Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS While the most advanced technology has heen used to photograph and reproduce this manuscript, the qualify of the reproduction is heavily dependent upon the qualify of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the origined, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17”x 23” black and white photographic print. Most photographs reproduce acceptably on positive microfilm or microfiche but lack the clarify on xerographic copies made from the microfilm. For an additional charge, 35mm slides of 6”x 9” black and white photographic prints are available for any photographs or illustrations that cannot he reproduced satisfactorily by xerography. 8703560 Houck, David Renwick STUDIES ON THE BIOSYNTHESIS OF THE MODIFIED-PEPTIDE ANTIBIOTIC, NOSIHEPTIDE The Ohio State University Ph.D. 1986 University Microfilms I nternetionsi!300 N. Zeeb R oad, Ann Arbor, Ml 48106 STUDIES ON THE BIOSYNTHESIS OF THE MODIFIED-PEPTIDE ANTIBIOTIC, NOSIHEPTIDE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By David Renwick Houck, B.S., M.S. ***** The Ohio State University 1986 Dissertation Committee: Approved by Heinz G. Floss f ^ Robert M. Mayer David J. Hart Department of Chemistry To my family ii ACKNOWLEDGEMENTS I am very fortunate to have studied with an exceptional scientist such as Dr. Heinz G. Floss. As my academic advisor for five years. Dr. Floss has provided an excellent atmosphere for both my scientific training and my research. Merck & Co. is acknowledged for granting me a paid, educa­ tion leave of absence. I would like to thank Paul Keller, John Beale, and Jonathan Lee for their help with acquisition of the NMR data. Dr. Edith W. Miles was very generous with the gift of tryptophan synthase. Diego Belinzoni and Rosangela Casati taught me techniques of organic synthesis. Kay Kampsen was a very efficient typist and ensured that all the deadlines were met. My parents are responsible for starting my academic studies, and Dr. Lawrence Wittle, of Alma College, first stimulated my interest in biochemistry. My wife, Allyson, has been incredibly devoted and patient during my preoccupation with science. Allyson's literature searches were invaluable for the completion of this work, as was her moral support. Ill VITA April 10, 1956 ................. Born - Detroit, Michigan May, 1978 ....................... B.S., Alma College, Alma, Michigan September, 1981 ................ M.S., Purdue University West Lafayette, Indiana October, 1981 to Present ...... Research Biochemist Merck and Co. Inc., Rahway, New Jersey December, 1984 to Present ...... Recipient of a Merck Grant for Ph.D. studies at the Department of Chemistry, The Ohio State University PUBLICATIONS 1. Houck, D., Chen, L.-C., Keller, P., Beale, J., Floss, H.G. (1986) "Biosynthesis of Nosiheptide" J . Amer. Chem. Soc., in press. 2. Houck, D.R., Kobayashi, K., Williamson, J.M. and Floss, H.G. (1986) "Stereochemistry of Méthylation in Thienamycin Biosynthesis" J. Amer. Chem. Soc. 108, 5365. 3. Asano, Y., Woodard, R.W., Houck, D.R., Floss, H.G. (1984) Arch. Biochem. Biophvs. 231, 253. 4. Miles, E.W., Houck, D.R. and Floss, H.G. (1982) J. Biol. Chem. 257, 14203. 5. Houck, D.R. and Floss, H.G. (1981) J. Natural Products, 44, 759. FIELDS OF STUDY Biochemistry, enzymology and natural products IV TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ..................................... Ü i VITA .................................................. iv LIST OF TABLES ....................................... V Ü LIST OF FIGURES ...................................... v i ü LIST OF ABBREVIATIONS ................................ X Ü INTRODUCTION ......................................... 1 RESULTS ............................................... 7 Fermentation ..................................... 7 High Performance Liquid Chromatography ......... 