Clinical Aspects EXPLOSION and BLAST INJURIES Outline
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Young Adult with Post-Traumatic Breathlessness, Unconsciousness and Rash
Shihan Mahmud Redwanul Huq 1, Ahmad Mursel Anam1, Nayeema Joarder1, Mohammed Momrezul Islam1, Raihan Rabbani2, Abdul Kader Shaikh3,4 [email protected] Case report A young adult with post-traumatic breathlessness, unconsciousness and rash Cite as: Huq SMR, A 23-year-old Bangladeshi male was referred to our with back slab at the previous healthcare facility. Anam AM, Joarder N, et al. hospital for gradual worsening of breathlessness During presentation at the emergency department, A young adult with post- over 3 h, developed following a road-accident he was conscious and oriented (Glasgow coma scale traumatic breathlessness, about 14 h previously. He had a close fracture of 15/15), tachycardic (heart rate 132 per min), blood unconsciousness and rash. mid-shaft of his right tibia, which was immobilised pressure 100/70 mmHg, tachypnoeic (respiratory Breathe 2019; 15: e126–e130. rate 34 per min) with oxygen saturation 89% on room air, and afebrile. Chest examination revealed a) b) restricted chest movement, hyper-resonant percussion notes and reduced breath sound on the left, and diffuse crackles on both sides. He was fit before the accident with no known medical illness. Oxygen supplementation (up to 8 L·min−1) and intravenous fluids were provided as required. Simultaneously, a portable anteroposterior radiograph of chest was performed (figure 1). Task 1 Analyse the chest radiograph. Figure 1 Chest radiography: a) anteroposterior view; b) magnified view of same image showing the clear margin of a pneumothorax on the left-hand side (dots and arrow). @ERSpublications Can you diagnose this young adult with post-traumatic breathlessness, unconsciousness and rash? http://bit.ly/2LlpkiV e126 Breathe | September 2019 | Volume 15 | No 3 https://doi.org/10.1183/20734735.0212-2019 A young adult with post-traumatic breathlessness Answer 1 a) b) The bilateral patchy opacities are likely due to pulmonary contusion or acute respiratory distress syndrome (ARDS) along with the left- sided traumatic pneumothorax. -
Fat Embolism Syndrome
Crit Care & Shock (2008) 11 : 83-93 Fat Embolism Syndrome Gavin M. Joynt, Thomas ST Li, Joey KM Wai, Florence HY Yap Abstract The classical syndrome of fat embolism is recognition as well as the development of preventive characterized by the triad of respiratory failure, and therapeutic strategies. Early fracture fi xation neurologic dysfunction and the presence of a is likely to reduce the incidence of fat embolism petechial rash. Fat embolism syndrome (FES) syndrome and pulmonary complications; however occurs most commonly following orthopedic the best fi xation technique remains controversial. trauma, particularly fractures of the pelvis or long The use of prophylactic corticosteroids may be bones, however non-traumatic fat embolism has considered to reduce the incidence of FES and in also been known to occur on rare occasions. Because selected high-risk trauma patients but effects on no defi nitive consensus on diagnostic criteria exist, outcome are not proved. New reaming and venting the accurate assessment of incidence, comparative techniques have potential to reduce the incidence research and outcome assessment is diffi cult. A of FES during arthroplasty. Unfortunately, no reasonable estimate of incidence in patients after specifi c therapies have been proven to be of benefi t long bone or pelvic fractures appears to be about in FES and treatment remains supportive with 3-5%. The FES therefore remains an important priority being given to the maintenance of adequate cause of morbidity and mortality and warrants oxygenation. further investigation and research to allow proper Key words: respiratory failure, petechiae, rash, trauma, orthopedic, fracture Introduction The classical syndrome of fat embolism is characterized following orthopedic trauma, particularly fractures of by the triad of respiratory failure, neurologic the pelvis or long bones, however non-traumatic fat dysfunction and the presence of a petechial rash [1,2]. -
Crush Injuries Pathophysiology and Current Treatment Michael Sahjian, RN, BSN, CFRN, CCRN, NREMT-P; Michael Frakes, APRN, CCNS, CCRN, CFRN, NREMT-P
