Comparison of 6-Thioguanine-Resistant Mutation and Sister Chromatid Exchanges in Chinese Hamster V79 Cells with Forty Chemical and Physical Agents

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of 6-Thioguanine-Resistant Mutation and Sister Chromatid Exchanges in Chinese Hamster V79 Cells with Forty Chemical and Physical Agents [CANCER RESEARCH 44, 3270-3279, August 1984] Comparison of 6-Thioguanine-resistant Mutation and Sister Chromatid Exchanges in Chinese Hamster V79 Cells with Forty Chemical and Physical Agents Yoshisuke Nishi,1 Makiko M. Hasegawa, Masako Taketomi, Yoshihiko Ohkawa, and Naomichi Inui Sectionof Cell Biology and Cytogenetics,Biological Research Center, TheJapan Tobacco and Salt Public Corporation,Hatano,Kanagawa257, Japan ABSTRACT and reliable indicator of genetic damage of the sort leading to mutation and cancer (1, 22, 33, 45). Exposure of cells to muta- The induction of sister chromatid exchanges (SCE) and mu gens and/or carcinogens can result in SCE, chromosome aber tation at the hypoxanthine-guanine phosphoribosyl transferase rations, mutations, transformation, and cell death. These cellular locus and toxicities of 40 different chemical and physical agents responses can be examined comparatively and more directly by were examined on Chinese hamster V79 cells. These agents use of suitable cell lines. included mono-, di-, tri-, and polyfunctional alkylating agents, With such cell lines, several studies have demonstrated good intercalators, 7-rays, and UV light irradiation. Mutation was mea correlations of SCE with mutations (6, 7, 39), transformation sured as resistance to 6-thioguanine and toxicity as loss of cell- (35), and cell death (29, 47). However, these and other results plating efficiency. SCE were examined 29 hr after treatment. (9, 19, 49) have also indicated that the quantitative relations With the agents examined, a highly positive correlation (r = varied with different types of agents. Available data are insuffi 0.89) exsisted between SCE-inducing and mutagenic potencies, cient to draw any general conclusions regarding the relation of when expressed as increase in the number per a unit dose over SCE to other biological end points. More studies are required to the control values. But the great difference of the ratios of confirm the validity of the SCE test as a reliable indicator of mutagenic potencies versus SCE-inducing potencies among mutagenesis and/or carcinogenesis of mammalian cells. It is also agents was observed, the maximal difference in the ratios being essential to elucidate to what extent SCE formation correlates about 200-fold. with other markers. Such studies should be helpful in under The agents that showed the higher values of the ratio (agents standing the mechanism of SCE formation which still remains producing more mutations than SCE) were bleomycin, cobalt-60 unknown. -y-rays, all ethylating agents (A/-ethyl-/v-nitrosourea, /V-ethyl-AT- V79 cells have properties that are useful in detecting muta nitro-W-nitrosoguanidine, ethyl methanesulfonate, and diethyl- genesis as well as SCE (2, 22); the cells grow rapidly with a sulfate), A/-propyl-A/-nitrosourea, A/-butyl-A/-nitrosourea, isopro- short lag, doubling in 12 to 16 hr, and they have a high cloning pyl methanesulfonate, intercalating acridine compounds (2- efficiency (75 to 85%) and a stable karyotype with a modal methoxy-6-chloro-9-[3-(ethyl-2-chloroethyl)aminopropylamino]- chromosome number of 21 with a narrow range of variation (46). acridine-2HCI and 2-methoxy-6-chloro-9-[3-(chloroethyl)-ami- In addition, these cells respond well to a wider spectrum of nopropylamino]acridine 2HCI) and UV light at 254 nm. The agents mutagens, as judged using the recessive marker for hypoxan that showed the lower values (agents producing more SCE than thine-guanine phosphoribosyl transferase locus, and codominant mutations) were platinum compounds (c/s-diamminedichloro- marker for the Na+-K+-activated ATPase