10 Nosiheptide Isolation ........................... 14 Chloramphenicol Inhibition of Nosiheptide Biosynthesis .............. 16 Incorporation of ^“C-Labeled Amino Acids into Nosiheptide .................................... 19 Incorporation of ^®C-Enriched Amino Acids into Nosiheptide .................................... 22 Incorporation of [U-^®Ca]Glycerol into Nosi­ heptide ........................................ 44 DISCUSSION ............................................ 62 EXPERIMENTAL SECTION ................................. 79 Materials ........................................ 79 Organism and Fermentation....................... 80 Isolation of Nosiheptide ........................ 81 Nosiheptide Assay and HPLC ...................... 83 Feeding Experiments ............................. 84 Preparation of 4-Methyl-[3 ' “C]tryptophan .... 87 Preparation of [2-^®C]Indole ............... 88 Preparation of L-[2,l'-i3C2]Tryptophan ........ 90 ^ ^C-NMR Spectroscopy............................ 91 V Table of Contents (continued) Page APPENDIX .............................................. 93 LIST OF REFERENCES .................................... 99 VI LIST OF TABLES TABLE Page 1. Effect of Medium Components on Nosi­ heptide Biosynthesis .................. 11 2. Incorporation of ^“C-labeled amino acids into nosiheptide ....... 20 3. couplings observed in the reverse INEPT spectrum of nosiheptide biosyn­ thesized from L-[3-i3C]serine......... 31 4. ^^C-NMR assignments and enrichments of nosiheptide derived from ^^C-labeled precursors ............................. 43 5. The carbon connectivities observed in the 2D-INADEQUATE spectrum of nosiheptide biosynthesized from [ U - ^ ]glycerol ... 55 6. ^^C-NMR assignments of nosiheptide (40-70 mg/0.4 ml, DMSO-dg, 320°K)...... 61 VI 1 LIST OF FIGURES FIGURE Page 1. Nosiheptide and the sequence of its residues ................................. 2 2. Thiostrepton and the sequence of its residues (top) .......................... 3 3. The HPLC profile of a crude extract (tetrahydrofuran) of streptomyces actuosus grown in synthetic medium 13 4. The effect of chloramphenicol on nosi­ heptide production in synthetic medium. Chloramphenicol was added (10 pg/ml) at 30 h(x) or 54 h (A) or not at all (oscontrol) ............................. 18 5. The HPLC profiles of crude nosiheptide- precipitates from fermentations con­ taining [^“C]tryptophan; labeled at the CHg group (top) or ring-C7a (bottom traces). The fluorescence detector was in series with radioactive flow detector. 21 6. Natural abundance of the ^^C-NMR spectrum of nosiheptide .......................... 24 7. An expansion of the ^^C-NMR spectrum of nosiheptide biosynthesized from DL-[3-^^C]cysteine ...................... 25 8. The sites of ^^C-enrichemnt (•) in nosi­ heptide biosynthesized from DL-[3-^^C]cysteine ...................... 26 9. An expansion of the ^ ^C-NMR spectrum of nosiheptide biosynthesized from L-[3-i3C]serine. Stars indicate enriched signals ........................ 28 Vlll List of Figures (continued) Figure Page 10. The ^H-NMR spectra of nosiheptide biosyn­ thesized from L-( 3 - serine. The reverse INEPT sequence was run with t =1.4 msec (top) or x=1.6 msec (middle trace). The ^^C-NMR satellites are bracketed immediately above the main proton signal (bottom trace) .......................... 30 11. The coupling observed between pyridine C3 and C4 in the spectrum of nosiheptide biosynthesized from L - [3- i3g ]serine ......................... 32 12. The transfer of carbon-13 (A) from L-[3-i3c]serine to nosiheptide ......... 33 13. An expansion of the ^^C-NMR spectrum of nosiheptide biosynthesized from L-[CHa-^^C]methionine. The intense signal at 65.9 ppm corresponds to indole C4'................................ 