Ecological Scan: Tjate

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Scan: Tjate Booysendal South Flora & Fauna NATURALNatural SCIENTIFIC Scientific Services SERVICES CC B-1 Booysendal South Flora & Fauna SECTION B: TABLE OF CONTENTS 1. Introduction ........................................................................................................................ 1 2. Methodology ...................................................................................................................... 1 2.1. Desktop Research ...................................................................................................... 1 2.2. Fieldwork .................................................................................................................... 2 2.3. Data Analysis .............................................................................................................. 1 2.4. Limitations................................................................................................................... 2 3. Results ............................................................................................................................... 4 3.1. Regional Vegetation .................................................................................................... 4 3.2. Regional Floral Diversity ............................................................................................. 5 3.3. Local Habitats and Floral Communities ....................................................................... 5 3.4. Conservation Important Species ............................................................................... 36 3.5. Alien Invasive Species .............................................................................................. 51 4. Concluding Remarks ....................................................................................................... 53 SECTION B: LIST OF TABLES Table 2-1 Braun-Blanquet cover classes (Mueller-Dombois & Ellenberg, 1974) .............. 1 Table 3-1 Vegetation types within the region of Booysendal South.................................. 4 Table 3-2 Top ten dominant plant families and overall proportion of each plant growth form recorded within the QDS wherein Booysendal is situated ........................ 5 Table 3-3 Floral communities identified within the Study Area (Phase 1 and 2 of the Booysendal South Expansion Project) ............................................................. 9 Table 3-4 Aloe -Myrothamnus Shrub Sheetrock Community ......................................... 11 Table 3-5 Searsia- Diospyros - Rhoicissus Rocky outcrops Community ........................ 13 Table 3-6 Brachiaria - Tristachya Exposed Rock Community ........................................ 15 Table 3-7 Lydenburgia - Vitex - Kirkia Rocky Thicket Community .................................. 17 Table 3-8 Acacia - Euclea- Hippobromus - Scolopia Thicket Community....................... 19 Table 3-9 Protea – Themeda Open Woodland Community............................................ 21 Table 3-10 Slope Grassland Communities ...................................................................... 23 Table 3-11 Heteropogon - Eragrostis Semi-natural grassland Community ....................... 25 Table 3-12 Tulbaghia – Eleocharis Sheet Rock Seeps Community ................................. 27 Table 3-13 Fuirena - Agrostis Seep Community .............................................................. 29 Table 3-14 Phragmites Vlei Community .......................................................................... 30 Table 3-15 Faurea - Combretum - Halleria Riparian Community ..................................... 32 Table 3-16 Acacia-Hyperthelia Lower Floodplain Grassland............................................ 34 Table 3-17 CI Plant Numbers per TSP, MTPA in South Africa and Mpumalanga ............ 37 Table 3-18 Conservation Important plant species listed for grid square 2530AA ............. 38 Natural Scientific Services CC B-ii Booysendal South Flora & Fauna Table 3-19 Protected Species of flora found in the NSS Study area (highlighted in green) and in the broader surrounds ......................................................................... 42 SECTION B: LIST OF FIGURES Figure 2-1 Vegetation sampling plots ................................................................................ 3 Figure 3-1 Photographic representation of broad habitats in BS4 ..................................... 7 Figure 3-2 Photographic representation of broad habitats in the valley and slopes of the Groot Dwars River (Section 24G Footprint, survey areas north and south of BS1/2) ............................................................................................................. 8 Figure 3-3 Map of the floral communities identified in the Booysendal Study Area ......... 10 Figure 3-4 Species to look out for in the study area ........................................................ 37 Figure 3-5 Examples of observed CI plant species in Booysendal .................................. 44 Figure 3-6 Additional Examples of Red Listed CI plant species in Booysendal ............... 45 Figure 3-7 Photographic evidence of additional CI fern plant species on Site ................. 46 Figure 3-8 Photographic evidence of CI Fungi plant species on Site .............................. 48 Figure 3-9 Photographic evidence of additional CI Fungi plant species in the NSS Study Area ............................................................................................................... 