locus (2), and also as platinum and frans-diamminedichloroplatinum), epoxides (epi- judged by assay of SCE (22). chlorohydrin, styrène oxide, and diepoxybutane) and aziri- On the basis of these considerations, we concomitantly ex dines (mitomycin C, decarbamoyl mitomycin C, tris(1-aziridi- amined the induction of SCE and mutation to 6-thioguanine nyljphosphine sulfide, triethylenemelamine, and carboquone). resistance in Chinese hamster V79 cells by a number of chemical The agents that showed the intermediate values included all and physical agents that interact in different ways with DMA, and methylating agents (A/-methyl-A/-nitrosourea, W-methyl-A/'-nitro- compared the results to see the relation between the 2 markers. W-nitrosoguanidine, methyl methanesulfonate, and dimethyl sul fate), A/-(2-hydroxyethyl)ethyleneimine, /3-propiolactone, treat MATERIALS AND METHODS ment of 8-methoxypsoralen plus near-UV light irradiation at 352 nm, 4-nitroquinoline-1-oxide, quinacrine mustard, sodium sór Cell Line and Culture Conditions. The Chinese hamster V79 cells used in this assay have an average cloning efficiency of more than 85% bate, cigarette tar, and diesel tar. and a doubling time of 14 to 15 hr in Eagle's minimum essential medium For most agents that induced SCE, the toxicity dependency (Nissui Seiyaku Co., Tokyo, Japan), plus 10% fetal bovine serum (Re- of induced SCE was rather biphasic; increase in SCE was steep hatuin F. S., Lots V55403 and V54902; Reheis Chemical Co., Phoenix, at low to moderate toxicity and less at moderate to high toxicity. AZ) and kanamycin (60 pg/m\; Meiji Seika Co., Tokyo, Japan), and At equitoxic doses, the agents showed great difference in induc neomycin (100 /ig/ml; Grand Island Biological Co., Grand Island, NY). tion of SCE. These cells have a stable average modal chromosome number of 21, being karyologically different from normal Chinese hamster cells. All INTRODUCTION Analysis of SCE2 formation has been proposed as a sensitive N-nitrosourea: NM, nitrogen mustard; HY-EI, N-(2-hydroxyethyl)ethyleneimine; MMC, mitomycin C; BLE, bleomycin; ICR 170, 2-methoxy-6-chtoro-9-[3-(ethyl-2- ReceivedFebruary 14,1984; accepted May 3,1984. chloroethyl)arninopropylamino]acridine-2HCI;ICR 191, 2-methoxy-6-chloro-9-[3- 1To whom requests for reprints should be addressed. (chtoroethyl)aminopropylamino]acridine.2HCI; DMP, 1,4-dinitrc-2-methylpyrrole; 2The abbreviations used are: SCE, sister chromatid exchange; QM, quinacrine DDP, diamminedichloroplatinum;PUVA, 8-methoxypsoralen plus near-UV light ir mustard; 4NQO, 4-ni1roquinoline-1-oxide;DMS, dimethyl sulfate; MNU, N-methyl- radiation at 352 nm; DCMMC, decarbamoyl mitomycin C. 3270 CANCER RESEARCH VOL 44 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 1984 American Association for Cancer Research. Comparison of 6-Thioguanine-resistant Mutation and SCE Table 1 sulfonate, NM, and 8-methoxypsoralen from Sigma Chemical Co. (St. Chemical and physical agents tested in SCE and mutation assays Louis, MO); HY-EI and 9-aminoacridine hydrochloride from Eastman Kodak Co. (Rochester, NY); diepoxybutane and /3-propiolactone from N-Nitroso compounds NitrosoamkJes Fulka (Buchs, Switzerland); tris(1-aziridinyl)phosphine sulfide from Sum MNU itomo Chemical Industries (Osaka, Japan); MMC from Kyowa Hakko W-Ethyl-N-nitrosourea Kogyo Co. (Tokyo, Japan); proflavine hemisulfate from Tokyo Kasei N-Propyi-N-nitrosourea N-Butyl-N-nitrosourea Kogyo Co. (Tokyo, Japan); BLE from Nihon Kayaku Co. (Tokyo, Japan); Nitrosoamidines and hydrogen peroxide from Mitsubishi Gas Chemical Co. (Tokyo, Ja N-MethyWV'-nitro-N-nitrosoguanidine N-Ethyl-W' -nitro-N-nitrosoguanidine pan). The other chemicals were kindly provided from sources as follows: 2-methoxy-6-chloro-9-[3-(chloroethyl)aminopropylamino]acridine •2HCI, Alkane sulfonates 2-methoxy-6-chloro-9-[3-(ethyl-2-chloroethyl)aminopropylamino]acri- Methyl methanesulfonate dine-2HCI, and DMP from Dr. T. Kada (National Institute of