34 14. The ^H-NMR (A) and reverse INEPT (B) spectra of nosiheptide biosynthesized from L-[CHa-^^cImethionine. With a delay of t =1.6 msec, the pulse sequence for B uncovers the ^^C-satellites of the protons at indole C4'.................... 35 15. The downfield region of the ^^C-NMR spec­ trum of nosiheptide biosynthesized from DL-[1-^^C]serine. The stars denote enriched signals ........................ 37 16. The transfer of (•) from DL-[1-^®C]- serine to nosiheptide .................. 38 17. The synthesis of L-[2,1'-^^Cj]tryptophan .. 41 18. The ^^C-NMR spectrum of nosiheptide biosynthesized from L-[2,l'-^^Cjl- tryptophan .............................. 42 IX List of Figures (continued) Figure Page 19. A portion of the ^®C-NMR spectrum of nosiheptide biosynthesized from [U-^’Cglglyeroi (top) and a natural abundance spectrum (bottom) ........... 47 19. Continued ................................ 48 20. The 2D-INADEQUATE spectrum of nosiheptide biosynthesized from [U-^^Cglglycerol. Coupled signals appear at the same double-quantum frequency (FI, abscissa) and are listed in Table 5 .............. 53 21. An expansion of the 2D-INADEQUATE spectrum (Fig. 20). Coupled thiazole-carbons are bracketed. Note the weak signals for pyr C4-C5 at 4000 Hz
Recommended publications
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • Insecticidal and Antifungal Chemicals Produced by Plants
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Insecticidal and antifungal chemicals produced by plants: a review Isabelle Boulogne, Philippe Petit, Harry Ozier-Lafontaine, Lucienne Desfontaines, Gladys Loranger-Merciris To cite this version: Isabelle Boulogne, Philippe Petit, Harry Ozier-Lafontaine, Lucienne Desfontaines, Gladys Loranger- Merciris. Insecticidal and antifungal chemicals produced by plants: a review. Environmental Chem- istry Letters, Springer Verlag, 2012, 10 (4), pp.325 - 347. 10.1007/s10311-012-0359-1. hal-01767269 HAL Id: hal-01767269 https://hal-normandie-univ.archives-ouvertes.fr/hal-01767269 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Version définitive du manuscrit publié dans / Final version of the manuscript published in : Environmental Chemistry Letters, 2012, n°10(4), 325-347 The final publication is available at www.springerlink.com : http://dx.doi.org/10.1007/s10311-012-0359-1 Insecticidal and antifungal chemicals produced by plants. A review Isabelle Boulogne 1,2* , Philippe Petit 3, Harry Ozier-Lafontaine 2, Lucienne Desfontaines 2, Gladys Loranger-Merciris 1,2 1 Université des Antilles et de la Guyane, UFR Sciences exactes et naturelles, Campus de Fouillole, F- 97157, Pointe-à-Pitre Cedex (Guadeloupe), France.
    [Show full text]
  • Hallucinogens: an Update
    National Institute on Drug Abuse RESEARCH MONOGRAPH SERIES Hallucinogens: An Update 146 U.S. Department of Health and Human Services • Public Health Service • National Institutes of Health Hallucinogens: An Update Editors: Geraline C. Lin, Ph.D. National Institute on Drug Abuse Richard A. Glennon, Ph.D. Virginia Commonwealth University NIDA Research Monograph 146 1994 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 ACKNOWLEDGEMENT This monograph is based on the papers from a technical review on “Hallucinogens: An Update” held on July 13-14, 1992. The review meeting was sponsored by the National Institute on Drug Abuse. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required. All other material in this volume except quoted passages from copyrighted sources is in the public domain and may be used or reproduced without permission from the Institute or the authors. Citation of the source is appreciated. Opinions expressed in this volume are those of the authors and do not necessarily reflect the opinions or official policy of the National Institute on Drug Abuse or any other part of the U.S. Department of Health and Human Services. The U.S. Government does not endorse or favor any specific commercial product or company.
