 enzyme reactions. In addition, the kit includes the cathepsin inhibitor E- 64 for use as a control inhibitor. COMPONENTS: Catalog # Component Amount Storage 80009 Cathepsin V 10 µg -80 °C Fluorogenic Cathepsin Avoid 80349 Substrate 1 (5 mM) 10 µl -20 °C multiple *4X Cathepsin buffer 2 ml -20 °C freeze/thaw E-64 (1 mM) 10 µl -20 °C cycles! 96-well black microplate * Add 120 µl of 0.5 M DTT before use. MATERIALS OR INSTRUMENTS REQUIRED BUT NOT SUPPLIED: 0.5 M DTT in aqueous solution Adjustable micropipettor and sterile tips Fluorescent microplate reader APPLICATIONS: Great for studying enzyme kinetics and screening small molecular inhibitors for drug discovery and HTS applications.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Felipe Jun Fuzita Molecular Physiology of Digestion In
    FELIPE JUN FUZITA MOLECULAR PHYSIOLOGY OF DIGESTION IN ARACHNIDA: FUNCTIONAL AND COMPARATIVE-EVOLUTIONARY APPROACHES Thesis presented to the Programa de Pós-Graduação Interunidades em Biotecnologia USP/Instituto Butantan/IPT, to obtain the Title of Doctor in Biotechnology. São Paulo 2014 FELIPE JUN FUZITA MOLECULAR PHYSIOLOGY OF DIGESTION IN ARACHNIDA: FUNCTIONAL AND COMPARATIVE-EVOLUTIONARY APPROACHES Thesis presented to the Programa de Pós-Graduação Interunidades em Biotecnologia USP/Instituto Butantan/IPT, to obtain the Title of Doctor in Biotechnology. Concentration area: Biotechnology Advisor: Dr. Adriana Rios Lopes Rocha Corrected version. The original electronic version is available either in the library of the Institute of Biomedical Sciences and in the Digital Library of Theses and Dissertations of the University of Sao Paulo (BDTD). São Paulo 2014 DADOS DE CATALOGAÇÃO NA PUBLICAÇÃO (CIP) Serviço de Biblioteca e Informação Biomédica do Instituto de Ciências Biomédicas da Universidade de São Paulo © reprodução total Fuzita, Felipe Jun. Molecular physiology of digestion in Arachnida: functional and comparative-evolutionary approaches / Felipe Jun Fuzita. -- São Paulo, 2014. Orientador: Profa. Dra. Adriana Rios Lopes Rocha. Tese (Doutorado) – Universidade de São Paulo. Instituto de Ciências Biomédicas. Programa de Pós-Graduação Interunidades em Biotecnologia USP/IPT/Instituto Butantan. Área de concentração: Biotecnologia. Linha de pesquisa: Bioquímica, biologia molecular, espectrometria de massa. Versão do título para o português: Fisiologia molecular da digestão em Arachnida: abordagens funcional e comparativo-evolutiva. 1. Digestão 2. Aranha 3. Escorpião 4. Enzimologia 5. Proteoma 6. Transcriptoma I. Rocha, Profa. Dra. Adriana Rios Lopes I. Universidade de São Paulo. Instituto de Ciências Biomédicas. Programa de Pós-Graduação Interunidades em Biotecnologia USP/IPT/Instituto Butantan III.