Genetics, Mi- Ethyl methanesulfonate shima, Shizuoka, Japan); A/-propyl-A/-nitrosourea, isopropyl methanesul Isopropyl methanesulfonate fonate, and triethylenemelamine from Dr. T. Shibuya and Dr. N. Tanaka Alkyl sulfates (Hatano Research Institute, Food and Drug Safety Center, Hatano, QMS Diethyl sulfate Kanagawa, Japan); diesel tar from Dr. K. Kawai (National Institute of Industrial Health, Kawasaki, Kanagawa, Japan); carboquone from Heterocyclic nitrogen compounds Sankyo Co. (Tokyo, Japan); DCMMC from Kyowa Hakko Kogyo Co. Aziridines HY-EI (Tokyo, Japan); and c/s-DDP and irans-DDP from Nihon Kayaku Co. Tris(1-aziridinyl)phosphine sulfide (Tokyo, Japan). Cigarette tar was prepared following the procedure of Triethytenemelamine Mizusaki ef al. (27). Carboquone Assay Protocols. For testing SCE, cells in the substationary phase, MMC DCMMC which had been thawed 1 to 2 days before from a stock culture kept at Acridines -70°, were dissociated with 0.05% trypsin (1:250; Difco Laboratories, 9-Aminoacridine hydrochkxide Detroit, Ml) and 0.02% EDTA and transferred to 75-sq cm plastic flasks Proflavine hemisulfate (Miles Laboratories, Napervilte, IL) at 5 x 10s cells/flask. After 24 hr, they ICR 191 ICR 170 were treated with chemical agents for 3 hr. As physical treatments, cells QM were irradiated in flasks or 6-cm plastic dishes (Nunc, Roskilde, Denmark) Others with either "Co 7-rays ("Co teletherapy unit, Theratron 780) or UV at 4NQO EthkJium bromide 254 nm (germicidal lamp; Matsushita Denko Co., Kadoma, Osaka, Ja DMP pan), or for PUVA treatment, they were irradiated with near-UV (352 nm, black light; Matsushita Denko Co.) in the presence of 8-methoxypsoralen. Mustards Chemical agents were either dissolved in distilled water, special-grade (QM) dimethyl sulfoxide (Merck, Darmstadt, Federal Republic of Germany), or NM ethanol (Kanto Chemical Co., Tokyo), and were added to cultures. After Epoxides treatment, the cells were washed with
Recommended publications
  • Principles and Methods for the Risk Assessment of Chemicals in Food
    WORLD HEALTH ORGANIZATION ORGANISATION MONDIALE DE LA SANTE EHC240: Principles and Methods for the Risk Assessment of Chemicals in Food SUBCHAPTER 4.5. Genotoxicity Draft 12/12/2019 Deadline for comments 31/01/2020 The contents of this restricted document may not be divulged to persons other than those to whom it has been originally addressed. It may not be further distributed nor reproduced in any manner and should not be referenced in bibliographical matter or cited. Le contenu du présent document à distribution restreinte ne doit pas être divulgué à des personnes autres que celles à qui il était initialement destiné. Il ne saurait faire l’objet d’une redistribution ou d’une reproduction quelconque et ne doit pas figurer dans une bibliographie ou être cité. Hazard Identification and Characterization 4.5 Genotoxicity ................................................................................. 3 4.5.1 Introduction ........................................................................ 3 4.5.1.1 Risk Analysis Context and Problem Formulation .. 5 4.5.2 Tests for genetic toxicity ............................................... 14 4.5.2.2 Bacterial mutagenicity ............................................. 18 4.5.2.2 In vitro mammalian cell mutagenicity .................... 18 4.5.2.3 In vivo mammalian cell mutagenicity ..................... 20 4.5.2.4 In vitro chromosomal damage assays .................. 22 4.5.2.5 In vivo chromosomal damage assays ................... 23 4.5.2.6 In vitro DNA damage/repair assays ....................... 24 4.5.2.7 In vivo DNA damage/repair assays ....................... 25 4.5.3 Interpretation of test results ......................................... 26 4.5.3.1 Identification of relevant studies............................. 27 4.5.3.2 Presentation and categorization of results ........... 30 4.5.3.3 Weighting and integration of results .....................
