CAN GRAPHENE BILAYERS BE the MEMBRANE MIMETIC MATERIALS? ION CHANNELS in GRAPHENE-BASED NANOSTRUCTURES Oleg V

Total Page:16

File Type:pdf, Size:1020Kb

CAN GRAPHENE BILAYERS BE the MEMBRANE MIMETIC MATERIALS? ION CHANNELS in GRAPHENE-BASED NANOSTRUCTURES Oleg V 154 NANOSYSTEMS CAN GRAPHENE BILAYERS BE THE MEMBRANE MIMETIC MATERIALS? ION CHANNELS IN GRAPHENE-BASED NANOSTRUCTURES Oleg V. Gradov Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences, http://www.inepcp.ru 117829 Moscow, Russian Federation [email protected] Margaret A. Gradova Semenov Institute of Chemical Physics, Russian Academy of Sciences, http://www.chph.ras.ru 119991 Moscow, Russian Federation Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences, http://www.inepcp.ru 117829 Moscow, Russian Federation [email protected] Abstract. The prospects of application of graphene and related structures as the membrane mimetic materials, capable of reproducing several biomembrane functions up to the certain limit, are analyzed in the series of our papers. This paper considers the possibility of the ion channel function modeling using graphene and its derivatives. The physical mechanisms providing selective permeability for different membrane mimetic materials, as well as the limits of the adequate simulation of the transport, catalytic, sensing and electrogenic properties of the cell membrane ion channels using bilayered graphene-based structures are discussed. Keywords: ion channels, graphene, channel mimetics, nanopores, kapillarchemie, size-dependent electrochemistry, electric double-layer capacitor, ISFET & ChemFET PACS: 81.05.ue Bibliography - 171 references Received 14.11.2016 RENSIT, 2016, 8(2):154-170 DOI: 10.17725/rensit.2016.08.154 CONTENTS analogical functional similarity criteria for the 1. INTRODUCTION (154) analysis of possibility of consideration of 2. SEMIPERMEABILITY AND THE ION CHANNELS (154) graphene, particularly the two-layer graphene as 3. PORES AND ION CHANNELS IN GRAPHENE-BASED the membrane mimetic material - the subject of NANOSTRUCTURES (158) this work, with a focus on the analysis of it key 4. CONCLUSION (161) property – permeability for ions, water and other REFERENCES (161) organic matter. 1. INTRODUCTION 2. SEMIPERMEABILITY AND THE ION In [1] provides an overview of membrane CHANNELS models – semi-synthetic, synthetic, biogenic, A well known flexibly adjustable semipermeability semiconducting, superconducting, ferroelectric towards various agents is characteristic for the - and the related membrane mimetic materials graphene-oxide membranes in organic solvents, from phospholipid bilayers and Langmuir films with the size of the nanochannels providing to multilayer nanofilms and ferromagnetic either transport or blocking of several agents, structures, along with the consideration of the which can be narrowed down by the thermal problems of ambiguity models, completeness annealing or extended by solvation, thereby the membrane mimetic materials modeling, changing the boundary of the transmitted functional and substrate equivalence of the agent’s size selectivity [2]. This corresponds to membrane mimetic materials. The use of No. 2 | Vol. 8 | 2016 | RENSIT CAN GRAPHENE BILAYERS BE THE MEMBRANE 155 NANOSYSTEMS MIMETIC MATERIALS? ION CHANNELS... the well known models of the “size / solubility” Thus, it is possible to work out the criteria – regulation of the sodium ion channels [3] and for verification of the biomimetic nature of good approximations of the kinetic regimes the membrane mimetic models, based on the depending on the ionic radius [4]. As a particular idea about the gradations of the ion channel case of the applicability of the quantitative efficiency according to the conductivity and relations between the structure and biological bioelectric response generated, rather than on activity (QSAR) [5], the analysis principles for the conventional statement about the discrete the functional adjustability of the ion channels transition between the excited states («all-or- by the sink parameters, with the membrane none law» [11, 12]), typical for the deterministic pores corresponding to the drains, and the size model of the electrophysiological potential of particles penetrating through those pores, in generation. the case of the graphene layers fail to describe It is reasonable, since it has been shown the membrane permeability, since the membrane earlier that the ion channel states (which are the considered performs a biological function despite prototypes of the membrane mimetic, or even the fact that its chemical composition is far from channel mimetic models [13-15]) with a low ion bioorganic one, and hence, is not included into conductivity in fact are not “closed”, but are the ion channel databases [6] which could be changing within several gradations providing used to obtain QSAR data. qualitatively (“ion-selectively”) and quantitatively It is noteworthy that similar problems with (according to the permeability) distinguishable the QSAR approaches