    [Show full text]
  • S41467-017-00439-1.Pdf
    ARTICLE DOI: 10.1038/s41467-017-00439-1 OPEN Biosynthesis of the nosiheptide indole side ring centers on a cryptic carrier protein NosJ Wei Ding1,2,3,4, Wenjuan Ji2, Yujie Wu2,3, Runze Wu2, Wan-Qiu Liu2, Tianlu Mo2, Junfeng Zhao2, Xiaoyan Ma2,3, Wei Zhang4, Ping Xu5, Zixin Deng6, Boping Tang1,YiYu6 & Qi Zhang 2 Nosiheptide is a prototypal thiopeptide antibiotic, containing an indole side ring in addition to its thiopeptide-characteristic macrocylic scaffold. This indole ring is derived from 3-methyl-2- indolic acid (MIA), a product of the radical S-adenosylmethionine enzyme NosL, but how MIA is incorporated into nosiheptide biosynthesis remains to be investigated. Here we report functional dissection of a series of enzymes involved in nosiheptide biosynthesis. We show NosI activates MIA and transfers it to the phosphopantetheinyl arm of a carrier protein NosJ. NosN then acts on the NosJ-bound MIA and installs a methyl group on the indole C4, and the resulting dimethylindolyl moiety is released from NosJ by a hydrolase-like enzyme NosK. Surface plasmon resonance analysis show that the molecular complex of NosJ with NosN is much more stable than those with other enzymes, revealing an elegant biosynthetic strategy in which the reaction flux is controlled by protein–protein interactions with different binding affinities. 1 Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bioagriculture, Yancheng Teachers University, Yancheng 224002, China. 2 Department of Chemistry, Fudan University, Shanghai 200433, China. 3 Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
    [Show full text]
  • The Electrochemistry and Fluorescence Studies of 2,3-Diphenyl Indole Derivatives
    THE ELECTROCHEMISTRY AND FLUORESCENCE STUDIES OF 2,3-DIPHENYL INDOLE DERIVATIVES A thesis in fulfillment of the requirements for the degree of Master of Philosophy By Nidup Phuntsho Supervisors Prof. Naresh Kumar (UNSW) A/Prof. Steve Colbran (UNSW) Prof. David StC Black (UNSW) School of Chemistry Faculty of Science University of New South Wales Kensington, Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Fam1ly name· Phuntsho First name: N1dup Other name/s: Abbreviation for degree as g1ven in the University calendar: MSc School Chemistry Faculty; Science Title· The electrochemistry and fluorescence studies of 2,3- diphenyl indole derivatives Abstract 350 words maximum: (PLEASE TYPE) A series of 2,3-diphenyl-4,6-dimethoxyindole derivatives with C-7 substitutions were successfully synthesized. All the novel indolyl derivatives were fully characterized using 1H NMR, 13C NMR, IR spectroscopy and high-resolution mass spectrometry (HRMS) techniques. Electrochemical oxidation pathways for indolyl derivatives were explored using cyclic voltammetry (CV), spectroelectrochemistry and electronic paramagnetic resonance (EPR) spectroscopy. The electrochemical mechanisms of 2,3-disubstituted-4,6- dimethoxyindole derivatives were proposed based on results obtained from the above-mentioned techniques. This thesis also includes the synthesis of novel indolyl ligands and explores their use in metal-binding fluorescence studies. Novel indolyl chemosensors based di-2-picolylamine (DPA) and a range of amino acids were synthesized. A group of biologically relevant metal ions was selected to study their bindin!1 modes and how that affected the fluorescence emission intensity of the ligands. DPA-based indole ligand was found to be Cu • ion selective.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Chronic Venous Insufficiency/CVI
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Chronic Venous Insufficiency/CVI Chemical Activity Count (+)-AROMOLINE 1 (+)-CATECHIN 5 (+)-GALLOCATECHIN 1 (+)-HERNANDEZINE 1 (+)-PRAERUPTORUM-A 1 (+)-SYRINGARESINOL 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (-)-ACETOXYCOLLININ 1 (-)-APOGLAZIOVINE 1 (-)-BISPARTHENOLIDINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-CANADINE 1 (-)-EPICATECHIN 4 (-)-EPICATECHIN-3-O-GALLATE 1 (-)-EPIGALLOCATECHIN 1 (-)-EPIGALLOCATECHIN-3-O-GALLATE 2 (-)-EPIGALLOCATECHIN-GALLATE 3 (-)-HYDROXYJASMONIC-ACID 1 (-)-N-(1'-DEOXY-1'-D-FRUCTOPYRANOSYL)-S-ALLYL-L-CYSTEINE-SULFOXIDE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 