    [Show full text]
  • DNA Polymerase III of Escherichia Coli Is Required for Uvand Ethyl
    Proc. Natl. Acad. Sci. USA Vol. 84, pp. 4195-4199, June 1987 Genetics DNA polymerase III of Escherichia coli is required for UV and ethyl methanesulfonate mutagenesis (DNA replication/SOS repair) MICHAEL E. HAGENSEE, TERRY L. TIMME, SHARON K. BRYAN, AND ROBB E. MOSES Department of Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 Communicated by Daniel Nathans, March 9, 1987 (receivedfor review January 7, 1987) ABSTRACT Strains of Escherichia coli possessing the polC+ by transduction. Strain ERli is an E486 (polC486) (8) pebAl mutation, a functional DNA polymerase I, and a derivative made by P1 transduction ofa TnJO linked topcbAl temperature-sensitive mutation in DNA polymerase m can from RM552. Strain RM552 is an ESli (8) derivative con- survive at the restrictive temperature (430C) for DNA poly- taining TnJO linked to pcbAl (zic-J: :TnJO) transduced from a merase m. The mutation rate of the bacterial genome of such CSM61 derivative (7). Strain SB229 was constructed by strains after exposure to either UV light or ethyl methanesul- transduction of recA56 srlJ300::TnJO into JM103. fonate was measured by its rifampicin resistance or amino acid Plasmid pDS4-26 was provided by C. McHenry. It contains requirements. In addition, Weigle mutagenesis of preirradi- the coding region for the a subunit of DNA polymerase III ated X phage was also measured. In all cases, no increase in (9). Plasmid pSB5 is a clone of the a subunit of DNA mutagenesis was noted at the restrictive temperature for DNA polymerase III derived in our laboratory. polymerase HI. Introduction of a cloned DNA polymerase HI Materials.
    [Show full text]
  • Spontaneous and Ethyl Methanesulfonate-Induced Mutations Controlling Viability in Drosophila Melanogaster
    SPONTANEOUS AND ETHYL METHANESULFONATE-INDUCED MUTATIONS CONTROLLING VIABILITY IN DROSOPHILA MELANOGASTER. I. RECESSIVE LETHAL MUTATIONS OHM1 OHNISHI Laboratory of Genetics, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan Manuscript received December 18, 1976 Revised copy received July 15,1977 ABSTRACT The efficiency of the adult feeding method for EMS treatment in Dro- sophila melanogaster was studied by measuring the frequency of induced recessive lethals on the second chromosome. The treatment was most effective when mature spermatozoa or spermatids were treated and was much less effec- tive on earlier stages. The number of mutations induced was proportional to the concentration except at the highest doses. The recessive lethal rate was estimated to be about 0.012 per second chromosome per IO-4~.In addition, about 0.004-0.005 recessive lethals per 10-4 M were found in a later genera- tion in chromosomes that had not shown the lethal effect in the previous gen- eration. When the experiments are done in a consistent manner and gametes treated as mature sperm or spermatids are sampled, the results are highly reproducible. However, modifications of the procedure, such as starvation before EMS treatment, can considerably alter the effectiveness of the mutagen. A central problem in population genetics is the relative importance of various factors determining genetic variability in natural populations. Interest in recurrent mutation as a major source of variation has been stimulated by the work of MUKAIand his associates (MUKAI1964; MUKAIet al. 1972), who re- ported a very high spontaneous rate for viability-affecting polygenic mutations in Drosophila melanogaster. From the standpoint of human welfare, the im- portance of mutations is enhanced by the possibility that a number of chemi- cals in our environment may be mutagenic.