earlier emerged in the types of the membrane-electrophysical or analysis of the lipid nanopores operating as the electropysiological response, which is the ion channels of the cell membranes without any main cause for the specific channelome noises conventional ion channel components [7] due at the patch-clamp registrograms [16]. Of to their size corresponding to the ion radius. course, this does not mean the close similarity (Typically even at the dependence of the several between the biological and synthetic membrane ion channel group input on the ionic radius structures or the possibility to reduce the complex biochemical and crystallographic channelome molecular machinery to the models are applied up to the homohexamer one simple porous structure, but it indicates the [8], i.e. compatible with the QSAR principles general operation principles of the non-specific based on the analysis of the conformation physical mechanisms at the nanoscale where and steric accessibility of the channelome the size effects are physically-determined and biomacromolecules). chemically-independent, i.e. are little if any In connection with the above contradiction influenced by the chemical composition of the it is also worth to mention the known data medium and macromolecular morphology of on the ionic permeability of the synthetic the biopolymers (in a conventional meaning filters which have never been analyzed using of this term introduced by P.J. Flory [17, 18], a QSAR methods for the similar reasons: it Nobel prize winner and the author of the Flory- was shown that the ions penetrating through Huggins equation which is formally similar to the synthetic PET filters are selected by the the Van der Waals equation, and hence, can be mechanisms providing the biomimetic and applied at the physical scale considered in this membrane mimetic kinetics with the discrete paper). fast transitions between the conductivity levels For the above reasons, biomimetic and parametric selectivity of the ion fluxes, as interpretation and assigning of the specific well as inhibition by divalent cations, similar to membrane properties to graphene and the cell ion channels [9, 10]. other layered membrane mimetic materials RENSIT | 2016| VOL. 8 | No. 2 156 OLEG V. GRADOV, MARGARET A. GRADOVA NANOSYSTEMS with the pore size corresponding to the ion different gases [25] and electrochemical radii, although does not contradict to the properties of the nanoelectrode graphene layers experimental data, in fact is a logical error of the [25] also depend on the pore diameter. The inversion type, arising from the mixing of the above phenomenon known as “size-dependent deductive and inductive predicates: graphene electrochemistry” is a conceptual continuation and the cell membrane with the similar pore of the Freundlich’s “Kapillarchemie”. This size obviously subject to the same physical and approach is widely applicable not only in the chemical principles (which is manifested in chemistry of the carbon structures, but also the similarity of the solvation regulation and in the nanostructural materials science as a the electrophysical response), and hence, in whole. this aspect “graphene can be considered as a Regarding the carbon structures related to membrane mimetic material to the same extent graphene, nanoelectrochemistry based on the as the biological membrane can be considered size effects was applied in the studies on the as a graphene-mimetic”. multilayered carbon nanotubes [27] and a fully This suggests that the similarity problem or partially reduced graphite oxide [28] which (including the above mentioned QSAR) for such is an electrode material for electrochemical structures, if considered from the standpoint double-layer capacitors [29] often considered of molecular biology rather than biophysical as the biological membrane bilayer model [30- and biocolloid chemistry, becomes incorrect. 34], as well as the layered supercapacitors of According to the classical colloid and capillary EDLC-type (“electric double-layer capacitor”) chemistry principles [19, 20] it is possible to with the pronounced relation between the ion determine the efficiency limits of the sorption and pore sizes [35] similar to the biological processes within the pores and channels of the membranes and membrane mimetic materials particular diameter, which is usually applied in considered above. By the way, this is a reduced cytophysiology [21] (the Freundlich adsorption graphite oxide which is used as an electrode isotherm [22] is named after Herbert Freundlich material in such supercapacitors [36], allowing – the founder of the capillary chemistry and a the EDLC-based membrane models to mimic pioneer of the capillary-chemical approaches not only the energy storage
Recommended publications
  • Fiorio Pla Gkika2019 Rev Nohighlights