49 Figure 3-10 Locations of observed CI plant species in the NSS Study area – Booysendal South Expansion Project ............................................................................... 50 Figure 3-11 Examples of observed alien invasives in BS4 ................................................ 53 Figure 3-12 Examples of observed alien invasives within the study area .......................... 53 Natural Scientific Services CC B-iii Booysendal South Flora & Fauna SECTION B: FLORAL ASSESSMENT 1. Introduction This report Section B details the Baseline Floral Assessment, which involved desktop- and field- based investigations of the structure, dominant species composition and condition of regional vegetation types and local floral communities. It is important to note that vegetation and flora is a major component when studying ecosystems. The composition, diversity, and structure of vegetation are important factors for assessing biological diversity. Vegetation is the source of primary production, plays a direct role in water and nutrient cycling, and interacts strongly with other biotic components being a determinant habitat for many species. Within the study region, as indicated in Section A, the vegetation is representative (a transitional area) of both the Savanna and Grassland Biomes. Grasslands provide essential ecosystem services, which include water production, wetland functioning and flood attenuation, good quality soil and forage for livestock; cultural and heritage value and the support for livelihoods (i.e. the use of medicinal plants). It is well documented that grasslands contain a high diversity of both plants and animals and is second only to the Cape Floristic Region. Vegetation has also been identified as a specific target for the calculation of critical loads/levels. The composition and structure of vegetation can serve as bio-indicators for environmental changes to ecosystems. Changes in vegetation and in underlying environmental factors can serve as indicators of the status of other organisms based on our current knowledge of the ecological niches of numerous plant species. This is specifically applicable in Ecotone areas. Although ecological changes will occur everywhere in response to say an environmental factor such as climate change, the signals will be detectable first in ecotones (Neilson, 1993). This sensitivity makes them indicators that provide early warning for other regions (Risser, 1993). Although ecotones are unique in provision of climate change-related services, they are threatened. Conservation traditionally is aimed at "prime" core areas of regional biomes/habitats rather than ecotones. 2. Methodology 2.1. Desktop Research A desktop investigation of regional vegetation, including Conservation Important (CI) floral species, was performed by consulting the following information sources: .. Google Earth and Bing satellite imagery. Google Earth imagery was updated during the survey after the fieldwork for BS Expansion Project Phase 1. This imagery was available for the additional fieldwork in December 2017 for the additional surveys areas specifically towards BN. .. Mucina & Rutherford’s (2006) vegetation map of southern Africa. Natural Scientific Services CC B-1 Booysendal South Flora & Fauna .. The South African National Biodiversity Institute’s (SANBI’s) online PRECIS (PREtoria Computerised Information System) database called POSA, which provides taxonomic information for plant species occurring in southern Africa (in the format of Germishuizen & Meyer, 2003). For this study plant species data were obtained for the grid square 2530AA. .. The Recently uploaded web based Botanical Database of Southern Africa (BODATSA), which contains records from the National Herbarium in Pretoria (PRE), the Compton Herbarium in Cape Town and the KwaZulu-Natal Herbarium in Durban (NH). .. CI plant species records in the study region, supplied by POSA (2012 data), SANBI’s online Threatened Species Programme (TSP) and a list per farm for the QDS 2530AA was also supplied by the Mpumalanga
Recommended publications
  • Poaceae Phytoliths from the Niassa Rift, Mozambique
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/222149229 Poaceae phytoliths from the Niassa Rift, Mozambique Article in Journal of Archaeological Science · August 2010 DOI: 10.1016/j.jas.2010.03.001 CITATIONS READS 44 409 9 authors, including: Fernando Astudillo Mary Barkworth Universidad San Francisco de Quito (USFQ) Utah State University 4 PUBLICATIONS 45 CITATIONS 81 PUBLICATIONS 902 CITATIONS SEE PROFILE SEE PROFILE Tim Aaron Bennett Chris Esselmont 8 PUBLICATIONS 242 CITATIONS The University of Calgary 6 PUBLICATIONS 161 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Stipeae (no longer a major focus) View project Grasses in North America View project All content following this page was uploaded by Rahab N Kinyanjui on 19 March 2018. The user has requested enhancement of the downloaded file. Journal of Archaeological Science 37 (2010) 1953e1967 Contents lists available at ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas Poaceae phytoliths from the Niassa Rift, Mozambique Julio Mercader a,*, Fernando Astudillo a, Mary Barkworth b, Tim Bennett a, Chris Esselmont c, Rahab Kinyanjui d, Dyan Laskin Grossman a, Steven Simpson a, Dale Walde a a Department of Archaeology, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada b Intermountain Herbarium, Utah State University, 5305 Old Main Hill, Logan, UH 84322-5305, USA c Environics Research Group, 999 8th Street S.W., Calgary, Alberta T2R 1J5, Canada d National Museum of Kenya, Department of Earth Sciences, Palynology and Paleobotany Section, P.O.