    [Show full text]
  • Crystal Structure of Cathepsin X: a Flip–Flop of the Ring of His23
    st8308.qxd 03/22/2000 11:36 Page 305 Research Article 305 Crystal structure of cathepsin X: a flip–flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease Gregor Guncar1, Ivica Klemencic1, Boris Turk1, Vito Turk1, Adriana Karaoglanovic-Carmona2, Luiz Juliano2 and Dušan Turk1* Background: Cathepsin X is a widespread, abundantly expressed papain-like Addresses: 1Department of Biochemistry and v mammalian lysosomal cysteine protease. It exhibits carboxy-monopeptidase as Molecular Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia and 2Departamento de well as carboxy-dipeptidase activity and shares a similar activity profile with Biofisica, Escola Paulista de Medicina, Rua Tres de cathepsin B. The latter has been implicated in normal physiological events as Maio 100, 04044-020 Sao Paulo, Brazil. well as in various pathological states such as rheumatoid arthritis, Alzheimer’s disease and cancer progression. Thus the question is raised as to which of the *Corresponding author. E-mail: [email protected] two enzyme activities has actually been monitored. Key words: Alzheimer’s disease, carboxypeptidase, Results: The crystal structure of human cathepsin X has been determined at cathepsin B, cathepsin X, papain-like cysteine 2.67 Å resolution. The structure shares the common features of a papain-like protease enzyme fold, but with a unique active site. The most pronounced feature of the Received: 1 November 1999 cathepsin X structure is the mini-loop that includes a short three-residue Revisions requested: 8 December 1999 insertion protruding into the active site of the protease. The residue Tyr27 on Revisions received: 6 January 2000 one side of the loop forms the surface of the S1 substrate-binding site, and Accepted: 7 January 2000 His23 on the other side modulates both carboxy-monopeptidase as well as Published: 29 February 2000 carboxy-dipeptidase activity of the enzyme by binding the C-terminal carboxyl group of a substrate in two different sidechain conformations.
    [Show full text]
  • Inhibition of Mitochondrial Complex II in Neuronal Cells Triggers Unique
    www.nature.com/scientificreports OPEN Inhibition of mitochondrial complex II in neuronal cells triggers unique pathways culminating in autophagy with implications for neurodegeneration Sathyanarayanan Ranganayaki1, Neema Jamshidi2, Mohamad Aiyaz3, Santhosh‑Kumar Rashmi4, Narayanappa Gayathri4, Pulleri Kandi Harsha5, Balasundaram Padmanabhan6 & Muchukunte Mukunda Srinivas Bharath7* Mitochondrial dysfunction and neurodegeneration underlie movement disorders such as Parkinson’s disease, Huntington’s disease and Manganism among others. As a corollary, inhibition of mitochondrial complex I (CI) and complex II (CII) by toxins 1‑methyl‑4‑phenylpyridinium (MPP+) and 3‑nitropropionic acid (3‑NPA) respectively, induced degenerative changes noted in such neurodegenerative diseases. We aimed to unravel the down‑stream pathways associated with CII inhibition and compared with CI inhibition and the Manganese (Mn) neurotoxicity. Genome‑wide transcriptomics of N27 neuronal cells exposed to 3‑NPA, compared with MPP+ and Mn revealed varied transcriptomic profle. Along with mitochondrial and synaptic pathways, Autophagy was the predominant pathway diferentially regulated in the 3‑NPA model with implications for neuronal survival. This pathway was unique to 3‑NPA, as substantiated by in silico modelling of the three toxins. Morphological and biochemical validation of autophagy markers in the cell model of 3‑NPA revealed incomplete autophagy mediated by mechanistic Target of Rapamycin Complex 2 (mTORC2) pathway. Interestingly, Brain Derived Neurotrophic Factor
    [Show full text]
  • Deficiency for the Cysteine Protease Cathepsin L Promotes Tumor
    Oncogene (2010) 29, 1611–1621 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc ORIGINAL ARTICLE Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis J Dennema¨rker1,6, T Lohmu¨ller1,6, J Mayerle2, M Tacke1, MM Lerch2, LM Coussens3,4, C Peters1,5 and T Reinheckel1,5 1Institute for Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany; 2Department of Gastroenterology, Endocrinology and Nutrition, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany; 3Department of Pathology, University of California, San Francisco, CA, USA; 4Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA and 5Ludwig Heilmeyer Comprehensive Cancer Center and Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany To define a functional role for the endosomal/lysosomal Introduction cysteine protease cathepsin L (Ctsl) during squamous carcinogenesis, we generated mice harboring a constitutive Proteases have traditionally been thought to promote Ctsl deficiency in addition to epithelial expression of the invasive growth of carcinomas, contributing to the the human papillomavirus type 16 oncogenes (human spread and homing of metastasizing cancer cells (Dano cytokeratin 14 (K14)–HPV16). We found enhanced tumor et al., 1999). Proteases that function outside tumor cells progression and metastasis in the absence of Ctsl. As have been implicated in these processes because of their tumor progression in K14–HPV16 mice is dependent well-established release from tumors, causing the break- on inflammation and angiogenesis, we examined immune down of basement membranes and extracellular matrix. cell infiltration and vascularization without finding any Thus, extracellular proteases may in part facilitate effect of the Ctsl genotype.
