Ectrodactyly of the Foot

Total Page:16

File Type:pdf, Size:1020Kb

Ectrodactyly of the Foot M C e o d n i t ca in l u ORTHOTICS & BIOMECHANICS Ed in u g c at io n Goals and Objectives At the completion of this article, the physician will be able to: Ectrodactyly 1) Define ectrodactyly of the foot. 2) List the various ectrodactyly as - sociated syndromes and characteris - of the Foot tics of each. 3) Discuss the common presenting clinical findings of ectrodactyly. Here’s an overview for the 4) Understand the basic human embryology and genetics associated evaluation and treatment of with the ectrodactyly defect. this condition. 5) Classify a pedal ectrodactyly de - formity based on roentgenographic findings 6) Develop a treatment plan for a patient with pedal ectrodactyly. Welcome to Podiatry Management ’s CME Instructional program. Our journal has been approved as a sponsor of Contin - uing Medical Education by the Council on Podiatric Medical Education. You may enroll: 1) on a per issue basis (at $20.00 per topic) or 2) per year, for the special introductory rate of $139 (you save $61). You may submit the answer sheet, along with the other information requested, via mail, fax, or phone. In the near future, you may be able to submit via the Internet. If you correctly answer seventy (70%) of the questions correctly, you will receive a certificate attesting to your earned cred - its. You will also receive a record of any incorrectly answered questions. If you score less than 70%, you can retake the test at no additional cost. A list of states currently honoring CPME approved credits is listed on pg. 170 . Other than those entities currently accepting CPME-approved credit, Podiatry Management cannot guarantee that these CME credits will be accept - able by any state licensing agency, hospital, managed care organization or other entity. PM will, however, use its best efforts to ensure the widest acceptance of this program possible. This instructional CME program is designed to supplement, NOT replace, existing CME seminars. The goal of this program is to advance the knowledge of practicing podiatrists. We will endeavor to publish high quality manuscripts by noted authors and researchers. If you have any questions or comments about this program, you can write or call us at: Podiatry Management, P.O. Box 490, East Islip, NY 11730, (631) 563-1604 or e-mail us at [email protected]. Following this article, an answer sheet and full set of instructions are provided (p. 170 ).— Editor By Mark A Caselli, DPM claw deformity in 1829, and Cruveil - EEC was first described by Eckholdt hier first used the term “lobster-claw” and Martins in 1804. The clinical ctrodactyly, by strict definition, in 1842. Pedal ectrodactyly may exist manifestations of ectodermal dyspla - is the congenital absence of all or as a unilateral or bilateral deformity sia include cutaneous alterations (dry, Eany part of a digit. The term ec - in many combinations with other de - thin, hyperkeratotic skin), trichodys - trodactyly originates from the Greek formities (Figure 2). It may be present plasia (thin, sparse hair with little pig - ektroma (abortion) and daktylos (fin - as an isolated deformity or simulta - mentation), onychodysplasia (brittle ger). The term is also applied to cleft neously with similar defects in the and dysplastic nails), dental anomalies foot, lobster foot, and crab-claw foot. In hand. It most frequently presents as (small or absent teeth with excessive ectrodactyly, one or more toes and part of a defect syndrome, including caries), and dyshidrosis (sweating dys - parts of their metatarsals are usually ab - defects of the eye, palate, audition, function). The cleft lip may or may sent. The first and fifth rays are usually and abnormalities of the kidneys. not be accompanied by a cleft palate. present (Figure 1). If a metatarsal is par - Defects in other locations may also tially or completely absent, its respec - Associated Syndromes be associated with the classical EEC tive toe is always absent. The incidence Several syndromes have been asso - triad, such as the eyes, including defects of cleft foot is 1:90,000 live births. Ec - ciated with ectrodactyly. One of the in the nasolacrimal duct, entropion, trodactyly was first documented in most common is the EEC syndrome telecanthus, trichiasis, absent lashes,and 1770 among a tribe of Guiana Indians. consisting of ectodermal dysplasia, ec - meibomian gland disfunction, manifest - Von Walther described the crab- trodactyly, and cleft lip and palate. Continued on page 166 www.podiatrym.com JANUARY 2009 • PODIATRY MANAGEMENT 165 n g o in ti u a n c ti u Ectrodactyly... n d o E C al ic ing as blephoritis, corneal scar - d e ring, recurrent erosions, ble - M pharospasm, dry eye, and photophobia. Genitourinary system defects include hypospadias, hydronephrosis, renal age - nesis, and renal duplicity. Both deafness and mental retardation are also associat - ed with EEC syndrome. The clinical ex - pression of the defects associated with EEC is very diverse, ectodermal dysplasia Figure 2: Patient exhibiting