LWW/AENJ LWWJ331-02 April 23, 2007 13:50 Char Count= 0 Advanced Emergency Nursing Journal Vol. 29, No. 2, pp. 145–150 Copyright c 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins Crush Injuries Pathophysiology and Current Treatment Michael Sahjian, RN, BSN, CFRN, CCRN, NREMT-P; Michael Frakes, APRN, CCNS, CCRN, CFRN, NREMT-P Abstract Crush syndrome, or traumatic rhabdomyolysis, is an uncommon traumatic injury that can lead to mismanagement or delayed treatment. Although rhabdomyolysis can result from many causes, this article reviews the risk factors, symptoms, and best practice treatments to optimize patient outcomes, as they relate to crush injuries. Key words: crush syndrome, traumatic rhabdomyolysis RUSH SYNDROME, also known as ology, pathophysiology, diagnosis, and early traumatic rhabdomyolysis, was first re- management of crush syndrome. Cported in 1910 by German authors who described symptoms including muscle EPIDEMIOLOGY pain, weakness, and brown-colored urine in soldiers rescued after being buried in struc- Crush injuries may result in permanent dis- tural debris (Gonzalez, 2005). Crush syn- ability or death; therefore, early recognition drome was not well defined until the 1940s and aggressive treatment are necessary to when nephrologists Bywaters and Beal pro- improve outcomes. There are many known vided descriptions of victims trapped by mechanisms inducing rhabdomyolysis includ- their extremities during the London Blitz ing crush injuries, electrocution, burns, com- who presented with shock, swollen extrem- partment syndrome, and any other pathology ities, tea-colored urine, and subsequent re- that results in muscle damage. Victims of nat- nal failure (Better & Stein, 1990; Fernan- ural disasters, including earthquakes, are re- dez, Hung, Bruno, Galea, & Chiang, 2005; ported as having up to a 20% incidence of Gonzalez, 2005; Malinoski, Slater, & Mullins, crush injuries, as do 40% of those surviving to 2004). -
T5 Spinal Cord Injuries
Spinal Cord (2020) 58:1249–1254 https://doi.org/10.1038/s41393-020-0506-7 ARTICLE Predictors of respiratory complications in patients with C5–T5 spinal cord injuries 1 2,3 3,4 1,5 1,5 Júlia Sampol ● Miguel Ángel González-Viejo ● Alba Gómez ● Sergi Martí ● Mercedes Pallero ● 1,4,5 3,4 1,4,5 1,4,5 Esther Rodríguez ● Patricia Launois ● Gabriel Sampol ● Jaume Ferrer Received: 19 December 2019 / Revised: 12 June 2020 / Accepted: 12 June 2020 / Published online: 24 June 2020 © The Author(s), under exclusive licence to International Spinal Cord Society 2020 Abstract Study design Retrospective chart audit. Objectives Describing the respiratory complications and their predictive factors in patients with acute traumatic spinal cord injuries at C5–T5 level during the initial hospitalization. Setting Hospital Vall d’Hebron, Barcelona. Methods Data from patients admitted in a reference unit with acute traumatic injuries involving levels C5–T5. Respiratory complications were defined as: acute respiratory failure, respiratory infection, atelectasis, non-hemothorax pleural effusion, 1234567890();,: 1234567890();,: pulmonary embolism or haemoptysis. Candidate predictors of these complications were demographic data, comorbidity, smoking, history of respiratory disease, the spinal cord injury characteristics (level and ASIA Impairment Scale) and thoracic trauma. A logistic regression model was created to determine associations between potential predictors and respiratory complications. Results We studied 174 patients with an age of 47.9 (19.7) years, mostly men (87%), with low comorbidity. Coexistent thoracic trauma was found in 24 (19%) patients with cervical and 35 (75%) with thoracic injuries (p < 0.001). Respiratory complications were frequent (53%) and were associated to longer hospital stay: 83.1 (61.3) and 45.3 (28.1) days in patients with and without respiratory complications (p < 0.001). -
Femoral Shaft Fracture Fixation and Chest Injury After Polytrauma
This is an enhanced PDF from The Journal of Bone and Joint Surgery The PDF of the article you requested follows this cover page. Femoral Shaft Fracture Fixation and Chest Injury After Polytrauma Lawrence B. Bone and Peter Giannoudis J Bone Joint Surg Am. 2011;93:311-317. doi:10.2106/JBJS.J.00334 This information is current as of January 25, 2011 Reprints and Permissions Click here to order reprints or request permission to use material from this article, or locate the article citation on jbjs.org and click on the [Reprints and Permissions] link. Publisher Information The Journal of Bone and Joint Surgery 20 Pickering Street, Needham, MA 02492-3157 www.jbjs.org 311 COPYRIGHT Ó 2011 BY THE JOURNAL OF BONE AND JOINT SURGERY,INCORPORATED