    [Show full text]
  • Phytosociological Surveys and Monitoring of the Bromatological
    European Journal of Nutrition & Food Safety 13(3): 54-61, 2021; Article no.EJNFS.68728 ISSN: 2347-5641 Phytosociological Surveys and Monitoring of the Bromatological Parameters According to the Age of Regrowth of Savannah Pastures Perfectly Reconstituted in the Central Zone of Côte d'Ivoire Gouagoua Séverin Kouadja1, Adam Camille Kouamé1*, Kouakou Eugène Kouadio1, Brou Jean Kouao1 and N’Gouan Cyrille Kouassi1 1Program of Animal Production, National Centre for Agricultural Research (CNRA), Bouaké Regional Office, P.O. box 633 Bouaké 01, Bouaké, Côte d’Ivoire. Authors’ contributions This work was carried out in collaboration among all authors. Author GSK is the principal investigator of this research. Author GSK was responsible for the collection of samples and contributed to the chemical analyses. Author Adam Camille KOUAMÉ contributed to the analyses and writing of the Manuscript. Author NCK participated in the design of the study. Author BJK was responsible for the formulation of the research question and reviewed the manuscript. Author KE reviewed the manuscript. All authors read and approved the final manuscript. Article Information DOI: 10.9734/EJNFS/2021/v13i330390 Editor(s): (1) Dr. Kristina Mastanjevic, University of Osijek, Croatia. Reviewers: (1) Alsaied Alnaimy Habeeb, Nuclear Research Center, Egypt. (2) basem soudy, Cairo University, Egypt. Complete Peer review History: http://www.sdiarticle4.com/review-history/68728 Received 25 March 2021 Original Research Article Accepted 31 May 2021 Published 08 June 2021 ABSTRACT Although pastures in central (Affouvansou) Côte d'Ivoire are abundant, signs of undernutrition are observed in the animals towards the end of wintering, possibly due to insufficient quality pastures, poor grass quality, or poor herd distribution.
    [Show full text]
  • Floristic Analyses
    CHAPTER 11 FLORISTIC ANALYSES Abstract Eighty plant species of the Sekhukhuneland Centre of Plant Endemism were assessed according to the 2000 IUCN categories of threat. Twenty-six of these taxa met the criteria. This analysis together with the level of endemism supports the listing of the region as an important Centre of Plant Endemism that contains a high diversity of plants requiring conservation attention. A first diviSion of the Centre into sub-centres is presented to aid future conservation actions. Endemic plant species are listed, as well as the near-endemic and disjunct taxa that are shared between the Centre and other centres or floristic regions. Major threats to the floristic diversity of Sekhukhuneland are considered and a probable conservation solution is presented. Approximately 2 000 of the plant taxa occurring in the 4 000 km2 of the Sekhukhuneland Centre of Plant Endemism are listed. Taxa in the checklist are arranged alphabetically by family, with the genera and species listed alphabetically within the families. 11.1 Introduction Locating the world's 'hotspots' of biodiversity has long been advocated as one of the primary tactics in conservation (Wilson 1992). South Africa has a rich vascular plant flora and harbours prominent foci of plant diversity and endemism (Cowling & Hilton-Taylor 1994; Van Wyk & Van Wyk 1997), several of which are recognised internationally (Davis et at. 1994; Myers et al. 2000). What still remains to be done, is to identify smaller, lesser known 'hotspots', some of which are often located within already depleted floristic regions, and to investigate the rare and endemic species they contain.