ectrodactyly occurring 100%, lachrymal duct alter - deformity of the right foot and multiple ations 70-96.5%, ectrodactyly 78-88%, Figure 1: A classic presentation of pedal syndactilizations of the left foot. ectrodactyly. cleft lip/palate 58-88%, urinary alter - ations 15-55%, deafness 8-28%, and lidimide syndrome and Nager acrofa - mental retardation 1-16%. The inci - cial dysostosis; the fourth digit in con - dence of EEC is 1:190,000 live births. genital hypothalamic hamartoblas - toma polydactyly syndrome. Tripha - Other Syndromes langeal thumbs have been associated Other syndromes associated with ec - with ectrodactyly in a rare autosomal trodactyly include Carpenter’s syn - dominant syndrome. The combina - drome (acrocephalopolysyndactyly type tion of polydactyly and oligodactyly II), DeLange syndrome (multiple con - has been observed with both genetic genital anomaly/mental retardation and teratogen induced malformations (MCA/MR) disorder), Goltz syndrome in experimental animals. Figure 4: Postsurgical correction of ec - trodactyly. Presurgically, the corrected (focal dermal hypoplasia (FDH) disor - In Thalidomide embryopathy, the foot was too wide to fit into shoes. der), Jarcho Levine syndrome (spondy - polydactyly always occurs on the lothoracic dysplasia (STD) and spondy - hands with a reductional abnormality The anomaly was also seen in the locostal dysostosis (SCD) disorder), and involving the feet. Autosomal reces - Talaunda tribe from eastern Zimbabwe Miller syndrome (post-axial acrofacial sive syndromes involving ectrodacty - and Botswana. The Talaunda migrated dysostosis). Raas-Rothschild, et al. de - ly have been described in a closed is - from eastern Zimbabwe and may have scribed a syndrome of ectrodactyly, land population in Japan and in Mid - been of the same origins as the Wado - short stature, mental retardation, sen - dle Eastern cultures where marriage ma. In 1979, a magazine reported a sorineural deafness and abnormal faces. between first cousins is encouraged. group of at least 100 “ostrich footed” Limb-reducing defects that can be men. Recent studies have found three associated with ectrodactyly include Embryology and Genetics families of affected individuals among aplasia and hypoplasia of the tibia or these tribes and concluded that the pre - fibula (i.e., Volkmann syndrome). This Ectrodactyly in Africa vious tales of hundreds of ostrich-footed distal extremity reduction may occur In 1770, Jan Jacob Hartnick, a direc - persons belong in the realm of fantasy. concurrently with normal formation of tor of the Dutch East India Company, the proximal limb segment. Ectrodacty - made a reference to a touvinga or two- Embryology ly has also been found in patients with fingered tribe from Dutch Guyana in Human limbs develop from interac - aplasia cutis congenital and epidermol - South America. They were slaves who tions between limb ectoderm and ysis bullosa. Pedal ectrodactyly, without exhibited ectrodactyly, brought over mesoderm. An important embryonic similar upper extremity deficits, occurs from Central Africa. In the 1960’s, news - somite-somatopleural relationship pre - in 10% to 50% of cases of trisomy.(18) papers published interviews with unim - cedes the emergence of the limb bud Syndromes involving both poly - peachable witnesses who saw the phe - during the fourth week of gestation. dactyly and ectrodactyly have been nomenon in Africa. Gelfland, et al., in The lower limb buds develop as lateral described with the same digit usually 1974 investigated a Wadoma tribesman thickenings of the somatopleure. At the involved (absence or duplication); the from the Zambezi valley of Zimbabwe. fifth week, vertebrate limb buds develop thumb in Fanconi anemia, Tha - He was diagnosed as having “lobster a thickened epithelium at their distal claw” defor - tips. This apical ectodermal ridge (AER) mity of both functions as a principle inducer of axial feet. Two of limb elongation. The AER is required for his cousins progressive specification of mesodermal were affect - limb parts and promotion of axial ed and the growth through influencing cell divi - condition sion. The ridge also protects subridge was thought mesodermal cells from necrosis during to be auto - the active period of limb development. somal domi - The deep midline cleft, character - Figure 3: Blauth and Borisch radiological classification of pedal ectrodactyly. nant. Continued on page 167 166 PODIATRY MANAGEMENT • JANUARY 2009 www.podiatrym.com M C e o d n i t excess of afflicted male offspring metatarsals (Figure 3). ca in Ectrodactyly... l u Ed in through paternal transmission. In one Grade I: Five completely u g c istic of ectrodactyly, is caused by the study, a Pakistani kindred comprising normal metatarsals. Total or par - at io absence of one or more rays and toes. seven generations and 36 members with tial aplasia of toes 2 to 5, but usual - n The cleft formation begins at the 2nd the split-hand/split-foot anomaly, the ly with the involvement of toes 2 and or 3rd ray and proceeds from the dis - full expression of the trait, monodacty - 3.