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Research Information System University of Turin Ca2+ channels toolkit in Neuroendocrine tumors Alessandra Fiorio Pla1, 2, 3* and Dimitra Gkika2, 3 1 Department of Life Science and Systems Biology, University of Torino, Turin, Italy. 2 Université de Lille, Inserm U1003, PHYCEL laboratory and Villeneuve d’Ascq, France. 3 Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille, Villeneuve d’Ascq, France. Short Title: Ca2+ channels in Neuroendocrine tumors *Corresponding Author Alessandra Fiorio Pla Department of Life Science and Systems Biology University/Hospital Via Accademia Albertina 13 Torino, 10123, Italy Tel: +390116704660 E-mail: [email protected] Keywords: Neuroendocrine tumors, Ca2+ signals, ion channels. Abstract Neuroendocrine tumors (NET) constitute an heterogenous group of malignancies with various clinical presentations and growth rates but all rising from neuroendocrine cells located all over the body. NET present a relatively low frequency disease being mostly represented by gastroenteropancreatic (GEP) and bronchopulmonary tumors (pNET); on the other hand an increasing frequency and prevalence has been associated to NET. Beside the great effort of the latest years, management of NET is still a critical unmet point due to the lack in the knowledge of the biology of the disease, lack of adequate biomarkers, late presentation, the relative insensitivity of imaging modalities and a paucity of predictably 1 effective treatment options. In this context Ca2+ signals, being pivotal molecular devices in sensing and integrating signals from the microenvironment, are emerging to be particularly relevant in cancer, where they mediate interactions between tumor cells and the tumor microenvironment to drive different aspects of neoplastic progression (e.g.
    [Show full text]
  • Potassium Channels in Peripheral Pain Pathways: Expression, Function and Therapeutic Potential
    Send Orders for Reprints to [email protected] Current Neuropharmacology, 2013, 11, 621-640 621 Potassium Channels in Peripheral Pain Pathways: Expression, Function and Therapeutic Potential Xiaona Du1,* and Nikita Gamper1,2,* 1Department of Pharmacology, Hebei Medical University, Shijiazhuang, China; 2Faculty of Biological Sciences, University of Leeds, Leeds, UK Abstract: Electrical excitation of peripheral somatosensory nerves is a first step in generation of most pain signals in mammalian nervous system. Such excitation is controlled by an intricate set of ion channels that are coordinated to produce a degree of excitation that is proportional to the strength of the external stimulation. However, in many disease states this coordination is disrupted resulting in deregulated peripheral excitability which, in turn, may underpin pathological pain states (i.e. migraine, neuralgia, neuropathic and inflammatory pains). One of the major groups of ion channels that are essential for controlling neuronal excitability is potassium channel family and, hereby, the focus of this review is on the K+ channels in peripheral pain pathways. The aim of the review is threefold. First, we will discuss current evidence for the expression and functional role of various K+ channels in peripheral nociceptive fibres. Second, we will consider a hypothesis suggesting that reduced functional activity of K+ channels within peripheral nociceptive pathways is a general feature of many types of pain. Third, we will evaluate the perspectives of pharmacological enhancement of K+ channels in nociceptive pathways as a strategy for new analgesic drug design. + + Keywords: K channel/ M channel/ two-pore K channel/ KATP channel/ Dorsal root ganglion/ Pain/ Nociception. INTRODUCTION TRPV1 [4] while strong mechanical stimulation activates mechanosensitive channels which can be Piezo2 [5].
    [Show full text]
  • The Chondrocyte Channelome: a Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2017 The Chondrocyte Channelome: A Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities Anthony J. Asmar Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, Molecular Biology Commons, and the Physiology Commons Recommended Citation Asmar, Anthony J.. "The Chondrocyte Channelome: A Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities" (2017). Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/pyha-7838 https://digitalcommons.odu.edu/biology_etds/19 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. THE CHONDROCYTE CHANNELOME: A NOVEL ION CHANNEL CANDIDATE IN THE PATHOGENESIS OF PECTUS DEFORMITIES by Anthony J. Asmar B.S. Biology May 2010, Virginia Polytechnic Institute M.S. Biology May 2013, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY BIOMEDICAL SCIENCES OLD DOMINION UNIVERSITY August 2017 Approved by: Christopher Osgood (Co-Director) Michael Stacey (Co-Director) Lesley Greene (Member) Andrei Pakhomov (Member) Jing He (Member) ABSTRACT THE CHONDROCYTE CHANNELOME: A NOVEL ION CHANNEL CANDIDATE IN THE PATHOGENESIS OF PECTUS DEFORMITIES Anthony J. Asmar Old Dominion University, 2017 Co-Directors: Dr. Christopher Osgood Dr. Michael Stacey Costal cartilage is a type of rod-like hyaline cartilage connecting the ribs to the sternum.
