A Web-Based Tool for the Identification of Thiopeptide Gene Clusters in DNA Sequences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Thiopeptides As a Privileged Scaffold for Drug Discovery and Therapeutic Development
– MEDICINAL Medicinal Chemistry Research (2019) 28:1063 1098 CHEMISTRY https://doi.org/10.1007/s00044-019-02361-1 RESEARCH REVIEW ARTICLE Natural thiopeptides as a privileged scaffold for drug discovery and therapeutic development 1 1 1 1 1 Xiaoqi Shen ● Muhammad Mustafa ● Yanyang Chen ● Yingying Cao ● Jiangtao Gao Received: 6 November 2018 / Accepted: 16 May 2019 / Published online: 29 May 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Since the start of the 21st century, antibiotic drug discovery and development from natural products has experienced a certain renaissance. Currently, basic scientific research in chemistry and biology of natural products has finally borne fruit for natural product-derived antibiotics drug discovery. A batch of new antibiotic scaffolds were approved for commercial use, including oxazolidinones (linezolid, 2000), lipopeptides (daptomycin, 2003), and mutilins (retapamulin, 2007). Here, we reviewed the thiazolyl peptides (thiopeptides), an ever-expanding family of antibiotics produced by Gram-positive bacteria that have attracted the interest of many research groups thanks to their novel chemical structures and outstanding biological profiles. All members of this family of natural products share their central azole substituted nitrogen-containing six-membered ring and are fi 1234567890();,: 1234567890();,: classi ed into different series. Most of the thiopeptides show nanomolar potencies for a variety of Gram-positive bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and penicillin-resistant Streptococcus pneumonia (PRSP). They also show other interesting properties such as antiplasmodial and anticancer activities. The chemistry and biology of thiopeptides has gathered the attention of many research groups, who have carried out many efforts towards the study of their structure, biological function, and biosynthetic origin. -
(12) United States Patent (10) Patent No.: US 9,642,912 B2 Kisak Et Al
USOO9642912B2 (12) United States Patent (10) Patent No.: US 9,642,912 B2 Kisak et al. (45) Date of Patent: *May 9, 2017 (54) TOPICAL FORMULATIONS FOR TREATING (58) Field of Classification Search SKIN CONDITIONS CPC ...................................................... A61K 31f S7 (71) Applicant: Crescita Therapeutics Inc., USPC .......................................................... 514/171 Mississauga (CA) See application file for complete search history. (72) Inventors: Edward T. Kisak, San Diego, CA (56) References Cited (US); John M. Newsam, La Jolla, CA (US); Dominic King-Smith, San Diego, U.S. PATENT DOCUMENTS CA (US); Pankaj Karande, Troy, NY (US); Samir Mitragotri, Santa Barbara, 5,602,183 A 2f1997 Martin et al. CA (US); Wade A. Hull, Kaysville, UT 5,648,380 A 7, 1997 Martin 5,874.479 A 2, 1999 Martin (US); Ngoc Truc-ChiVo, Longueuil 6,328,979 B1 12/2001 Yamashita et al. (CA) 7,001,592 B1 2/2006 Traynor et al. 7,795,309 B2 9/2010 Kisak et al. (73) Assignee: Crescita Therapeutics Inc., 8,343,962 B2 1/2013 Kisak et al. Mississauga (CA) 8,513,304 B2 8, 2013 Kisak et al. 8,535,692 B2 9/2013 Pongpeerapat et al. (*) Notice: Subject to any disclaimer, the term of this 9,308,181 B2* 4/2016 Kisak ..................... A61K 47/12 patent is extended or adjusted under 35 2002fOOO6435 A1 1/2002 Samuels et al. 2002fOO64524 A1 5, 2002 Cevc U.S.C. 154(b) by 204 days. 2005, OO 14823 A1 1/2005 Soderlund et al. This patent is Subject to a terminal dis 2005.00754O7 A1 4/2005 Tamarkin et al. -
Identification of the Thiazolyl Peptide GE37468 Gene Cluster from Streptomyces ATCC 55365 and Heterologous Expression in Streptomyces Lividans