Recommended publications
  • Frontosphenoidal Synostosis: a Rare Cause of Unilateral Anterior Plagiocephaly
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Childs Nerv Syst (2007) 23:1431–1438 DOI 10.1007/s00381-007-0469-4 ORIGINAL PAPER Frontosphenoidal synostosis: a rare cause of unilateral anterior plagiocephaly Sandrine de Ribaupierre & Alain Czorny & Brigitte Pittet & Bertrand Jacques & Benedict Rilliet Received: 30 March 2007 /Published online: 22 September 2007 # Springer-Verlag 2007 Abstract Conclusion Frontosphenoidal synostosis must be searched Introduction When a child walks in the clinic with a in the absence of a coronal synostosis in a child with unilateral frontal flattening, it is usually associated in our anterior unilateral plagiocephaly, and treated surgically. minds with unilateral coronal synostosis. While the latter might be the most common cause of anterior plagiocephaly, Keywords Craniosynostosis . Pediatric neurosurgery. it is not the only one. A patent coronal suture will force us Anterior plagiocephaly to consider other etiologies, such as deformational plagio- cephaly, or synostosis of another suture. To understand the mechanisms underlying this malformation, the development Introduction and growth of the skull base must be considered. Materials and methods There have been few reports in the Harmonious cranial growth is dependent on patent sutures, literature of isolated frontosphenoidal suture fusion, and and any craniosynostosis might lead to an asymmetrical we would like to report a series of five cases, as the shape of the skull. The anterior skull base is formed of recognition of this entity is important for its treatment. different bones, connected by sutures, fusing at different ages. The frontosphenoidal suture extends from the end of Presented at the Consensus Conference on Pediatric Neurosurgery, the frontoparietal suture, anteriorly and inferiorly in the Rome, 1–2 December 2006.
    [Show full text]
  • Birth Defects Surveillance Training Facilitator's Guide
    BIRTH DEFECTS SURVEILLANCE TRAINING FACILITATOR’S GUIDE Birth defects surveillance training: facilitator’s guide i WHO I CDC I ICBDSR WHO I CDC I ICBDSR ii Birth defects surveillance training: facilitator’s guide BIRTH DEFECTS SURVEILLANCE TRAINING FACILITATOR’S GUIDE Birth defects surveillance training: facilitator’s guide i WHO I CDC I ICBDSR WHO Library Cataloguing-in-Publication Data Birth defects surveillance training: facilitator’s guide 1.Congenital Abnormalities – prevention and control. 2.Neural Tube Defects. 3.Public Health Surveillance. 4.Teaching Materials. I.World Health Organization. II.Centers for Disease Control and Prevention (U.S.). III.International Clearinghouse for Birth Defects Surveillance and Research. ISBN 978 92 4 154928 8 (NLM classification: QS 675) © World Health Organization 2015 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for non-commercial distribution – should be addressed to WHO Press through the WHO website (www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.