1 (2R)-(12Z,15Z)-2-HYDROXY-4-OXOHENEICOSA-12,15-DIEN-1-YL-ACETATE 1 (7R,10R)-CAROTA-1,4-DIENALDEHYDE 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,2,6-TRI-O-GALLOYL-BETA-D-GLUCOSE 1 1,7-BIS(3,4-DIHYDROXYPHENYL)HEPTA-4E,6E-DIEN-3-ONE 1 Chemical Activity Count 1,7-BIS(4-HYDROXY-3-METHOXYPHENYL)-1,6-HEPTADIEN-3,5-DIONE 1 1,8-CINEOLE 1 1-(METHYLSULFINYL)-PROPYL-METHYL-DISULFIDE 1 1-ETHYL-BETA-CARBOLINE 1 1-O-(2,3,4-TRIHYDROXY-3-METHYL)-BUTYL-6-O-FERULOYL-BETA-D-GLUCOPYRANOSIDE 1 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 10-GINGEROL 1 12-(4'-METHOXYPHENYL)-DAURICINE 1 12-METHOXYDIHYDROCOSTULONIDE 1 13',II8-BIAPIGENIN 1 13-HYDROXYLUPANINE 1 14-ACETOXYCEDROL 1 14-O-ACETYL-ACOVENIDOSE-C 1 16-HYDROXY-4,4,10,13-TETRAMETHYL-17-(4-METHYL-PENTYL)-HEXADECAHYDRO- 1 CYCLOPENTA[A]PHENANTHREN-3-ONE 2,3,7-TRIHYDROXY-5-(3,4-DIHYDROXY-E-STYRYL)-6,7,8,9-TETRAHYDRO-5H-
    [Show full text]
  • Review Article New Insight Into Adiponectin Role in Obesity and Obesity-Related Diseases
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 658913, 14 pages http://dx.doi.org/10.1155/2014/658913 Review Article New Insight into Adiponectin Role in Obesity and Obesity-Related Diseases Ersilia Nigro,1 Olga Scudiero,1,2 Maria Ludovica Monaco,1 Alessia Palmieri,1 Gennaro Mazzarella,3 Ciro Costagliola,4 Andrea Bianco,5 and Aurora Daniele1,6 1 CEINGE-Biotecnologie Avanzate Scarl, Via Salvatore 486, 80145 Napoli, Italy 2 Dipartimento di Medicina Molecolare e Biotecnologie Mediche, UniversitadegliStudidiNapoliFedericoII,` Via De Amicis 95, 80131 Napoli, Italy 3 Dipartimento di Scienze Cardio-Toraciche e Respiratorie, Seconda Universita` degli Studi di Napoli, Via Bianchi 1, 80131 Napoli, Italy 4 Cattedra di Malattie dell’Apparato Visivo, Dipartimento di Medicina e Scienze della Salute, UniversitadelMolise,` ViaDeSanctis1,86100Campobasso,Italy 5 Cattedra di Malattie dell’Apparato Respiratorio, Dipartimento di Medicina e Scienze della Salute, UniversitadelMolise,` ViaDeSanctis1,86100Campobasso,Italy 6 Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Seconda UniversitadegliStudidiNapoli,` Via Vivaldi 42, 81100 Caserta, Italy Correspondence should be addressed to Aurora Daniele; [email protected] Received 2 April 2014; Accepted 12 June 2014; Published 7 July 2014 Academic Editor: Beverly Muhlhausler Copyright © 2014 Ersilia Nigro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution,
    [Show full text]
  • Structure of the Full Kinetoplastids Mitoribosome and Insight on Its Large Subunit Maturation
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.02.073890; this version posted June 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structure of the full kinetoplastids mitoribosome and insight on its large subunit maturation Heddy Soufari1* & Florent Waltz1*, Camila Parrot1+, Stéphanie Durrieu1+, Anthony Bochler1, Lauriane Kuhn2, Marie Sissler1, Yaser Hashem1‡ 1 Institut Européen de Chimie et Biologie, U1212 Inserm, UMR5320 CNRS, Université de Bordeaux, 2 rue R. Escarpit, F-33600 Pessac, France 2 Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRS, Université de Strasbourg, Strasbourg, France *contributed equally, co-first authors +contributed equally, co-second authors ‡corresponding author Abstract: Kinetoplastids are unicellular eukaryotic parasites responsible for human pathologies such as Chagas disease, sleeping sickness or Leishmaniasis1. They possess a single large mitochondrion, essential for the parasite survival2. In kinetoplastids mitochondrion, most of the molecular machineries and gene expression processes have significantly diverged and specialized, with an extreme example being their mitochondrial ribosomes3. These large complexes are in charge of translating the few essential mRNAs encoded by mitochondrial genomes4,5. Structural studies performed in Trypanosoma brucei already highlighted the numerous peculiarities of these mitoribosomes and the maturation of their small subunit3,6. However, several important aspects mainly related to the large subunit remain elusive, such as the structure and maturation of its ribosomal RNA3. Here, we present a cryo-electron microscopy study of the protozoans Leishmania tarentolae and Trypanosoma cruzi mitoribosomes.