Identification of the thiazolyl peptide GE37468 gene cluster from Streptomyces ATCC 55365 and heterologous expression in Streptomyces lividans Travis S. Young and Christopher T. Walsh1 Harvard Medical School, Armenise D1, Room 608, 240 Longwood Avenue, Boston, MA 02115 Contributed by Christopher T. Walsh, June 29, 2011 (sent for review June 6, 2011) Thiazolyl peptides are bacterial secondary metabolites that teins (10–13). The mature antibiotic arises from a structural gene potently inhibit protein synthesis in Gram-positive bacteria and encoding a 50–60 amino acid preprotein consisting of a 40–50 malarial parasites. Recently, our laboratory and others reported amino acid N-terminal leader peptide (residues −50 to −1) and that this class of trithiazolyl pyridine-containing natural products a14–18 amino acid C-terminal region (residues +1 to +18), is derived from ribosomally synthesized preproteins that undergo which becomes the final product scaffold (3). Flanking the struc- a cascade of posttranslational modifications to produce architectu- tural gene are encoded enzymes involved in peptide maturation, rally complex macrocyclic scaffolds. Here, we report the gene which appear to mimic the biosynthetic logic for microcin B17, cluster responsible for production of the elongation factor Tu lantibiotic, and cyanobactin antibiotic peptides (14). These (EF-Tu)-targeting 29-member thiazolyl peptide GE37468 from enzymes include lantibiotic-type dehydratases that form dehydro Streptomyces ATCC 55365 and its heterologous expression in the amino acids, cyclodehydratase and dehydrogenase enzymes model host Streptomyces lividans. GE37468 harbors an unusual involved in the formation of thiazoles/oxazoles, and a novel β-methyl-δ-hydroxy-proline residue that may increase conforma- enzyme(s) involved in the formation of the central pyridine/ tional rigidity of the macrocycle and impart reduced entropic costs piperidine ring. -
Thiocillin and Micrococcin Exploit the Ferrioxamine Receptor of Pseudomonas Aeruginosa for Uptake
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.23.057471; this version posted April 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Thiocillin and Micrococcin Exploit the Ferrioxamine Receptor of Pseudomonas aeruginosa for Uptake 2 Derek C. K. Chan and Lori L. Burrows* 3 Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and 4 Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada 5 KEYWORDS: drug discovery, mechanism of uptake, thiopeptide, antimicrobial activity, siderophore, trojan 6 horse, 7 ABSTRACT 8 Thiopeptides are a class of Gram-positive antibiotics that inhibit protein synthesis. They have been 9 underutilized as therapeutics due to solubility issues, poor bioavailability, and lack of activity against 10 Gram-negative pathogens. We discovered recently that a member of this family, thiostrepton, has activity 11 against Pseudomonas aeruginosa and Acinetobacter baumannii under iron-limiting conditions. 12 Thiostrepton uses pyoverdine siderophore receptors to cross the outer membrane, and combining 13 thiostrepton with an iron chelator yielded remarkable synergy, significantly reducing the minimal 14 inhibitory concentration. These results led to the hypothesis that other thiopeptides could also inhibit 15 growth by using siderophore receptors to gain access to the cell. Here, we screened six thiopeptides for 16 synergy with the iron chelator deferasirox against P. aeruginosa and a mutant lacking the pyoverdine 17 receptors FpvA and FpvB. -
Supporting Information Appendix: Media Compositions
Supporting Information Appendix: Media compositions Seed media (2% glucose, 0.5% yeast extract, 0.5% meat extract, 0.5% peptone, 0.3% hydrolyzed casein, 0.15% NaCl). AF/MS media (2% glucose or 3% dextrin, 0.2% yeast extract, 0.8% organic soybean flour, 0.1% NaCL, 0.4% CaCO3) (1). Minimal MG Base (for 1L: 50 g maltose monohydrate, 0.2 g MgSO4 heptahydrate, 9 mg FeSO4 heptahydrate, 1 g CaCl2 monohydrate, 1 g NaCL, 21 g 3(N-morphilino)propanesulphonic acid, 11.23 g monosodium glutamate monohydrate, 15 mL 1M potassium phosphate buffer pH = 6.5, 4.5 mL of trace mineral solution consisting of 39 mg CuSO4, 5.7 mg H3BO3, 3.7 mg (NH4)6Mo7O24 tetrahydrate, 6.1 mg MnSO4 monohydrate, 880 mg ZnSO4 heptahydrate in 1 L water) (2). Minimal Media C (for 1L: 5 g L-glutamate, 1 g arginine, 1 g aspartate, 0.5 g K2HPO4 heptahydrate, 1 g MgSO4 heptahydrate, 2 g Na2SO4, 0.01 g ZnSO4 heptahydrate, 0.02 g FeSO4 heptahydrate, 3 g CaCO3, 40 g glucose) (3). J Media (10% sucrose, 3% tryptone soya, 1% yeast extract, 1% MgCl2 hexahydrate) (2). SFM (soya flour mannitol) agar plates (2 % organic soya flour, 2 % mannitol, 2% agar, tap water) (2). General Methods, Materials, and Instrumentation: All DNA manipulations (sub-cloning) were carried out in DH5α E. coli (Zymo Research). Streptomyces ATCC 55365 was obtained from American Type Culture Collection (Manassas, VA) and E. coli BW25113, E. coli BT340, plasmid pKD46, and plasmid pKD3 were obtained from the E. coli Genetic Stock Center (CGCS, Yale University). -