    [Show full text]
  • Genetics of Congenital Hand Anomalies
    G. C. Schwabe1 S. Mundlos2 Genetics of Congenital Hand Anomalies Die Genetik angeborener Handfehlbildungen Original Article Abstract Zusammenfassung Congenital limb malformations exhibit a wide spectrum of phe- Angeborene Handfehlbildungen sind durch ein breites Spektrum notypic manifestations and may occur as an isolated malforma- an phänotypischen Manifestationen gekennzeichnet. Sie treten tion and as part of a syndrome. They are individually rare, but als isolierte Malformation oder als Teil verschiedener Syndrome due to their overall frequency and severity they are of clinical auf. Die einzelnen Formen kongenitaler Handfehlbildungen sind relevance. In recent years, increasing knowledge of the molecu- selten, besitzen aber aufgrund ihrer Häufigkeit insgesamt und lar basis of embryonic development has significantly enhanced der hohen Belastung für Betroffene erhebliche klinische Rele- our understanding of congenital limb malformations. In addi- vanz. Die fortschreitende Erkenntnis über die molekularen Me- tion, genetic studies have revealed the molecular basis of an in- chanismen der Embryonalentwicklung haben in den letzten Jah- creasing number of conditions with primary or secondary limb ren wesentlich dazu beigetragen, die genetischen Ursachen kon- involvement. The molecular findings have led to a regrouping of genitaler Malformationen besser zu verstehen. Der hohe Grad an malformations in genetic terms. However, the establishment of phänotypischer Variabilität kongenitaler Handfehlbildungen er- precise genotype-phenotype correlations for limb malforma- schwert jedoch eine Etablierung präziser Genotyp-Phänotyp- tions is difficult due to the high degree of phenotypic variability. Korrelationen. In diesem Übersichtsartikel präsentieren wir das We present an overview of congenital limb malformations based Spektrum kongenitaler Malformationen, basierend auf einer ent- 85 on an anatomic and genetic concept reflecting recent molecular wicklungsbiologischen, anatomischen und genetischen Klassifi- and developmental insights.
    [Show full text]
  • Syndromic Ear Anomalies and Renal Ultrasounds
    Syndromic Ear Anomalies and Renal Ultrasounds Raymond Y. Wang, MD*; Dawn L. Earl, RN, CPNP‡; Robert O. Ruder, MD§; and John M. Graham, Jr, MD, ScD‡ ABSTRACT. Objective. Although many pediatricians cific MCA syndromes that have high incidences of renal pursue renal ultrasonography when patients are noted to anomalies. These include CHARGE association, Townes- have external ear malformations, there is much confusion Brocks syndrome, branchio-oto-renal syndrome, Nager over which specific ear malformations do and do not syndrome, Miller syndrome, and diabetic embryopathy. require imaging. The objective of this study was to de- Patients with auricular anomalies should be assessed lineate characteristics of a child with external ear malfor- carefully for accompanying dysmorphic features, includ- mations that suggest a greater risk of renal anomalies. We ing facial asymmetry; colobomas of the lid, iris, and highlight several multiple congenital anomaly (MCA) retina; choanal atresia; jaw hypoplasia; branchial cysts or syndromes that should be considered in a patient who sinuses; cardiac murmurs; distal limb anomalies; and has both ear and renal anomalies. imperforate or anteriorly placed anus. If any of these Methods. Charts of patients who had ear anomalies features are present, then a renal ultrasound is useful not and were seen for clinical genetics evaluations between only in discovering renal anomalies but also in the diag- 1981 and 2000 at Cedars-Sinai Medical Center in Los nosis and management of MCA syndromes themselves. Angeles and Dartmouth-Hitchcock Medical Center in A renal ultrasound should be performed in patients with New Hampshire were reviewed retrospectively. Only pa- isolated preauricular pits, cup ears, or any other ear tients who underwent renal ultrasound were included in anomaly accompanied by 1 or more of the following: the chart review.