    [Show full text]
  • Effects of Ethyl Methanesulfonate on Morphological and Physiological Traits of Plants Regenerated from Stevia (Stevia Rebaudiana Bertoni) Calli
    Gerami et al.: Effects of ethyl methanesulfonate morphological and physiological traits of plants regenerated from stevia - 373 - EFFECTS OF ETHYL METHANESULFONATE ON MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS OF PLANTS REGENERATED FROM STEVIA (STEVIA REBAUDIANA BERTONI) CALLI GERAMI, M.1 – ABBASPOUR, H.1* – GHASEMIOMRAN, V.2* – PIRDASHTI, H.2 1Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran (Mahyar Gerami: +98-11-44221387, e-mail: [email protected]; Dr. Hossein Abbaspour: +98-232-5235016, e-mail: [email protected]) 2Department of Agronomy & Plant Breeding, Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran (Dr. Valiollah Ghasemiomran: +98-11-33687744, e-mail: [email protected]; Dr.Hemmatollah Pirdashti: +98-11-33687744, e-mail:[email protected]) *Corresponding authors e-mail: [email protected], [email protected] (Received 8th Nov 2016; accepted 17th Jan 2017) Abstract. Calli induced from leaf explants cultured on medium containing 0.1 mg/L thidiazuron (TDZ) were exposed to various concentrations of EMS ( 0.1, 0.2, and 0.5%) at different time courses (30, 60, and 120 minutes). The effects of the various concentrations of EMS and different exposure times and the interactions of these factors on the traits of regenerated calli were significant. The number of produced shoots declined with increases in EMS concentrations and in exposure durations. EMS also had significant effects on the morphological and physiological traits of the regenerated plants. Among the 12 studied traits, the M10, M11, and M6 mutant lines exhibited the highest variation in terms of morphological and physiological characteristics compared to the control.
    [Show full text]
  • ETHYL METHANESULFONATE-INDUCED REVERSION of BACTERIOPHAGE T4rii MUTANTS
    ETHYL METHANESULFONATE-INDUCED REVERSION OF BACTERIOPHAGE T4rII MUTANTS DAVID R. KRIEG Biology Division, Oak Ridge National Laboratory,l Oak Ridge, Tennessee Received December 11. 1962 methanesulfonate (EMS2) is an alkylating agent that can react with E~~a~ellularvirus particles to produce many mutations with rather little killing (LOVELESS1958). The induced mutations may be delayed by several generations (GREENand KRIEG1961 ) . The mutagen reacts with three of the four bases naturally occurring in DNA (REINERand ZAMENHOF1957; BROOKES and LAWLEY1960, 1961a, 1962; PAL1962), yet there is reason to suspect that it might be quite specific as to the type of base pair changes it usually induces. The purpose of this investigation was to compare the frequencies of EMS-induced mutations at various sites within the rII region of bacteriophage T4, and to test the notion that predominantly one type of base pair substitution might be induced. Four years ago in this laboratory, during a search for strongly EMS-revertible point mutants. D. M. GREENfound that some AP mutants [mutants which had been produced from standard I+ phage by AP) were quite EMS-revertible, but that none of the 18 EMS-produced mutants he examined were induced by EMS to revert to a comparable extent. This prompted the working hypothesis that one of the base pair transitions-either GC to AT or AT to GC-was much more strongly inducible by EMS than was the other transition. It was decided to test this possible specificity by checking a group of EMS mutants for EMS-induced reversion by a more sensitive test than had been previously employed, and to test similarly additional base analog and proflavin mutants.