    [Show full text]
  • Patterns of Plant Diversity and Endemism in Namibia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stellenbosch University SUNScholar Repository Bothalia 36,2: 175-189(2006) Patterns of plant diversity and endemism in Namibia P. CRAVEN* and P VORSTER** Keywords: Namibia, phytogeography, plant endemism ABSTRACT Species richness, endemism and areas that are rich in both species and endemic species were assessed and mapped for Namibia. High species diversity corresponds with zones where species overlap. These are particularly obvious where there are altitudinal variations and in high-lying areas. The endemic flora o f Namibia is rich and diverse. An estimated 16% of the total plant species in Namibia are endemic to the country. Endemics are in a wide variety o f families and sixteen genera are endemic. Factors that increase the likelihood o f endemism are mountains, hot deserts, diversity o f substrates and microclimates. The distribution of plants endemic to Namibia was arranged in three different ways. Firstly, based on a grid count with the phytogeographic value of the species being equal, overall endemism was mapped. Secondly, range restricted plant species were mapped individually and those with congruent distribution patterns were combined. Thirdly, localities that are important for very range-restricted species were identified. The resulting maps of endemism and diversity were compared and found to correspond in many localities. When overall endemism is compared with overall diversity, rich localities may consist o f endemic species with wide ranges. The other methods identify important localities with their own distinctive complement of species. INTRODUCTION (1994). It was based on distributional data per magiste­ rial district following Merxmiiller (1966-1972), as well Species diversity was traditionally measured by count­ as other literature.
    [Show full text]
  • Lesotho Fourth National Report on Implementation of Convention on Biological Diversity
    Lesotho Fourth National Report On Implementation of Convention on Biological Diversity December 2009 LIST OF ABBREVIATIONS AND ACRONYMS ADB African Development Bank CBD Convention on Biological Diversity CCF Community Conservation Forum CITES Convention on International Trade in Endangered Species CMBSL Conserving Mountain Biodiversity in Southern Lesotho COP Conference of Parties CPA Cattle Post Areas DANCED Danish Cooperation for Environment and Development DDT Di-nitro Di-phenyl Trichloroethane EA Environmental Assessment EIA Environmental Impact Assessment EMP Environmental Management Plan ERMA Environmental Resources Management Area EMPR Environmental Management for Poverty Reduction EPAP Environmental Policy and Action Plan EU Environmental Unit (s) GA Grazing Associations GCM Global Circulation Model GEF Global Environment Facility GMO Genetically Modified Organism (s) HIV/AIDS Human Immuno Virus/Acquired Immuno-Deficiency Syndrome HNRRIEP Highlands Natural Resources and Rural Income Enhancement Project IGP Income Generation Project (s) IUCN International Union for Conservation of Nature and Natural Resources LHDA Lesotho Highlands Development Authority LMO Living Modified Organism (s) Masl Meters above sea level MDTP Maloti-Drakensberg Transfrontier Conservation and Development Project MEAs Multi-lateral Environmental Agreements MOU Memorandum Of Understanding MRA Managed Resource Area NAP National Action Plan NBF National Biosafety Framework NBSAP National Biodiversity Strategy and Action Plan NEAP National Environmental Action
    [Show full text]
  • First Report of Albifimbria Verrucaria and Deconica Coprophila (Syn: Psylocybe Coprophila) from Field Soil in Korea
    The Korean Journal of Mycology www.kjmycology.or.kr RESEARCH ARTICLE First Report of Albifimbria verrucaria and Deconica coprophila (Syn: Psylocybe coprophila) from Field Soil in Korea 1 1 1 1 1 Sun Kumar Gurung , Mahesh Adhikari , Sang Woo Kim , Hyun Goo Lee , Ju Han Jun 1 2 1,* Byeong Heon Gwon , Hyang Burm Lee , and Youn Su Lee 1 Division of Biological Resource Sciences, Kangwon National University, Chuncheon 24341, Korea 2 Divison of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea *Corresponding author: [email protected] ABSTRACT During a survey of fungal diversity in Korea, two fungal strains, KNU17-1 and KNU17-199, were isolated from paddy field soil in Yangpyeong and Sancheong, respectively, in Korea. These fungal isolates were analyzed based on their morphological characteristics and the molecular phylogenetic analysis of the internal transcribed spacer (ITS) rDNA sequences. On the basis of their morphology and phylogeny, KNU17-1 and KNU17-199 isolates were identified as Albifimbria verrucaria and Deconica coprophila, respectively. To the best of our knowledge, A. verrucaria and D. coprophila have not yet been reported in Korea. Thus, this is the first report of these species in Korea. Keywords: Albifimbria verrucaria, Deconica coprophila, Morphology OPEN ACCESS INTRODUCTION pISSN : 0253-651X The genus Albifimbria L. Lombard & Crous 2016 belongs to the family Stachybotryaceae of Ascomycotic eISSN : 2383-5249 fungi. These fungi are characterized by verrucose setae and conidia bearing a funnel-shaped mucoidal Kor. J. Mycol. 2019 September, 47(3): 209-18 https://doi.org/10.4489/KJM.20190025 appendage [1].