    [Show full text]
  • Effect of Irradiation of the PEM of 1.531211SMJ29 Jeewanu with Clinical Mercury Lamp and Sunlight on the Morphological Features of the Silicon Molybdenum Jeewanu
    International Journal of Engineering Research and General Science Volume 4, Issue 4, July-August, 2016 ISSN 2091-2730 Effect of Irradiation of the PEM of 1.531211SMJ29 Jeewanu with Clinical Mercury Lamp and Sunlight on the Morphological Features of the Silicon Molybdenum Jeewanu Deepa Srivastava Department of Chemistry, S.S.Khanna Girls‘ Degree College, Constituent College of Allahabad University, Allahabad, Uttar Pradesh, India E- Mail – [email protected] Abstract— Sterilized aqueous mixture of ammonium molybdate, diammonium hydrogen phosphate, mineral solution and formaldehyde on exposure to sunlight results in the formation of self-sustaining coacervates which were coined as Jeewanu, the autopoetic eukaryote by Bahadur and Ranganayaki. Jeewanu have been analyzed to contain a number of compounds of biological interest. The presence of various enzyme like activities viz., phosphatase, ATP-ase, esterase, nitrogenase have been also been detected in Jeewanu mixture. Gáinti (2003) discussed that Jeewanu possesses a promising configuration similar to protocell-like model. Keywords— Autopoetic, eukaryote, Jeewanu, PEM, sunlight, mercury lamp, morphology, 1.531211SMJ29 INTRODUCTION Sterilized aqueous mixture of ammonium molybdate, diammonium hydrogen phosphate, mineral solution and formaldehyde on exposure to sunlight results in the formation of self-sustaining coacervates which were coined as Jeewanu, the autopoetic eukaryote by Bahadur, K and Ranganayaki, S. in 1970. [1] The photochemical, formation of protocell-like microstructures ―Jeewanu‖ in a laboratory simulated prebiotic atmosphere capable of showing multiplication by budding, growth from within by actual synthesis of material and various metabolic activities has been reported by Bahadur et al. [1, 2, 3, 4, 5, 7, 8] Jeewanu have been analyzed to contain a number of compounds of biological interest viz.
    [Show full text]
  • Download Report 2010-12
    RESEARCH REPORt 2010—2012 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science Cover: Aurora borealis paintings by William Crowder, National Geographic (1947). The International Geophysical Year (1957–8) transformed research on the aurora, one of nature’s most elusive and intensely beautiful phenomena. Aurorae became the center of interest for the big science of powerful rockets, complex satellites and large group efforts to understand the magnetic and charged particle environment of the earth. The auroral visoplot displayed here provided guidance for recording observations in a standardized form, translating the sublime aesthetics of pictorial depictions of aurorae into the mechanical aesthetics of numbers and symbols. Most of the portait photographs were taken by Skúli Sigurdsson RESEARCH REPORT 2010—2012 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science Introduction The Max Planck Institute for the History of Science (MPIWG) is made up of three Departments, each administered by a Director, and several Independent Research Groups, each led for five years by an outstanding junior scholar. Since its foundation in 1994 the MPIWG has investigated fundamental questions of the history of knowl- edge from the Neolithic to the present. The focus has been on the history of the natu- ral sciences, but recent projects have also integrated the history of technology and the history of the human sciences into a more panoramic view of the history of knowl- edge. Of central interest is the emergence of basic categories of scientific thinking and practice as well as their transformation over time: examples include experiment, ob- servation, normalcy, space, evidence, biodiversity or force.