    [Show full text]
  • GENETIC EFFECTS of ETHYL METHANESULFONATE and GAMMA RAY TREATMENT of the PROEMBRYO in MAIZE HE Well Differentiated Meristematic
    GENETIC EFFECTS OF ETHYL METHANESULFONATE AND GAMMA RAY TREATMENT OF THE PROEMBRYO IN MAIZE N. K. CHATTERJEEl, A. L. CASPAR, AND W. R. SINGLETON The Blandy Experimental Farm, University of Virginia, Boyce Received April 29, 1965 HE well differentiated meristematic region in the embryo of a mature maize Tseed limits the classical seed irradiation procedure in the study of induced mu- tations in this plant. The meristematic region contains up to six embryonic leaves (STEINand STEFFENSEN1959). Any mutation induced by irradiating a seed will be produced in only a sector of the plant, and the mutated area is not likely to occur both in the ear and tassel. A mutation thus occurring in either of them would result in a heterozygous plant in the second generation 'which segregates in the third generation. This difficulty could be overcome by using the one-celled proembryo as the experimental material, which affords an opportunity of obtain- ing a uniform (nonchimeric) plant. Moreover, studies on radiosensitivities of developing embryos of plants and animals by different workers (STADLER1930; BUTLER 1936; RUSSELLand Rus- SELL 1954; SARIC1957; MERICLEand MERICLE1961; etc.), since the pioneering radiation work of GAGER(1908) with developing embryos of Oenothera, have shown that early embryonic stages are more sensitive to radiation than are later stages. The work of STADLER(1930) on the genetic effects of X rays on maize proembryos has indicated the potentialities of the maize proembryo in the study of radiation induced mutations. Work at the Blandy Experimental Farm of the University of Virginia (SINGLETON1961 ; VARMA,CASPAR and SINGLETON1962, 1963) has shown that the 24-48 hour old maize proembryo is a sensitive stage for inducing mutations by gamma radiation.
    [Show full text]
  • 811.Full.Pdf
    Copyright 0 1986 by the Genetics Society of America DNA SEQUENCE ANALYSIS OF MUTAGENICITY AND SITE SPECIFICITY OF ETHYL METHANESULFONATE IN UVR+ AND UVRB- STRAINS OF ESCHERICHIA COLI PHILIP A. BURNS,' FRANCES L. ALLEN AND BARRY W. GLICKMAN Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J lP3 Canada Manuscript received December 11, 1985 Revised copy accepted April 26, 1986 ABSTRACT EMS-induced mutations within a 180 base pair region of the lacl gene of E. coli were cloned and sequenced. In total, 105 and 79 EMS-induced mutations from a Uvr+ and a UvrB- strain, respectively, were sequenced. The specificity of EMS-induced mutagenesis was very similar in the two strians; G:C + A:T transitions accounted for all but three of the mutants. The overall frequency of induced mutation was fivefold higher in the UvrB- strain compared to the Uvr+ strain. This demonstrates, at the DNA sequence level, that the presumed pre- mutagenic lesion, 06-ethylguanine, is subject to repair by the uvrABC excision repair system of E. coli. An analysis of mutation frequencies with respect to neighboring base sequence, in the two strains, shows that 06-ethylguanine lesions adjacent to A:T base pairs present better targets for the excision repair machin- ery than those not adjacent to A:T base pairs. UTATIONAL spectra produced by mutagens in various repair back- M grounds can provide important information about the role of different premutagenic lesions and repair systems in the mutagenic process. Until re- cently, such studies have involved the characterization of comparatively small numbers of mutants or reversion analyses at relatively few sites.