Current Concepts Review Femoral Shaft Fracture Fixation and Chest Injury After Polytrauma By Lawrence B. Bone, MD, and Peter Giannoudis, MD, FRCS Thirty years ago, the standard of care for the multiply injured tients with multiple injuries, defined as an ISS of ‡18, and patient with fractures was placement of the fractured limb in a patients with essentially an isolated femoral fracture and an splint or skeletal traction, until the patient was considered stable ISS of <18. Pulmonary complications consisting of ARDS, enough to undergo surgery for fracture fixation1. This led to a pulmonary dysfunction, fat emboli, pulmonary emboli, and number of complications2, such as adult respiratory distress pneumonia were present in 38% (fourteen) of thirty-seven syndrome (ARDS), infection, pneumonia, malunion, non- patients in the late fixation/multiple injuries group and 4% union, and death, particularly when the patient had a high (two) of forty-six in the early fixation/multiple injuries group; Injury Severity Score (ISS)3. -
ISR/PFC Crush Injury Clinical Practice Guideline
All articles published in the Journal of Special Operations Medicine are protected by United States copyright law and may not be reproduced, distributed, transmitted, displayed, or otherwise published without the prior written permission of Breakaway Media, LLC. Contact [email protected]. An Ongoing Series Management of Crush Syndrome Under Prolonged Field Care Thomas Walters, PhD; Douglas Powell, MD; Andrew Penny, NREMT-P; Ian Stewart, MD; Kevin Chung, MD; Sean Keenan, MD; Stacy Shackelford, MD Introduction to the Prolonged Field Care beyond the initial evaluation and treatment of casual- Prehospital Clinical Practice Guideline Series ties in a PFC operational environment. This and fu- ture CPGs are aimed at serious clinical problems seen Sean Keenan, MD less frequently (e.g., crush injury, burns) or where fur- ther advanced practice recommendations are required THIS FIRST CLINICAL PRACTICE GUIDELINE (CPG) (e.g., pain and sedation recommendations beyond was produced through a collaboration of the SOMA TCCC recommendations, traumatic brain injury). Prolonged Field Care Working Group (PFCWG) and the Joint Trauma System (JTS) at the U.S. Army Insti- We hope that this collaboration of experienced op- tute of Surgical Research (USAISR) in San Antonio. Of erational practitioners and true subject matter ex- note, this effort is the result from requests for informa- perts, operating under the guidance set forth in past tion and guidance through the PFC website (PFCare.org) JTS CPG editorial standards, will bring practical and and from the Joint Special Operations Medical Training applicable clinical recommendations to the advanced Center instructors located at Fort Bragg, North Carolina. practice first responders and Role 1 providers in the field. -
With Crush Injury Syndrome
Crush Syndrome Made Simple Malta & McConnelsville Fire Department Division of Emergency Medical Service Objectives Recognize the differences between Crush Injury and Crush Syndrome Understand the interventions performed when treating someone with Crush Syndrome Assessing the Crush Injury victim S&S of crush injuries Treatment of crush injury Malta & McConnelsville Fire Department Division of Emergency Medical Service INJURY SYNDROME • Cell Disruption/ • Systemic effects injury at the point of when muscle is impact. RELEASED from Compression • Occurs < 1 hour • Occurs after cells have been under pressure >4 hours* • Suspect Syndrome with lightening strikes Malta & McConnelsville Fire Department Division of Emergency Medical Service CRUSHING MECHANISM OF INJURY • Building and Structure Collapse • Bomb Concussions • MVAs’ and Farm Accidents • Assault with blunt weapon Malta & McConnelsville Fire Department Division of Emergency Medical Service AKA: COMPRESSION SYNDROME First described by Dr. Minami in 1940 Malta & McConnelsville Fire Department Division of Emergency Medical Service INVOLVED ANATOMY Upper Arms Upper Legs Thorax and Buttocks Malta & McConnelsville Fire Department Division of Emergency Medical Service Crush Injuries Crush injuries occur when a crushing force is applied to a body area. Sometimes they are associated with internal organ rupture, major fractures, and hemorrhagic shock. Early aggressive treatment of patients suspected of having a crush injury is crucial. Along with the severity of soft tissue damage and fractures, a major concern of a severe crush injury is the duration of the compression/entrapment. Malta & McConnelsville Fire Department Division of Emergency Medical Service Crush Injuries Prolonged compression of a body region or limb may lead to a dangerous syndrome that can become fatal. Crush Syndrome is difficult to diagnose and treat in the pre-hospital setting because of the many complex variables involved. -