    [Show full text]
  • Osteodystrophy-Like Syndrome Localized to 2Q37
    Am. J. Hum. Genet. 56:400-407, 1995 Brachydactyly and Mental Retardation: An Albright Hereditary Osteodystrophy-like Syndrome Localized to 2q37 L. C. Wilson,"7 K. Leverton,3 M. E. M. Oude Luttikhuis,' C. A. Oley,4 J. Flint,5 J. Wolstenholme,4 D. P. Duckett,2 M. A. Barrow,2 J. V. Leonard,6 A. P. Read,3 and R. C. Trembath' 'Departments of Genetics and Medicine, University of Leicester, and 2Leicestershire Genetics Centre, Leicester Royal Infirmary, Leicester, 3Department of Medical Genetics, St Mary's Hospital, Manchester. 4Department of Human Genetics, University of Newcastle upon Tyne, Newcastle upon Tyne; 5MRC Molecular Haematology Unit, Institute of Molecular Medicine, Oxford; and 6Medical Unit and 7Mothercare Unit for Clinical Genetics and Fetal Medicine, Institute of Child Health, London Summary The physical feature brachymetaphalangia refers to shortening of either the metacarpals and phalanges of the We report five patients with a combination ofbrachymeta- hands or of the equivalent bones in the feet. The combina- phalangia and mental retardation, similar to that observed tion of brachymetaphalangia and mental retardation occurs in Albright hereditary osteodystrophy (AHO). Four pa- in Albright hereditary osteodystrophy (AHO) (Albright et tients had cytogenetically visible de novo deletions of chro- al. 1942), a dysmorphic syndrome that is also associated mosome 2q37. The fifth patient was cytogenetically nor- with cutaneous ossification (in si60% of cases [reviewed by mal and had normal bioactivity of the a subunit of Gs Fitch 1982]); round face; and short, stocky build. Affected (Gsa), the protein that is defective in AHO. In this patient, individuals with AHO may have either pseudohypopara- we have used a combination of highly polymorphic molec- thyroidism (PHP), with end organ resistance to parathyroid ular markers and FISH to demonstrate a microdeletion at hormone (PTH) and certain other cAMP-dependent hor- 2q37.
    [Show full text]
  • Macrocephaly Information Sheet 6-13-19
    Next Generation Sequencing Panel for Macrocephaly Clinical Features: Macrocephaly refers to an abnormally large head, OFC greater than 98th percentile, inclusive of the scalp, cranial bone and intracranial contents. Megalencephaly, brain weight/volume ratio greater than 98th percentile, results from true enlargement of the brain parenchyma [1]. Megalencephaly is typically accompanied by macrocephaly, however macrocephaly can occur in the absence of megalencephaly [2]. Both macrocephaly and megalencephaly can been seen as isolated clinical findings as well as clinical features of a mutli-systemic syndromic diagnosis. Our Macrocephaly Panel includes analysis of the 36 genes listed below. Macrocephaly Sequencing Panel ASXL2 GLI3 MTOR PPP2R5D TCF20 BRWD3 GPC3 NFIA PTEN TBC1D7 CHD4 HEPACAM NFIX RAB39B UPF3B CHD8 HERC1 NONO RIN2 ZBTB20 CUL4B KPTN NSD1 RNF125 DNMT3A MED12 OFD1 RNF135 EED MITF PIGA SEC23B EZH2 MLC1 PPP1CB SETD2 Gene Clinical Features Details ASXL2 Shashi-Pena Shashi et al. (2016) found that six patients with developmental delay, syndrome macrocephaly, and dysmorphic features were found to have de novo truncating variants in ASXL2 [3]. Distinguishing features were macrocephaly, absence of growth retardation, and variability in the degree of intellectual disabilities The phenotype also consisted of prominent eyes, arched eyebrows, hypertelorism, a glabellar nevus flammeus, neonatal feeding difficulties and hypotonia. BRWD3 X-linked intellectual Truncating mutations in the BRWD3 gene have been described in males with disability nonsyndromic intellectual disability and macrocephaly [4]. Other features include a prominent forehead and large cupped ears. CHD4 Sifrim-Hitz-Weiss Weiss et al., 2016, identified five individuals with de novo missense variants in the syndrome CHD4 gene with intellectual disabilities and distinctive facial dysmorphisms [5].
    [Show full text]
  • Orphanet Journal of Rare Diseases Biomed Central
    Orphanet Journal of Rare Diseases BioMed Central Review Open Access Brachydactyly Samia A Temtamy* and Mona S Aglan Address: Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre (NRC), El-Buhouth St., Dokki, 12311, Cairo, Egypt Email: Samia A Temtamy* - [email protected]; Mona S Aglan - [email protected] * Corresponding author Published: 13 June 2008 Received: 4 April 2008 Accepted: 13 June 2008 Orphanet Journal of Rare Diseases 2008, 3:15 doi:10.1186/1750-1172-3-15 This article is available from: http://www.ojrd.com/content/3/1/15 © 2008 Temtamy and Aglan; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Brachydactyly ("short digits") is a general term that refers to disproportionately short fingers and toes, and forms part of the group of limb malformations characterized by bone dysostosis. The various types of isolated brachydactyly are rare, except for types A3 and D. Brachydactyly can occur either as an isolated malformation or as a part of a complex malformation syndrome. To date, many different forms of brachydactyly have been identified. Some forms also result in short stature. In isolated brachydactyly, subtle changes elsewhere may be present. Brachydactyly may also be accompanied by other hand malformations, such as syndactyly, polydactyly, reduction defects, or symphalangism. For the majority of isolated brachydactylies and some syndromic forms of brachydactyly, the causative gene defect has been identified.