    [Show full text]
  • Conference Report Highlights of the Meeting on “Horizontal Gene
    ORIENTAL JOURNAL OF CHEMISTRY ISSN: 0970-020 X CODEN: OJCHEG An International Open Free Access, Peer Reviewed Research Journal 2013, Vol. 29, No. (4): Pg. 1687-1693 www.orientjchem.org Conference Report Highlights of the Meeting on “Horizontal Gene Transfer and the Last Universal Common Ancestor” Held at the Open University, Milton Keynes, UK SOHAN Jheeta Network of Researchers on Horizontal Gene Transfer and the Last Universal Common Ancestor, 1 Scott Hall Crescent, Leeds, LS7 3RB, U.K. *Corresponding author E-mail: [email protected] http://dx.doi.org/10.13005/ojc/290459 (Received: July 12, 2013; Accepted: August 04, 2013) ABstract This paper summarises the oral presentations, their outcomes and conclusions drawn from the meeting entitled: ‘Horizontal Gene transfer and the Last Universal Common Ancestor’ which was held at the Open University, Milton Keynes, UK, on the 5th and the 6th September 2013. Key words: Horizontal gene transfer; HGT, Lateral gene transfer; LGT, Phylogenetic tree of life, Transformation; Gene transfer agent (GTA); Last universal common ancestor (LUCA) INTRODUCTION brought together an international gathering of scientists from Japan, India, Israel, Russia, USA, One of the first of its kind, this meeting, Canada, Germany, Denmark, Italy, Spain as well held on the 5th and the 6th September, was designed as participants from the UK (Figure 3). With such an to investigate and evaluate the importance of assortment of eminent researchers under one roof, ‘horizontal gene transfer’ (HGT) during the period of the meeting was both energetic and engaging and the ‘last universal common ancestor’ (LUCA) prior generated a lively debate and exchange of ideas.
    [Show full text]
  • Emerging Roles of the Membrane Potential: Action Beyond the Action Potential
    fphys-09-01661 November 19, 2018 Time: 14:41 # 1 REVIEW published: 21 November 2018 doi: 10.3389/fphys.2018.01661 Emerging Roles of the Membrane Potential: Action Beyond the Action Potential Lina Abdul Kadir1, Michael Stacey2 and Richard Barrett-Jolley1* 1 Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom, 2 Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States Whilst the phenomenon of an electrical resting membrane potential (RMP) is a central tenet of biology, it is nearly always discussed as a phenomenon that facilitates the propagation of action potentials in excitable tissue, muscle, and nerve. However, as ion channel research shifts beyond these tissues, it became clear that the RMP is a feature of virtually all cells studied. The RMP is maintained by the cell’s compliment of ion channels. Transcriptome sequencing is increasingly revealing that equally rich compliments of ion channels exist in both excitable and non-excitable tissue. In this review, we discuss a range of critical roles that the RMP has in a variety of cell types Edited by: beyond the action potential. Whereas most biologists would perceive that the RMP is Raheela N. Khan, primarily about excitability, the data show that in fact excitability is only a small part of it. University of Nottingham, United Kingdom Emerging evidence show that a dynamic membrane potential is critical for many other Reviewed by: processes including cell cycle, cell-volume control, proliferation, muscle contraction Juan C. Saez, (even in the absence of an action potential), and wound healing. Modulation of the RMP Pontificia Universidad Católica de Chile, Chile is therefore a potential target for many new drugs targeting a range of diseases and Bruno A.
    [Show full text]
  • Acutemicroglialrespons
    ACUTE MICROGLIAL RESPONSES TO SINGLE NON-EPILEPTOGENIC VS. EPILEPTOGENIC SEIZURES IN MOUSE HIPPOCAMPUS A Dissertation submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Neuroscience By Alberto Sepulveda-Rodriguez, B.S. Washington, D.C. June 5, 2019 Copyright 2019 by Alberto Sepulveda-Rodriguez All Rights Reserved ii ACUTE MICROGLIAL RESPONSES TO SINGLE NON-EPILEPTOGENIC VS. EPILEPTOGENIC SEIZURES IN MOUSE HIPPOCAMPUS Alberto Sepulveda-Rodriguez, B.S. Thesis Advisor: Stefano Vicini, Ph.D. ABSTRACT As the resident macrophage of the central nervous system, microglia are in a uniquely privileged position to both affect and be affected by neuroinflammation, neuronal activity and injury, which are all hallmarks of seizures and the epilepsies. In one of the prototypical rodent models of seizure-induced epilepsy, hippocampal microglia become activated after prolonged, damaging seizures known as Status Epilepticus (SE). However, since SE comprises both neuronal hyperactivity and injury, the specific mechanisms triggering this microglial activation remain unclear, as does its relevance to the ensuing epileptogenic processes. The present studies employed another well-established seizure model, electroconvulsive shock (ECS), to study the effect of paroxysmal/ictal neuronal hyperactivity on mouse hippocampal microglia, in the absence of concomitant neuronal degeneration. Unlike SE, ECS did not cause neuronal injury and did not alter hippocampal CA1 microglial and astrocytic density, morphology nor baseline process motility. In contrast, both ECS and SE produced a similar increase in ATP-directed microglial process motility in acute slices and similarly upregulated expression of the iii chemokine CCL2.