Assessment, Management and Decision Making in the Treatment of Polytrauma Patients with Head Injuries
Compartment Syndrome Andrew H. Schmidt, M.D. Professor, Dept. of Orthopedic Surgery, Univ. of Minnesota Chief, Department of Orthopaedic Surgery Hennepin County Medical Center April 2016 Disclosure Information Andrew H. Schmidt, M.D. Conflicts of Commitment/ Effort Board of Directors: OTA Critical Issues Committee: AOA Editorial Board: J Knee Surgery, J Orthopaedic Trauma Medical Director, Director Clinical Research: Hennepin County Med Ctr. Disclosure of Financial Relationships Royalties: Thieme, Inc.; Smith & Nephew, Inc. Consultant: Medtronic, Inc.; DGIMed; Acumed; St. Jude Medical (spouse) Stock: Conventus Orthopaedics; Twin Star Medical; Twin Star ECS; Epien; International Spine & Orthopedic Institute, Epix Disclosure of Off-Label and/or investigative Uses I will not discuss off label use and/or investigational use in my presentation. Objectives • Review Pathophysiology of Acute Compartment Syndrome • Review Current Diagnosis and Treatment – Risk Factors – Clinical Findings – Discuss role and technique of compartment pressure monitoring. Pathophysiology of Compartment Syndrome Pressure Inflexible Fascia Injured Muscle Vascular Consequences of Elevated Intracompartment Pressure: A-V Gradient Theory Pa (High) Pv (Low) artery arteriole capillary venule vein Local Blood Pa - Pv Flow = R Matsen, 1980 Increased interstitial pressure Pa (High) Tissue ischemia artery arteriole capillary venule vein Lysis of cell walls Release of osmotically active cellular contents into interstitial fluid Increased interstitial pressure More cellular -
A Patient with Severe Polytrauma with Massive Pulmonary Contusion And
Nagashima et al. Journal of Medical Case Reports (2020) 14:69 https://doi.org/10.1186/s13256-020-02406-9 CASE REPORT Open Access A patient with severe polytrauma with massive pulmonary contusion and hemorrhage successfully treated with multiple treatment modalities: a case report Futoshi Nagashima*†, Satoshi Inoue† and Miho Ohta Abstract Background: The mortality rate is very high for patients with severe multiple trauma with massive pulmonary contusion containing intrapulmonary hemorrhage. Multiple treatment modalities are needed not only for a prevention of cardiac arrest and quick hemostasis against multiple injuries, but also for recovery of oxygenation to save the patient’s life. Case presentation: A 48-year-old Japanese woman fell down stairs that had a height of approximately 4 m. An X- ray showed pneumothorax, pulmonary contusion in her right lung, and an unstable pelvic fracture. A chest drain was inserted and preperitoneal pelvic packing was performed to control bleeding, performing resuscitative endovascular balloon occlusion of the aorta. A computed tomography scan revealed massive lung contusion in the lower lobe of her right lung, pelvic fractures, and multiple fractures and hematoma in other areas. An emergency thoracotomy was performed, and then we performed wide wedge resection of the injured lung, clamping proximal to suture lines with two Satinsky blood vessel clamps. The vessel clamps were left in the right thoracic cavity. The other hemorrhagic areas were embolized by transcatheter arterial embolization. However, since her respiratory functions deteriorated in the intensive care unit, veno-venous extracorporeal membrane oxygenation was used for lung assist. Planned reoperation under veno-venous extracorporeal membrane oxygenation was performed on day 2. -
Blast Injuries – Essential Facts