    [Show full text]
  • Untersuchung Zur Selektivität Der Hemmung Von Cathepsin L-Ähnlichen Cysteinproteasen Durch Die Dazugehörigen Propeptide
    Untersuchung zur Selektivität der Hemmung von Cathepsin L-ähnlichen Cysteinproteasen durch die dazugehörigen Propeptide Dissertation zur Erlangung des akademischen Grades doctor medicinae dentariae (Dr. med. dent.) vorgelegt dem Rat der Medizinischen Fakultät der Friedrich-Schiller-Universität Jena von Yvonne Benedix, geboren am 05. Februar 1979 in Karl-Marx-Stadt Gutachter 1 Gutachter 2 Gutachter 3 Tag der öffentlichen Verteidigung Inhaltsverzeichnis 3 Abkürzungsverzeichnis 5 Zusammenfassung 7 1. Einleitung 9 2. Materialien und Methodik 16 2.1. Materialien 16 2.1.1. Antibiotika, Chemikalien, Enzyme, Standards und Substrate 16 2.1.2. Kits zur Bearbeitung von DNA 17 2.1.3. Verwendete Vektoren und Bakterienstämme 17 2.1.4. Geräte 18 2.1.5. Spezielle Computerprogramme 19 2.2. Molekularbiologische Methoden 19 2.2.1. Amplifizierung der Proregionen von Cathepsin H und L 19 mittels PCR 2.2.2. DNA-Trennung im Agarosegel und Extraktion 21 2.2.3. Klonierung, Ligation, Transformation und DNA-Isolierung 21 2.2.4. DNA-Seqzenzanalyse 25 2.3. Proteinchemische Methoden 26 2.3.1. Expression und Reinigung der rekombinanten Propeptide 26 2.3.2. Reinigung der Einschlusskörperchen durch Saccharose- Dichtegradientenzentrifugation 27 2.3.3. Endreinigung des Propeptids durch Gelfiltration 28 2.3.4. Charakterisierung der rekombinanten Propeptide 29 2.3.5. Massenspektrometrie durch MALDI-TOF 31 2.4. Kinetische Messung 31 2.4.1. Testdurchführung 31 2.4.2. Bestimmung des KM-Wertes 33 2.4.3. Bestimmung der Inhibitionskonstanten Ki und koff 34 3. Ergebnisse 37 3.1. Herstellung der Propeptide von Cathepsin H (kurz), Cathepsin H (lang) und Cathepsin L 37 3.1.1.
    [Show full text]
  • Reticulum Mainly Localized in the Endoplasmic Predominantly
    Human Cathepsin W, a Cysteine Protease Predominantly Expressed in NK Cells, Is Mainly Localized in the Endoplasmic Reticulum This information is current as of September 24, 2021. Thomas Wex, Frank Bühling, Heike Wex, Dagmar Günther, Peter Malfertheiner, Ekkehard Weber and Dieter Brömme J Immunol 2001; 167:2172-2178; ; doi: 10.4049/jimmunol.167.4.2172 http://www.jimmunol.org/content/167/4/2172 Downloaded from References This article cites 44 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/167/4/2172.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Human Cathepsin W, a Cysteine Protease Predominantly Expressed in NK Cells, Is Mainly Localized in the Endoplasmic Reticulum1 Thomas Wex,2,3*† Frank Bu¨hling,2§ Heike Wex,*‡ Dagmar Gu¨nther,¶ Peter Malfertheiner,† Ekkehard Weber,¶ and Dieter Bro¨mme3* Human cathepsin W (also called lymphopain) is a recently described papain-like cysteine protease of unknown function whose gene expression was found to be restricted to cytotoxic cells.