S41467-017-00439-1.Pdf
ARTICLE DOI: 10.1038/s41467-017-00439-1 OPEN Biosynthesis of the nosiheptide indole side ring centers on a cryptic carrier protein NosJ Wei Ding1,2,3,4, Wenjuan Ji2, Yujie Wu2,3, Runze Wu2, Wan-Qiu Liu2, Tianlu Mo2, Junfeng Zhao2, Xiaoyan Ma2,3, Wei Zhang4, Ping Xu5, Zixin Deng6, Boping Tang1,YiYu6 & Qi Zhang 2 Nosiheptide is a prototypal thiopeptide antibiotic, containing an indole side ring in addition to its thiopeptide-characteristic macrocylic scaffold. This indole ring is derived from 3-methyl-2- indolic acid (MIA), a product of the radical S-adenosylmethionine enzyme NosL, but how MIA is incorporated into nosiheptide biosynthesis remains to be investigated. Here we report functional dissection of a series of enzymes involved in nosiheptide biosynthesis. We show NosI activates MIA and transfers it to the phosphopantetheinyl arm of a carrier protein NosJ. NosN then acts on the NosJ-bound MIA and installs a methyl group on the indole C4, and the resulting dimethylindolyl moiety is released from NosJ by a hydrolase-like enzyme NosK. Surface plasmon resonance analysis show that the molecular complex of NosJ with NosN is much more stable than those with other enzymes, revealing an elegant biosynthetic strategy in which the reaction flux is controlled by protein–protein interactions with different binding affinities. 1 Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bioagriculture, Yancheng Teachers University, Yancheng 224002, China. 2 Department of Chemistry, Fudan University, Shanghai 200433, China. 3 Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China. -
Information to Users
INFORMATION TO USERS While the most advanced technology has heen used to photograph and reproduce this manuscript, the qualify of the reproduction is heavily dependent upon the qualify of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the origined, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17”x 23” black and white photographic print. Most photographs reproduce acceptably on positive microfilm or microfiche but lack the clarify on xerographic copies made from the microfilm. For an additional charge, 35mm slides of 6”x 9” black and white photographic prints are available for any photographs or illustrations that cannot he reproduced satisfactorily by xerography. 8703560 Houck, David Renwick STUDIES ON THE BIOSYNTHESIS OF THE MODIFIED-PEPTIDE ANTIBIOTIC, NOSIHEPTIDE The Ohio State University Ph.D. 1986 University Microfilms I nternetionsi!300 N. Zeeb R oad, Ann Arbor, Ml 48106 STUDIES ON THE BIOSYNTHESIS OF THE MODIFIED-PEPTIDE ANTIBIOTIC, NOSIHEPTIDE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By David Renwick Houck, B.S., M.S. -
Investigations of the Natural Product Antibiotic
INVESTIGATIONS OF THE NATURAL PRODUCT ANTIBIOTIC THIOSTREPTON FROM STREPTOMYCES AZUREUS AND ASSOCIATED MECHANISMS OF RESISTANCE by Cullen Lucan Myers A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Chemistry Waterloo, Ontario, Canada, 2013 © Cullen Lucan Myers 2013 AUTHOR’S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii ABSTRACT The persistence and propagation of bacterial antibiotic resistance presents significant challenges to the treatment of drug resistant bacteria with current antimicrobial chemotherapies, while a dearth in replacements for these drugs persists. The thiopeptide family of antibiotics may represent a potential source for new drugs and thiostrepton, the prototypical member of this antibiotic class, is the primary subject under study in this thesis. Using a facile semi-synthetic approach novel, regioselectively-modified thiostrepton derivatives with improved