BLAST INJURIES Essential Facts Key Concepts • Bombs and explosions can cause unique patterns of injury seldom seen outside combat • Expect half of all initial casualties to seek medical care over a one-hour period • Most severely injured arrive after the less injured, who bypass EMS triage and go directly to the closest hospitals • Predominant injuries involve multiple penetrating injuries and blunt trauma • Explosions in confined spaces (buildings, large vehicles, mines) and/or structural collapse are associated with greater morbidity and mortality • Primary blast injuries in survivors are predominantly seen in confined space explosions • Repeatedly examine and assess patients exposed to a blast • All bomb events have the potential for chemical and/or radiological contamination • Triage and life saving procedures should never be delayed because of the possibility of radioactive contamination of the victim; the risk of exposure to caregivers is small • Universal precautions effectively protect against radiological secondary contamination of first responders and first receivers • For those with injuries resulting in nonintact skin or mucous membrane exposure, hepatitis B immunization (within 7 days) and age-appropriate tetanus toxoid vaccine (if not current) Blast Injuries Essential Facts • Primary: Injury from over-pressurization force (blast wave) impacting the body surface — TM rupture, pulmonary damage and air embolization, hollow viscus injury • Secondary: Injury from projectiles (bomb fragments, flying debris) — Penetrating trauma, -
Factors Associated with Complications in Older Adults with Isolated Blunt Chest Trauma
ORIGINAL RESEARCH Factors Associated with Complications in Older Adults with Isolated Blunt Chest Trauma Shahram Lotfipour, MD, MPH* * University of California, Irvine School of Medicine, Department of Emergency Shawn K. Kaku, MD* Medicine Federico E. Vaca, MD, MPH* † University of California, Irvine School of Medicine, Department of Surgery Chirag Patel, MD† ‡ University of California, Irvine Craig L. Anderson, PhD, MPH* Suleman S. Ahmed, BS, BA‡ Michael D. Menchine, MD, MPH* Supervising Section Editor: Teresita M. Hogan, MD Submission history: Submitted October 28, 2007; Revision Received March 29, 2009; Accepted April 01 2009. Reprints available through open access at www.westjem.org Objective: To determine the prevalence of adverse events in elderly trauma patients with isolated blunt thoracic trauma, and to identify variables associated with these adverse events. Methods: We performed a chart review of 160 trauma patients age 65 and older with significant blunt thoracic trauma, drawn from an American College of Surgeons Level I Trauma Center registry. Patients with serious injury to other body areas were excluded to prevent confounding the cause of adverse events. Adverse events were defined as acute respiratory distress syndrome or pneumonia, unanticipated intubation, transfer to the intensive care unit for hypoxemia, or death. Data collected included history, physical examination, radiographic findings, length of hospital stay, and clinical outcomes. Results: Ninety-nine patients had isolated chest injury, while 61 others had other organ systems injured and were excluded. Sixteen patients developed adverse events [16.2% 95% confidence interval (CI) 9.5-24.9%], including two deaths. Adverse events were experienced by 19.2%, 6.1%, and 28.6% of those patients 65-74, 75-84, and >85 years old, respectively. -
Ad Ult T Ra Uma Em E Rgen Cies
Section SECTION: Adult Trauma Emergencies REVISED: 06/2017 4 ADULT TRAUMA EMERGENCIES TRAUMA ADULT 1. Injury – General Trauma Management Protocol 4 - 1 2. Injury – Abdominal Trauma Protocol 4 - 2 (Abdominal Trauma) 3. Injury – Burns - Thermal Protocol 4 - 3 4. Injury – Crush Syndrome Protocol 4 - 4 5. Injury – Electrical Injuries Protocol 4 - 5 6. Injury – Head Protocol 4 - 6 7. Exposure – Airway/Inhalation Irritants Protocol 4 - 7 8. Injury – Sexual Assault Protocol 4 - 8 9. General – Neglect or Abuse Suspected Protocol 4 - 9 10. Injury – Conducted Electrical Weapons Protocol 4 - 10 (i.e. Taser) 11. Injury - Thoracic Protocol 4 - 11 12. Injury – General Trauma Management Protocol 4 – 12 (Field Trauma Triage Scheme) 13. Spinal Motion Restriction Protocol 4 – 13 14. Hemorrhage Control Protocol 4 – 14 Section 4 Continued This page intentionally left blank. ADULT TRAUMA EMERGENCIES ADULT Protocol SECTION: Adult Trauma Emergencies PROTOCOL TITLE: Injury – General Trauma Management 4-1 REVISED: 06/2015 PATIENT TRAUMA ASSESSMENT OVERVIEW Each year, one out of three Americans sustains a traumatic injury. Trauma is a major cause of disability in the United States. According to the Centers for Disease Control (CDC) in 2008, 118,021 deaths occurred due to trauma. Trauma is the leading cause of death in people under 44 years of age, accounting for half the deaths of children under the age of 4 years, and 80% of deaths in persons 15 to 24 years of age. As a responder, your actions within the first few moments of arriving on the scene of a traumatic injury are crucial to the success of managing the situation.