    [Show full text]
  • Genome-Wide Analysis of Artificial Mutations Induced by Ethyl
    G C A T T A C G G C A T genes Article Genome-Wide Analysis of Artificial Mutations Induced by Ethyl Methanesulfonate in the Eggplant (Solanum melongena L.) 1,2, , 1,2 1,2 1,2 1,2 1,2 Xi-ou Xiao * y, Wenqiu Lin , Ke Li , Xuefeng Feng , Hui Jin and Huafeng Zou 1 South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China 2 Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China * Correspondence: [email protected]; Tel.:+86-0759-2859139 Present Address: Room 507, Huxiu Road No.1, Mazhang District, Zhanjiang 52491, y Guangdong Province, China. Received: 14 June 2019; Accepted: 1 August 2019; Published: 7 August 2019 Abstract: Whole-genome sequences of four EMS (ethyl methanesulfonate)-induced eggplant mutants were analyzed to identify genome-wide mutations. In total, 173.01 GB of paired-end reads were obtained for four EMS-induced mutants and (WT) wild type and 1,076,010 SNPs (single nucleotide polymorphisms) and 183,421 indels were identified. The most common mutation type was C/G to T/A transitions followed by A/T to G/C transitions. The mean densities were one SNP per 1.3 to 2.6 Mb. The effect of mutations on gene function was annotated and only 7.2% were determined to be deleterious. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed 10 and 11 genes, which were nonsynonymous mutation or frameshift deletion in 48-5 and L6-5 involved in the anthocyanin biosynthesis or flavone and flavonol biosynthesis.
    [Show full text]
  • Title: Effects of Ethyl Methanesulfonate (EMS) on Seedling and Yield Contributing Traits in Basmati Rice
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 March 2021 doi:10.20944/preprints202103.0453.v1 Title: Effects of Ethyl methanesulfonate (EMS) on Seedling and Yield contributing Traits in Basmati Rice Authors list: Muhammad Rashid, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan. email:[email protected] Areeqa Shamshad, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan email:[email protected] Ljupcho Jankuloski, FAO/IAEA, Plant Breeding and Genetics Laboratories, Vienna, Austria email: [email protected] Abstract Increasing genetic diversity in crop plants has been used for chemical mutagenesis. Through the application of various mutagenic agents, over 430 new varieties have been derived as rice mutants (Oryza sativa L.) Chemical mutagens such as ethyl methane sulphonate (EMS), diepoxybutane derivative (DEB), sodium azide, and gamma ray, x-ray, and quick neutron irradiation have been commonly used to induce a large number of functional variations in rice and others crops. Among chemical mutagens, ethyl methane sulfonate (EMS) is the alkylating agent most widely used in plants because it induces nucleotide substitutions to be extremely frequent, as detected in various genomes. In this study, seeds of potential genotype of the popular variety, (Oryza sativa L. Super Basmati variety) were treated with EMS at concentrations of 0.25%, 0.50%, 0.75%, 1% and 1.5%. Various measurements on the M1 generation determined EMS sensitivity. As concentration of applied EMS increased, will decrease in germination, shoot length, root length, plant height, productive tillers, Panicle Length, Total Spikelet, sterile spikelet and fertility under field conditions were observed in M1 generation as compared to the non-treatment control.