    [Show full text]
  • A Concise Asymmetric Synthesis of Microtubule Inhibitor Tryprostatin B
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations December 2019 Part I: A Concise Asymmetric Synthesis of Microtubule Inhibitor Tryprostatin B Part II: Synthesis and Biological Assessment of Histone Deacetylase (HDAC) Inhibitors Part III: Acid Catalyzed Reactions of Aromatic Ketones with Ethyl Diazoacetate Md Mizzanoor Rahaman University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Organic Chemistry Commons Recommended Citation Rahaman, Md Mizzanoor, "Part I: A Concise Asymmetric Synthesis of Microtubule Inhibitor Tryprostatin B Part II: Synthesis and Biological Assessment of Histone Deacetylase (HDAC) Inhibitors Part III: Acid Catalyzed Reactions of Aromatic Ketones with Ethyl Diazoacetate" (2019). Theses and Dissertations. 2329. https://dc.uwm.edu/etd/2329 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. PART I: A CONCISE ASYMMETRIC SYNTHESIS OF MICROTUBULE INHIBITOR TRYPROSTATIN B PART II: SYNTHESIS AND BIOLOGICAL ASSESSMENT OF HISTONE DEACETYLASE INHIBITORS PART III: ACID CATALYZED REACTIONS OF AROMATIC KETONES WITH ETHYL DIAZOACETATE by Mizzanoor Rahaman A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry at The University of Wisconsin-Milwaukee December 2019 ABSTRACT PART I: A CONCISE ASYMMETRIC SYNTHESIS OF MICROTUBULE INHIBITOR TRYPROSTATIN B PART II: SYNTHESIS AND BIOLOGICAL ASSESSMENT OF HISTONE DEACETYLASE INHIBITORS PART III: ACID CATALYZED REACTIONS OF AROMATIC KETONES WITH ETHYL DIAZOACETATE by Mizzanoor Rahaman The University of Wisconsin-Milwaukee, 2019 Under the Supervision of Professor M.
    [Show full text]
  • Metabolomic Insights Into the Mechanisms Underlying Tolerance to Salinity in Different Halophytes T
    Plant Physiology and Biochemistry 135 (2019) 528–545 Contents lists available at ScienceDirect Plant Physiology and Biochemistry journal homepage: www.elsevier.com/locate/plaphy Research article Metabolomic insights into the mechanisms underlying tolerance to salinity in different halophytes T ∗ Jenifer Joseph Benjamina, Luigi Lucinib, , Saranya Jothiramshekara, Ajay Paridaa,c a Department of Plant Molecular Biology, MS Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Taramani, Chennai, 600113, India b Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy c Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar, 751023, Odisha, India ARTICLE INFO ABSTRACT Keywords: Salinity is among the most detrimental and diffuse environmental stresses. Halophytes are plants that developed Salicornia the ability to complete their life cycle under high salinity. In this work, a mass spectrometric metabolomic Suaeda approach was applied to comparatively investigate the secondary metabolism processes involved in tolerance to Sesuvium salinity in three halophytes, namely S. brachiata, S. maritima and S. portulacastrum. Regarding osmolytes, the Plant abiotic stress level of proline was increased with NaCl concentration in S. portulacastrum and roots of S. maritima, whereas Osmolytes glycine betaine and polyols were accumulated in S. maritima and S. brachiata. Oxidative stress Important differences between species were also found regarding oxidative stress balance. In S. brachiata, the amount of flavonoids and other phenolic compounds increased in presence of NaCl, whereas these metabolites were down regulated in S. portulacastrum, who accumulated carotenoids. Furthermore, distinct impairment of membrane lipids, hormones, alkaloids and terpenes was observed in our species under salinity.