    [Show full text]
  • Aloe Ferox 117 Table 9: Phytochemical Constituents of Different Extracts of Aloe CIM- Sheetal Leaves 119
    International Journal of Scientific & Engineering Research ISSN 2229-5518 1 Morphological, in vitro, Biochemical and Genetic Diversity Studies in Aloe species THESIS SUBMITTED TO OSMANIA UNIVERSITY FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN GENETICS IJSER By B. CHANDRA SEKHAR SINGH DEPARTMENT OF GENETICS OSMANIA UNIVERSITY HYDERABAD - 500007, INDIA JULY, 2015 IJSER © 2018 http://www.ijser.org International Journal of Scientific & Engineering Research ISSN 2229-5518 2 DECLARATION The investigation incorporated in the thesis entitled “Morphological, in vitro, Biochemical and Genetic Diversity Studies in Aloe species’’ was carried out by me at the Department of Genetics, Osmania University, Hyderabad, India under the supervision of Prof. Anupalli Roja Rani, Osmania University, Hyderabad, India. I hereby declare that the work is original and no part of the thesis has been submitted for the award of any other degree or diploma prior to this date. IJSER Date: (Bhaludra Chandra Sekhar Singh) IJSER © 2018 http://www.ijser.org International Journal of Scientific & Engineering Research ISSN 2229-5518 3 DEDICATION I dedicateIJSER this work to my beloved and beautiful wife B. Ananda Sekhar IJSER © 2018 http://www.ijser.org International Journal of Scientific & Engineering Research ISSN 2229-5518 4 Acknowledgements This dissertation is an outcome of direct and indirect contribution of many people, which supplemented my own humble efforts. I like this opportunity to mention specifically some of them and extend my gratefulness to other well wisher, known and unknown. I feel extremely privileged to express my veneration for my superviosor Dr. Anupalli Roja Rani, Professor and Head, Department of Genetics, Osmania University, Hyderabad. Her whole- hearted co-operation, inspiration and encouragement rendered throughout made this in carrying out the research and writing of this thesis possible.