    [Show full text]
  • Bani of Bhagats-Part II.Pmd
    BANI OF BHAGATS Complete Bani of Bhagats as enshrined in Shri Guru Granth Sahib Part II All Saints Except Swami Rama Nand And Saint Kabir Ji Dr. G.S. Chauhan Publisher : Dr. Inderjit Kaur President All India Pingalwara Charitable Society (Regd.) Amritsar-143001 Website:www.pingalwara.co; E-mail:[email protected] BANI OF BHAGATS PART : II Author : G.S. Chauhan B-202, Shri Ganesh Apptts., Plot No. 12-B, Sector : 7, Dwarka, New Delhi - 110075 First Edition : May 2014, 2000 Copies Publisher : Dr. Inderjit Kaur President All India Pingalwara Charitable Society (Regd.) Amritsar-143001 Ph : 0183-2584586, 2584713 Website:www.pingalwara.co E-mail:[email protected] (Link to download this book from internet is: pingalwara.co/awareness/publications-events/downloads/) (Free of Cost) Printer : Printwell 146, Industrial Focal Point, Amritsar Dedicated to the sacred memory of Sri Guru Arjan Dev Ji Who, while compiling bani of the Sikh Gurus, included bani of 15 saints also, belonging to different religions, castes, parts and regions of India. This has transformed Sri Guru Granth Sahib from being the holy scripture of the Sikhs only to A Unique Universal Teacher iii Contentsss • Ch. 1: Saint Ravidas Ji .......................................... 1 • Ch. 2: Sheikh Farid Ji .......................................... 63 • Ch. 3: Saint Namdev Ji ...................................... 113 • Ch. 4: Saint Jaidev Ji......................................... 208 • Ch. 5: Saint Trilochan Ji .................................... 215 • Ch. 6: Saint Sadhna Ji ....................................... 223 • Ch. 7: Saint Sain Ji ............................................ 227 • Ch. 8: Saint Peepa Ji.......................................... 230 • Ch. 9: Saint Dhanna Ji ...................................... 233 • Ch. 10: Saint Surdas Ji ...................................... 240 • Ch. 11: Saint Parmanand Ji .............................. 244 • Ch. 12: Saint Bheekhan Ji................................
    [Show full text]
  • Biol. Pharm. Bull. 41(8)
    1126 Biol. Pharm. Bull. 41, 1126 (2018) Vol. 41, No. 8 Current Topics Ion Channels as Therapeutic Targets for the Immune, Inflammatory, and Metabolic Disorders Foreword Susumu Ohya Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University; Nagoya 467–8601, Japan. A large number of ion channels and their auxiliary subunits osteoarthritis (OA). Recent ‘chondrocyte channelome’ studies play pivotal roles in various cellular signaling networks in have shown that a range of ion channels and transporters are nervous, cardiovascular, immune, metabolic, and endocrine expressed on plasma and intracellular membrane of chondro- systems. The ion channel dysfunctions produce “Channelo- cytes, and regulate multiple intracellular signaling pathways. pathies” such as neural, cardiovascular, immune, metabolic, The third review is “Physiological and Pathological Functions and endocrine disorders, therefore, ion channels are potential of Cl− Channels in Chondrocytes” by Yamamura et al. They therapeutic targets for treatment of their disorders. Review ar- first introduce the cation channels expressed in chondrocytes, ticles under the headings of ‘Ion Channels as Therapeutic Tar- and then review the physiological and pathophysiological roles gets for the Immune, Inflammatory, and Metabolic Disorders’ of Cl− channels/transporters composed of several superfami- will provide new insights and strategies to “Channelopathies.” lies (CFTR, ClC, TMEM16/ANO1). They play important roles Recent findings showed that voltage-gated calcium channels in control of the resting membrane potential, and are critical (VGCC) are responsible for the generation of inflammation to intracellular Ca2+ signaling. This review provides a novel and inflammatory pain. The first review is “Involvement of approach for ameliorating RA and OA severities. The forth Voltage-Gated Calcium Channels in Inflammation and Inflam- review is “Physiological and Pathophysiological Roles of Tran- matory Pain” by Sekiguchi et al.