    [Show full text]
  • Appendix A: Organisation of a Craniofacial Unit
    Appendix A: Organisation of a Craniofacial Unit The requirements of patients with craniofacial abnormalities are very complex and demand a multidisciplinary approach. Many body systems are affected, and every detail of patient management has to be given due attention. Care begins at birth and continues until the patient and his family have been relieved of the burden of the anomaly. A team is needed, capable of delivering expert patient care, and representative of all the relevant disciplines. Data, in the form of histories, physical examinations, and special investigations, are needed in planning treatment, and such data should be used to the maximum scientific effect, to improve present methods of management, still far from satisfactory, and to expand knowledge of the biology of cranial growth and its disorders. Craniofacial Units Sporadic craniofacial procedures performed by a surgeon on an irregular basis invite disaster. Tessier (1971a) estimated that each craniofacial centre should serve a population of 10 to 20 million people, provided that the team performed only craniofacial surgery and treated at least 50 new cases annually. As a consequence of Tessier's example and teaching there are now centres of acknowledged excellence in Paris and Nancy, attracting patients not only from France but also from North Africa and elsewhere. In North America there are now important craniofacial centres in Philadelphia, New York, Boston, Toronto, and Mexico City. Munro (1975) proposed that North America should be divided into seven regions, six for the United States and one for Canada, each serving populations of 20 to 40 million people. He believed that such centres would allow a concentration of multidisciplinary skills and accumulation of experience in the treatment of craniofacial anomalies.
    [Show full text]
  • A Narrative Review of Poland's Syndrome
    Review Article A narrative review of Poland’s syndrome: theories of its genesis, evolution and its diagnosis and treatment Eman Awadh Abduladheem Hashim1,2^, Bin Huey Quek1,3,4^, Suresh Chandran1,3,4,5^ 1Department of Neonatology, KK Women’s and Children’s Hospital, Singapore, Singapore; 2Department of Neonatology, Salmanya Medical Complex, Manama, Kingdom of Bahrain; 3Department of Neonatology, Duke-NUS Medical School, Singapore, Singapore; 4Department of Neonatology, NUS Yong Loo Lin School of Medicine, Singapore, Singapore; 5Department of Neonatology, NTU Lee Kong Chian School of Medicine, Singapore, Singapore Contributions: (I) Conception and design: EAA Hashim, S Chandran; (II) Administrative support: S Chandran, BH Quek; (III) Provision of study materials: EAA Hashim, S Chandran; (IV) Collection and assembly: All authors; (V) Data analysis and interpretation: BH Quek, S Chandran; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: A/Prof. Suresh Chandran. Senior Consultant, Department of Neonatology, KK Women’s and Children’s Hospital, Singapore 229899, Singapore. Email: [email protected]. Abstract: Poland’s syndrome (PS) is a rare musculoskeletal congenital anomaly with a wide spectrum of presentations. It is typically characterized by hypoplasia or aplasia of pectoral muscles, mammary hypoplasia and variably associated ipsilateral limb anomalies. Limb defects can vary in severity, ranging from syndactyly to phocomelia. Most cases are sporadic but familial cases with intrafamilial variability have been reported. Several theories have been proposed regarding the genesis of PS. Vascular disruption theory, “the subclavian artery supply disruption sequence” (SASDS) remains the most accepted pathogenic mechanism. Clinical presentations can vary in severity from syndactyly to phocomelia in the limbs and in the thorax, rib defects to severe chest wall anomalies with impaired lung function.