    [Show full text]
  • Anti-Quality Factors Associated with Alkaloids in Eastern Temperate Pasture
    J. Range Manage. 54: 474–489 July 2001 Anti-quality factors associated with alkaloids in eastern temperate pasture F.N. THOMPSON, J.A. STUEDEMANN, AND N.S. HILL Authors are professor emeritus of physiology, College of Veterinary Medicine University of Georgia, Athens, Ga 30602, animal scientist, J.Phil Campbell, Sr., Natural Resource Conservation Center, USDA-ARS, Watkinsville, Ga 30677 and professor Department of Crop and Soil Sciences, University of Georgia, Athens, Ga 30602. Abstract Resumen The greatest anti-quality associated with eastern temperature El principal factor anti-calidad asociado con los de zacates pasture grasses is the result of ergot alkaloids found in endo- templados del este que se utilizan para praderas es el resultado phyte-infected (Neotyphodium ceonophialum) tall fescue (Festuca de los alcaloides Ergot encontrados en el pasto Alta fescue infec- arundinacea Schreb.) The relationship between the grass and the tado de hongo endófito (Neotyphodium ceonophialum). La endophyte is mutalistic with greater persistence and herbage relación entre el pasto y el endófito es mutualista, con mayor mass as a result of the endophyte. Ergot alkaloids reduce growth persistencia y masa de forraje como resultado del endófito. Los rate, lactation, and reproduction in livestock. Significant effects alcaloides Ergot reducen la tasa de crecimiento, la lactación y la are the result of elevated body temperature and reduced periph- reproducción del ganado. Los efectos críticos son el resultado de eral blood flow such that necrosis may result. Perturbations also la elevada temperatura corporal y el reducido flujo periférico de occur in a variety of body systems. Planting new pastures with sangre que puede ocasionar en necrosis.
    [Show full text]
  • Association of Adipose Tissue and Adipokines with Development of Obesity-Induced Liver Cancer
    International Journal of Molecular Sciences Review Association of Adipose Tissue and Adipokines with Development of Obesity-Induced Liver Cancer Yetirajam Rajesh 1 and Devanand Sarkar 2,* 1 Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA; [email protected] 2 Massey Cancer Center, Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA * Correspondence: [email protected]; Tel.: +1-804-827-2339 Abstract: Obesity is rapidly dispersing all around the world and is closely associated with a high risk of metabolic diseases such as insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease (NAFLD), leading to carcinogenesis, especially hepatocellular carcinoma (HCC). It results from an imbalance between food intake and energy expenditure, leading to an excessive accumulation of adipose tissue (AT). Adipocytes play a substantial role in the tumor microenvironment through the secretion of several adipokines, affecting cancer progression, metastasis, and chemoresistance via diverse signaling pathways. AT is considered an endocrine organ owing to its ability to secrete adipokines, such as leptin, adiponectin, resistin, and a plethora of inflammatory cytokines, which modulate insulin sensitivity and trigger chronic low-grade inflammation in different organs. Even though the precise mechanisms are still unfolding, it is now established that the dysregulated secretion of adipokines by AT contributes to the development of obesity-related metabolic disorders. This review focuses on several obesity-associated adipokines and their impact on obesity-related Citation: Rajesh, Y.; Sarkar, D. metabolic diseases, subsequent metabolic complications, and progression to HCC, as well as their Association of Adipose Tissue and role as potential therapeutic targets.
    [Show full text]