    [Show full text]
  • Los Hongos Agaricales De Las Áreas De Encino Del Estado De Baja California, México Nahara Ayala-Sánchez Universidad Autónoma De Baja California
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Estudios en Biodiversidad Parasitology, Harold W. Manter Laboratory of 2015 Los hongos Agaricales de las áreas de encino del estado de Baja California, México Nahara Ayala-Sánchez Universidad Autónoma de Baja California Irma E. Soria-Mercado Universidad Autónoma de Baja California Leticia Romero-Bautista Universidad Autónoma del Estado de Hidalgo Maritza López-Herrera Universidad Autónoma del Estado de Hidalgo Roxana Rico-Mora Universidad Autónoma de Baja California See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/biodiversidad Part of the Biodiversity Commons, Botany Commons, and the Terrestrial and Aquatic Ecology Commons Ayala-Sánchez, Nahara; Soria-Mercado, Irma E.; Romero-Bautista, Leticia; López-Herrera, Maritza; Rico-Mora, Roxana; and Portillo- López, Amelia, "Los hongos Agaricales de las áreas de encino del estado de Baja California, México" (2015). Estudios en Biodiversidad. 19. http://digitalcommons.unl.edu/biodiversidad/19 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Estudios en Biodiversidad by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Nahara Ayala-Sánchez, Irma E. Soria-Mercado, Leticia Romero-Bautista, Maritza López-Herrera, Roxana Rico-Mora, and Amelia Portillo-López This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/biodiversidad/19 Los hongos Agaricales de las áreas de encino del estado de Baja California, México Nahara Ayala-Sánchez, Irma E. Soria-Mercado, Leticia Romero-Bautista, Maritza López-Herrera, Roxana Rico-Mora, y Amelia Portillo-López Resumen Se realizó una recopilación de las especies de hongos del orden Agaricales (regionalmente conocido como “agaricoides”) de los bosques Quercus spp.
    [Show full text]
  • Dicoma Anomala Sond.: a Review of Its Botany, Ethnomedicine, Phytochemistry and Pharmacology
    Online - 2455-3891 Vol 11, Issue 6, 2018 Print - 0974-2441 Review Article DICOMA ANOMALA SOND.: A REVIEW OF ITS BOTANY, ETHNOMEDICINE, PHYTOCHEMISTRY AND PHARMACOLOGY ALFRED MAROYI* Department of Botany, Medicinal Plants and Economic Development Research Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa. Email: [email protected] Received: 28 February 2018, Revised and Accepted: 20 March 2018 ABSTRACT Dicoma anomala is used as herbal medicine to treat and manage fever, coughs, colds, sore throats, abdominal pain, diarrhea, dysentery, constipation, intestinal worms, and sexually transmitted infections in tropical Africa. The aim of this study was to summarize the research that has been done on the ethnomedicinal uses, phytochemistry, and pharmacological properties of D. anomala in tropical Africa. The literature search for information on ethnomedicinal uses and pharmacological activities of D. anomala was undertaken using databases such as Web of Science, Scopus, Google Scholar, Science Direct, BioMed Central, PubMed, and Springer link. Other relevant literature sources included books, book chapters, websites, theses, conference papers, and other scientific publications. This study showed that D. anomala is used as herbal medicine in 57.1% of the countries in tropical Africa where it is indigenous. The species is used to treat 66 and five human and animal diseases, respectively. Several classes of secondary metabolites including acetylenic compounds, diterpene, flavonoids, phenols, phytosterols, saponins, sesquiterpenes, tannins and triterpenes have been isolated from D. anomala. Different aqueous and organic extracts of D. anomala exhibited anthelmintic, anticancer, antihyperglycemic, anti-inflammatory, antimicrobial, antioxidant, antiplasmodial, and hepatoprotective activities. The documented information on the botany, ethnomedicinal uses, phytochemistry, and pharmacological properties of D.
    [Show full text]
  • App-F3-Ecology.Pdf
    June 2016 ZITHOLELE CONSULTING (PTY) LTD Terrestrial Ecosystems Assessment for the proposed Kendal 30 Year Ash Dump Project for Eskom Holdings (Revision 1) Submitted to: Zitholele Consulting Pty (Ltd) Report Number: 13615277-12416-2 (Rev1) Distribution: REPORT 1 x electronic copy Zitholele Consulting (Pty) Ltd 1 x electronic copy e-Library 1 x electronic copy project folder TERRESTRIAL ECOSYSTEMS ASSESSMENT - ESKOM HOLDINGS Table of Contents 1.0 INTRODUCTION ................................................................................................................................................. 1 1.1 Site Location ........................................................................................................................................... 1 2.0 PART A OBJECTIVES ........................................................................................................................................ 2 3.0 METHODOLOGY ................................................................................................................................................ 2 4.0 ECOLOGICAL BASELINE CONDITIONS ............................................................................................................ 2 4.1 General Biophysical Environment ............................................................................................................ 2 4.1.1 Grassland biome................................................................................................................................ 3 4.1.2 Eastern Highveld
    [Show full text]
  • (Asteraceae): a Relict Genus of Cichorieae?