    [Show full text]
  • Principles for Evaluating Health Risks in Children Associated with Exposure to Chemicals
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization or the World Health Organization. Environmental Health Criteria 237 PRINCIPLES FOR EVALUATING HEALTH RISKS IN CHILDREN ASSOCIATED WITH EXPOSURE TO CHEMICALS First drafts prepared by Dr Germaine Buck Louis, Bethesda, USA; Dr Terri Damstra, Research Triangle Park, USA; Dr Fernando Díaz- Barriga, San Luis Potosi, Mexico; Dr Elaine Faustman, Washington, USA; Dr Ulla Hass, Soborg, Denmark; Dr Robert Kavlock, Research Triangle Park, USA; Dr Carole Kimmel, Washington, USA; Dr Gary Kimmel, Silver Spring, USA; Dr Kannan Krishnan, Montreal, Canada; Dr Ulrike Luderer, Irvine, USA; and Dr Linda Sheldon, Research Triangle Park, USA Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO) and the World Health Organization (WHO). The overall objec- tives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes,
    [Show full text]
  • EMS-Induced Mutagenesis of Clostridium Carboxidivorans for Increased Atmospheric CO2 Reduction Efficiency and Solvent Production
    microorganisms Article EMS-Induced Mutagenesis of Clostridium carboxidivorans for Increased Atmospheric CO2 Reduction Efficiency and Solvent Production Naoufal Lakhssassi 1,2, Azam Baharlouei 1, Jonas Meksem 3, Scott D. Hamilton-Brehm 4, David A. Lightfoot 2, Khalid Meksem 2,* and Yanna Liang 1,5,* 1 Department of Civil and Environmental Engineering, 1230 Lincoln Drive, Southern Illinois University Carbondale, Carbondale, IL 62901, USA; [email protected] (N.L.); [email protected] (A.B.) 2 Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; [email protected] 3 Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA; [email protected] 4 Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA; [email protected] 5 Department of Environmental and Sustainable Engineering, 1400 Washington Ave, State University of New York at Albany, Albany, NY 12222, USA * Correspondence: [email protected] (K.M.); [email protected] (Y.L.) Received: 1 July 2020; Accepted: 10 August 2020; Published: 14 August 2020 Abstract: Clostridium carboxidivorans (P7) is one of the most important solvent-producing bacteria capable of fermenting syngas (CO, CO2, and H2) to produce chemical commodities when grown as an autotroph. This study aimed to develop ethyl methanesulfonate (EMS)-induced P7 mutants that were capable of growing in the presence of CO2 as a unique source of carbon with increased solvent formation and atmospheric CO2 reduction to limit global warming. Phenotypic analysis including growth and end product characterization of the P7 wild type (WT) demonstrated that this strain grew better at 25 ◦C than 37 ◦C when CO2 served as the only source of carbon.
    [Show full text]
  • Molecular Analysis of Ethyl Methanesulfonate-Induced
    [CANCERRESEARCH54,3001-3006,June1, 1994] Molecular Analysis of Ethyl Methanesulfonate-induced Mutations at the hprt Gene in the Ethyl Methanesulfonate-sensitive Chinese Hamster Cell Line EM-Cl! and Its Parental Line CHO9' Christel W. Op het Veld, Matgorzata Z. Zdzienicka, Harry Vrieling, Paul H. M. Lohman, and Albert A. van Zeeland2 MGC-Department of Radiation Genetics and Chemical Muzagenesis, State University of Leiden, Wassenaarseweg 72, 2333 AL Leiden [C. W. 0. h. V., M. Z. Z., H. V., P. H. M. L., A. A. V. Z.J, and J. A. Cohen Institute, Interuniversizy Research Institute for Radiopathology and Radiation Protection, Leiden [M. Z. Z., H. V., A. A. v. Z.J, the Netherlands ABSTRACF strong nucleophiles like the N-7 position of guanine, resulting in a relatively low 06/N-7-alkylguanine ratio. The Chinese hamster cell line EM-Cl! has been shown to be 5 times Molecular analysis of induced mutations, i.e. , the determination of more sensitive than its parental line CHO9, but not hypermutable, after mutational spectra, provides a valuable tool for the identification of treatment with ethyl methanesulfonate. Ethyl methanesulfonate-induced adducts that are involved in mutation induction. Moreover, the use of mutational spectra were determined at the hprt locus to investigate DNA repair deficient cell lines will generate additional information whether the same ndducts are responsible for mutation induction in both cell lines. The mutational spectra for EM-C!! and CHO9 show an im concerning the mutagenic potential of different types of DNA adducts. portent difference. GC-'AT transitions were found in both cell lines at Recently, a Chinese hamster ovary cell line, EM-Cl 1, which is very similar frequencies; however, the spectrum of CHO9 contains a class of sensitive to the cell killing effects of EMS, was isolated in our AT—'GCtransitions,which seems to be replaced by a group of deletions laboratory (2).
    [Show full text]