aqueous solubility were prepared. In vivo assessments found these derivatives to retain significant antibacterial ability which was determined by cell free assays to be due to the inhibition of protein synthesis. Moreover, structure-function studies for these derivatives highlighted structural elements of the thiostrepton molecule that are important for antibacterial activity. Organisms that produce thiostrepton become insensitive to the antibiotic by producing a resistance enzyme that transfers a methyl group from the co- factor S-adenosyl-L-methionine (AdoMet) to an adenosine residue at the thiostrepton binding site on 23S rRNA, thus preventing binding of the antibiotic. -
Structure of the Full Kinetoplastids Mitoribosome and Insight on Its Large Subunit Maturation
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.02.073890; this version posted June 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structure of the full kinetoplastids mitoribosome and insight on its large subunit maturation Heddy Soufari1* & Florent Waltz1*, Camila Parrot1+, Stéphanie Durrieu1+, Anthony Bochler1, Lauriane Kuhn2, Marie Sissler1, Yaser Hashem1‡ 1 Institut Européen de Chimie et Biologie, U1212 Inserm, UMR5320 CNRS, Université de Bordeaux, 2 rue R. Escarpit, F-33600 Pessac, France 2 Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRS, Université de Strasbourg, Strasbourg, France *contributed equally, co-first authors +contributed equally, co-second authors ‡corresponding author Abstract: Kinetoplastids are unicellular eukaryotic parasites responsible for human pathologies such as Chagas disease, sleeping sickness or Leishmaniasis1. They possess a single large mitochondrion, essential for the parasite survival2. In kinetoplastids mitochondrion, most of the molecular machineries and gene expression processes have significantly diverged and specialized, with an extreme example being their mitochondrial ribosomes3. These large complexes are in charge of translating the few essential mRNAs encoded by mitochondrial genomes4,5. Structural studies performed in Trypanosoma brucei already highlighted the numerous peculiarities of these mitoribosomes and the maturation of their small subunit3,6. However, several important aspects mainly related to the large subunit remain elusive, such as the structure and maturation of its ribosomal RNA3. Here, we present a cryo-electron microscopy study of the protozoans Leishmania tarentolae and Trypanosoma cruzi mitoribosomes. -
Complete Genome Sequencing and Antibiotics Biosynthesis Pathways
www.nature.com/scientificreports OPEN Complete genome sequencing and antibiotics biosynthesis pathways analysis of Streptomyces lydicus Received: 14 December 2016 Accepted: 13 February 2017 103 Published: 20 March 2017 Nan Jia1,2, Ming-Zhu Ding1,2, Hao Luo1,2,3, Feng Gao1,2,3 & Ying-Jin Yuan1,2 More and more new natural products have been found in Streptomyces species, which become the significant resource for antibiotics production. Among them,Streptomyces lydicus has been known as its ability of streptolydigin biosynthesis. Herein, we present the genome analysis of S. lydicus based on the complete genome sequencing. The circular chromosome of S. lydicus 103 comprises 8,201,357 base pairs with average GC content 72.22%. With the aid of KEGG analysis, we found that S. lydicus 103 can transfer propanoate to succinate, glutamine or glutamate to 2-oxoglutarate, CO2 and L-glutamate to ammonia, which are conducive to the the supply of amino acids. S. lydicus 103 encodes acyl-CoA thioesterase II that takes part in biosynthesis of unsaturated fatty acids, and harbors the complete biosynthesis pathways of lysine, valine, leucine, phenylalanine, tyrosine and isoleucine. Furthermore, a total of 27 putative gene clusters have been predicted to be involved in secondary metabolism, including biosynthesis of streptolydigin, erythromycin, mannopeptimycin, ectoine and desferrioxamine B. Comparative genome analysis of S. lydicus 103 will help us deeply understand its metabolic pathways, which is essential for enhancing the antibiotic production through metabolic engineering. Streptomyces species are high-GC Gram-positive bacteria found predominantly in soil1. Through a complex pro- cess of morphological and physiological differentiation, Streptomyces species could produce many specialized metabolites used for agricultural antibiotics2. -