    [Show full text]
  • A Digital Atlas of Ion Channel Expression Patterns in the Two-Week-Old Rat Brain
    Neuroinform (2015) 13:111–125 DOI 10.1007/s12021-014-9247-0 DATA ORIGINAL ARTICLE A Digital Atlas of Ion Channel Expression Patterns in the Two-Week-Old Rat Brain Volodymyr Shcherbatyy & James Carson & Murat Yaylaoglu & Katharina Jäckle & Frauke Grabbe & Maren Brockmeyer & Halenur Yavuz & Gregor Eichele Published online: 7 October 2014 # The Author(s) 2014. This article is published with open access at Springerlink.com Abstract The approximately 350 ion channels encoded by Keywords Ion channels . Gene expression analysis . In situ the mammalian genome are a main pillar of the nervous hybridization . Genepaint.org database . Rat brain . Digital system. We have determined the expression pattern of 320 atlas . Subdivision mesh channels in the two-week-old (P14) rat brain by means of non- radioactive robotic in situ hybridization. Optimized methods were developed and implemented to generate stringently cor- Introduction onal brain sections. The use of standardized methods permits a direct comparison of expression patterns across the entire ion Ion channels arguably are the functionally most important channel expression pattern data set and facilitates recognizing proteins of the nervous system. Accordingly, there exists a ion channel co-expression. All expression data are made pub- wealth of studies illustrating their spatiotemporal expression lically available at the Genepaint.org database. Inwardly rec- patterns at mRNA and protein levels. Critical knowledge tifying potassium channels (Kir, encoded by the Kcnj genes) about expression patterns includes information on co- regulate a broad spectrum of physiological processes. Kcnj expression of channel auxiliary subunits that form oligomers channel expression patterns generated in the present study and co-expression of channels known to operate in a concert- were fitted with a deformable subdivision mesh atlas produced ed fashion.
    [Show full text]
  • [Frontiers in Bioscience, Scholar, 5, 305-324, January 1, 2013] 305
    [Frontiers in Bioscience, Scholar, 5, 305-324, January 1, 2013] Calcium signalling in chondrogenesis: implications for cartilage repair Csaba Matta1, Roza Zakany1 1Department of Anatomy, Histology and Embryology, University of Debrecen, Medical and Health Science Centre, Nagyerdei krt. 98, H-4032 Debrecen, Hungary TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Adult mesenchymal stem cells in cartilage repair 4. Articular cartilage: from structure to function 5. Chondrogenesis is regulated by interplay between numerous intra- and extracellular factors 6. Calcium signalling: a single messenger with diverse functions 7. Ca2+ entry processes in MSCs and in differentiating or mature chondrocytes 7.1. Voltage-operated Ca2+ entry pathways 7.2. Ligand-operated Ca2+ entry pathways 7.2.1. Purinergic signalling pathways 7.2.2. N-methyl-D-aspartate receptor mediated pathways 7.2.3. Transient Receptor Potential (TRP) pathways 7.3. Ca2+ release from internal stores and store-operated Ca2+ entry 8. Ca2+ elimination processes in MSCs, differentiating and mature chondrocytes 9. Temporal characteristics of Ca2+ dependent signals 9.1. Day-by-day variation of cytosolic Ca2+ concentration 9.2. Ca2+ oscillations in mesenchymal stem cells and chondrocytes 10. Ca2+ signalling during mechanotransduction 11. Conclusions 12. Acknowledgements 13. References 1. ABSTRACT 2. INTRODUCTION Undifferentiated mesenchymal stem cells Prevalence of musculoskeletal disorders (MSCs) represent an important source for cell-based tissue (comprised more than 100 conditions, including various regeneration techniques that require differentiation towards rheumatic, arthritic and joint diseases) is constantly specific lineages, including chondrocytes. Chondrogenesis, increasing owing to unfavourable changes in the population the process by which committed mesenchymal cells of developed countries, exerting an ever-growing burden on differentiate into chondrocytes, is controlled by complex healthcare systems around the globe (1).
    [Show full text]