    [Show full text]
  • Massachusetts Birth Defects 2002-2003
    Massachusetts Birth Defects 2002-2003 Massachusetts Birth Defects Monitoring Program Bureau of Family Health and Nutrition Massachusetts Department of Public Health January 2008 Massachusetts Birth Defects 2002-2003 Deval L. Patrick, Governor Timothy P. Murray, Lieutenant Governor JudyAnn Bigby, MD, Secretary, Executive Office of Health and Human Services John Auerbach, Commissioner, Massachusetts Department of Public Health Sally Fogerty, Director, Bureau of Family Health and Nutrition Marlene Anderka, Director, Massachusetts Center for Birth Defects Research and Prevention Linda Casey, Administrative Director, Massachusetts Center for Birth Defects Research and Prevention Cathleen Higgins, Birth Defects Surveillance Coordinator Massachusetts Department of Public Health 617-624-5510 January 2008 Acknowledgements This report was prepared by the staff of the Massachusetts Center for Birth Defects Research and Prevention (MCBDRP) including: Marlene Anderka, Linda Baptiste, Elizabeth Bingay, Joe Burgio, Linda Casey, Xiangmei Gu, Cathleen Higgins, Angela Lin, Rebecca Lovering, and Na Wang. Data in this report have been collected through the efforts of the field staff of the MCBDRP including: Roberta Aucoin, Dorothy Cichonski, Daniel Sexton, Marie-Noel Westgate and Susan Winship. We would like to acknowledge the following individuals for their time and commitment to supporting our efforts in improving the MCBDRP. Lewis Holmes, MD, Massachusetts General Hospital Carol Louik, ScD, Slone Epidemiology Center, Boston University Allen Mitchell,
    [Show full text]
  • TP63-Mutation As a Cause of Prenatal Lethal Multicystic Dysplastic Kidneys
    Western University Scholarship@Western Paediatrics Publications Paediatrics Department 11-1-2020 TP63-mutation as a cause of prenatal lethal multicystic dysplastic kidneys Isabel Friedmann Carla Campagnolo Nancy Chan Ghislain Hardy Maha Saleh Follow this and additional works at: https://ir.lib.uwo.ca/paedpub Part of the Pediatrics Commons Received: 28 April 2020 | Revised: 8 August 2020 | Accepted: 10 August 2020 DOI: 10.1002/mgg3.1486 CLINICAL REPORT TP63-mutation as a cause of prenatal lethal multicystic dysplastic kidneys Isabel Friedmann1 | Carla Campagnolo2 | Nancy Chan1,3 | Ghislain Hardy1,4 | Maha Saleh1,2 1Schulich School of Medicine and Dentistry, University of Western Ontario, Abstract London, ON, Canada Background: Ectrodactyly-ectodermal dysplasia-clefting syndrome 3 (EEC) is 2Division of Genetics and Metabolism, one of the six overlapping syndromes caused by mutations in the tumor protein p63 Department of Paediatrics, London Health gene (TP63). EEC is suspected when patients have cleft hands or feet, polydactyly, Sciences Centre, London, ON, Canada 3 and syndactyly, abnormal development of the ectodermally derived structures, and Department of Pathology, London Health Sciences Centre, London, ON, Canada orofacial clefting. Genitourinary (GU) anomalies have been identified in patients 4Department of Obstetrics and Gynecology, with EEC, yet these are often under-recognized and under-reported. The available London Health Sciences Centre, London, literature on sonographic prenatal findings is sparse, especially when considering ON, Canada GU anomalies. Correspondence Methods: We present the case of a male stillborn fetus, who was found antenatally to Isabel Friedmann, University of Western have multicystic dysplastic kidneys and anhydramnios. Following the termination of Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.
    [Show full text]
  • Classific-Ation and Identification of Inherited Brachydactylies
    Journal of Medical Genetics, 1979, 16, 36-44 Classific-ation and identification of inherited brachydactylies NAOMI FITCH From the Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada SUMMARY A search for patterns of malformation in the brachydactylies has resulted in new ways to identify the different types. Type A-I can be characterised by a proportionate reduction of the middle phalanges. Type B is thought to be an amputation-like defect. In type C the fourth middle phalanx is usually the longest, and type E (Riccardi and Holmes, 1974) is characterised by short metacarpals and short distal phalanges. Short stature is usually present in type A-1 and type E brachydactyly (Riccardi and Holmes, 1974) and it may be present in some individuals with brachydactyly C. As short children have short hands, it is possible that in patients with very mild expressions of brachydactyly the cause of the short stature may be overlooked. It is suggested that in every child with propor- tionate short stature the hands should be carefully examined. If the hands are disproportionately short, if any distal creases are missing, if there is a shortening, however mild, of any finger, if any metacarpals are short, then it is important to have x-rays to look for brachydactyly A-1, C, or E. Much information is still needed. It is important in future reports to have skeletal surveys, pattern profile analyses, and to note the height of children with brachydactyly C. Most interesting of all will be when fetal limbs of each type become available for study.
    [Show full text]