Identification of the Thiazolyl Peptide GE37468 Gene Cluster from Streptomyces ATCC 55365 and Heterologous Expression in Streptomyces Lividans
Identification of the thiazolyl peptide GE37468 gene cluster from Streptomyces ATCC 55365 and heterologous expression in Streptomyces lividans Travis S. Young and Christopher T. Walsh1 Harvard Medical School, Armenise D1, Room 608, 240 Longwood Avenue, Boston, MA 02115 Contributed by Christopher T. Walsh, June 29, 2011 (sent for review June 6, 2011) Thiazolyl peptides are bacterial secondary metabolites that teins (10–13). The mature antibiotic arises from a structural gene potently inhibit protein synthesis in Gram-positive bacteria and encoding a 50–60 amino acid preprotein consisting of a 40–50 malarial parasites. Recently, our laboratory and others reported amino acid N-terminal leader peptide (residues −50 to −1) and that this class of trithiazolyl pyridine-containing natural products a14–18 amino acid C-terminal region (residues +1 to +18), is derived from ribosomally synthesized preproteins that undergo which becomes the final product scaffold (3). Flanking the struc- a cascade of posttranslational modifications to produce architectu- tural gene are encoded enzymes involved in peptide maturation, rally complex macrocyclic scaffolds. Here, we report the gene which appear to mimic the biosynthetic logic for microcin B17, cluster responsible for production of the elongation factor Tu lantibiotic, and cyanobactin antibiotic peptides (14). These (EF-Tu)-targeting 29-member thiazolyl peptide GE37468 from enzymes include lantibiotic-type dehydratases that form dehydro Streptomyces ATCC 55365 and its heterologous expression in the amino acids, cyclodehydratase and dehydrogenase enzymes model host Streptomyces lividans. GE37468 harbors an unusual involved in the formation of thiazoles/oxazoles, and a novel β-methyl-δ-hydroxy-proline residue that may increase conforma- enzyme(s) involved in the formation of the central pyridine/ tional rigidity of the macrocycle and impart reduced entropic costs piperidine ring. -
Biochemical Methods for Preparation and Study of Peptide Natural Product Libraries
BIOCHEMICAL METHODS FOR PREPARATION AND STUDY OF PEPTIDE NATURAL PRODUCT LIBRARIES Steven Robert Fleming A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Pharmaceutical Sciences in the Doctoral Program of the UNC Eshelman School of Pharmacy (Division of Chemical Biology & Medicinal Chemistry) Chapel Hill 2020 Approved by: Albert A. Bowers Michael B. Jarstfer Rihe H. Liu Kevin M. Weeks Leslie M. Hicks ©2020 Steven Robert Fleming ALL RIGHTS RESERVED ii ABSTRACT Steven Robert Fleming: Biochemical Methods for Preparation and Study of Peptide Natural Product Libraries (Under the direction of Albert Bowers) mRNA Display is an increasingly popular technique in pharmaceutical sciences to make highly diverse peptide libraries to pan for protein inhibitors. The current state of the art applies Flexizyme codon reprogramming with mRNA display to introduce unnatural amino acids for peptide cyclization and to further increase library diversity. Interestingly, ribosomally synthesized and post-translationally modified peptides (RiPP) are a unique class of natural products that transform linear peptides into highly modified and structurally complex metabolites. By combining RiPP biosynthesis with mRNA display, libraries of increasingly greater diversity can be achieved, and impending selected inhibitors will have natural product-like qualities, which we expect will allow these compounds to have better drug-like properties. Herein, we have developed a platform to measure RiPP enzyme modification of mRNA display libraries to show for the first time that RiPP enzymes can modify RNA linked peptide substrates. The platform may be extrapolated to many different RiPP enzymes and provides useful measurements to determine if a RiPP enzyme is promiscuous and effective to produce highly diversified peptides.