    [Show full text]
  • Human Cathepsin V / Cathepsin L2 / Preproprotein Protein (His Tag)
    Human Cathepsin V / Cathepsin L2 / Preproprotein Protein (His Tag) Catalog Number: 10093-H08H General Information SDS-PAGE: Gene Name Synonym: CATL2; CTSL2; CTSU; CTSV; MGC125957 Protein Construction: A DNA sequence encoding the full length of human cathepsin L2 (NP_001324.2) (Met 1-Val 334) was expressed, with a C-terminal polyhistidine tag. Source: Human Expression Host: HEK293 Cells QC Testing Purity: > 95 % as determined by SDS-PAGE Bio Activity: Protein Description Measured by its ability to cleave the fluorogenic peptide substrate Z-LR- Cathepsin V (CTSV), also known as Cathepsin L2, CTSL2, and CATL2, is AMC, (R&D Systems, Catalog # ES008) . The specific activity is >1000 a member of the peptidase C1 family. It is predominantly expressed in the pmoles/min/μg. thymus and testis. Cathepsin V is also expressed in corneal epithelium, and to a lesser extent in conjuctival epithelium and skin. It is a lysosomal Endotoxin: cysteine proteinase that may play an important role in corneal physiology. It has about 75% protein sequence identity to murine cathepsin L. The fold < 1.0 EU per μg of the protein as determined by the LAL method of this enzyme is similar to the fold adopted by other members of the papain superfamily of cysteine proteases. Cathepsin V has been recently Stability: described as highly homologous to Cathepsin L and exclusively expressed Samples are stable for up to twelve months from date of receipt at -70 ℃ in human thymus and testis. Cathepsin V is the dominant cysteine protease in cortical human thymic epithelial cells, while Cathepsin L and Predicted N terminal: Val 18 Cathepsin S seem to be restricted to dendritic and macrophage-like cells.
    [Show full text]
  • Cysteine Cathepsins: from Structure, Function and Regulation to New Frontiers☆
    Biochimica et Biophysica Acta 1824 (2012) 68–88 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbapap Review Cysteine cathepsins: From structure, function and regulation to new frontiers☆ Vito Turk a,b,⁎⁎, Veronika Stoka a, Olga Vasiljeva a, Miha Renko a, Tao Sun a,1, Boris Turk a,b,c,Dušan Turk a,b,⁎ a Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia b Center of Excellence CIPKEBIP, Ljubljana, Slovenia c Center of Excellence NIN, Ljubljana, Slovenia article info abstract Article history: It is more than 50 years since the lysosome was discovered. Since then its hydrolytic machinery, including Received 16 August 2011 proteases and other hydrolases, has been fairly well identified and characterized. Among these are the cyste- Received in revised form 3 October 2011 ine cathepsins, members of the family of papain-like cysteine proteases. They have unique reactive-site prop- Accepted 4 October 2011 erties and an uneven tissue-specific expression pattern. In living organisms their activity is a delicate balance Available online 12 October 2011 of expression, targeting, zymogen activation, inhibition by protein inhibitors and degradation. The specificity of their substrate binding sites, small-molecule inhibitor repertoire and crystal structures are providing new Keywords: fi Cysteine cathepsin tools for research and development. Their unique reactive-site properties have made it possible to con ne the Protein inhibitor targets simply by the use of appropriate reactive groups. The epoxysuccinyls still dominate the field, but now Cystatin nitriles seem to be the most appropriate “warhead”.
    [Show full text]