    Anales del Jardín Botánico de Madrid Vol. 65(2): 367-381 julio-diciembre 2008 ISSN: 0211-1322 Warionia (Asteraceae): a relict genus of Cichorieae? by Liliana Katinas1, María Cristina Tellería2, Alfonso Susanna3 & Santiago Ortiz4 1 División Plantas Vasculares, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina. [email protected] 2 Laboratorio de Sistemática y Biología Evolutiva, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina. [email protected] 3 Instituto Botánico de Barcelona, Pg. del Migdia s.n., 08038 Barcelona, Spain. [email protected] 4 Laboratorio de Botánica, Facultade de Farmacia, Universidade de Santiago, 15782 Santiago de Compostela, Spain. [email protected] Abstract Resumen Katinas, L., Tellería, M.C., Susanna, A. & Ortiz, S. 2008. Warionia Katinas, L., Tellería, M.C., Susanna, A. & Ortiz, S. 2008. Warionia (Asteraceae): a relict genus of Cichorieae? Anales Jard. Bot. Ma- (Asteraceae): un género relicto de Cichorieae? Anales Jard. Bot. drid 65(2): 367-381. Madrid 65(2): 367-381 (en inglés). The genus Warionia, with its only species W. saharae, is endemic to El género Warionia, y su única especie, W. saharae, es endémico the northwestern edge of the African Sahara desert. This is a some- del noroeste del desierto africano del Sahara. Es una planta seme- what thistle-like aromatic plant, with white latex, and fleshy, pin- jante a un cardo, aromática, con látex blanco y hojas carnosas, nately-partite leaves. Warionia is in many respects so different from pinnatipartidas. Warionia es tan diferente de otros géneros de any other genus of Asteraceae, that it has been tentatively placed Asteraceae que fue ubicada en las tribus Cardueae, Cichorieae, in the tribes Cardueae, Cichorieae, Gundelieae, and Mutisieae.
    [Show full text]
  • Herbaceous Plant Species Diversity in Communal Agro-Pastoral And
    Tropical Grasslands-Forrajes Tropicales (2019) Vol. 7(5):502–518 502 DOI: 10.17138/TGFT(7)502-518 Research Paper Herbaceous plant species diversity in communal agro-pastoral and conservation areas in western Serengeti, Tanzania Diversidad de especies herbáceas en áreas de uso agropastoril comunal y protegidas en Serengeti occidental, Tanzania PIUS YORAM KAVANA1,2, ANTHONY Z. SANGEDA2, EPHRAIM J. MTENGETI2, CHRISTOPHER MAHONGE3, JOHN BUKOMBE1, ROBERT FYUMAGWA1 AND STEPHEN NINDI4 1Tanzania Wildlife Research Institute, Arusha, Tanzania. www.tawiri.or.tz 2Department of Animal, Aquaculture and Range Sciences, College of Agriculture, Sokoine University of Agriculture, Morogoro, Tanzania. coa.sua.ac.tz/aanimal 3Department of Policy Planning and Management, College of Social Sciences and Humanities, Sokoine University of Agriculture, Morogoro, Tanzania. cssh.sua.ac.tz 4National Land Use Planning Commission of Tanzania, Dar-es-Salaam, Tanzania. www.nlupc.go.tz Abstract Agro-pastoralism involves the growing of crops and keeping of livestock as a livelihood strategy practiced by communities in rural areas in Africa and is highly dependent on environmental factors including rainfall, soil and vegetation. Agro- pastoral activities, e.g. livestock grazing and land clearing for crop cultivation, impact on environmental condition. This study evaluated the impacts of agro-pastoral activities on herbaceous plant species diversity and abundance in western Serengeti relative to conservation (protected) areas. A vegetation survey was conducted along the grazing gradients of ten 4 km transects from within village lands to protected areas. A total of 123 herbaceous species belonging to 20 families were identified. Higher herbaceous species diversity and richness were found in protected areas than in communal grazing lands.
    [Show full text]