DNA Polymerase III of Escherichia Coli Is Required for Uvand Ethyl

Total Page:16

File Type:pdf, Size:1020Kb

DNA Polymerase III of Escherichia Coli Is Required for Uvand Ethyl Proc. Natl. Acad. Sci. USA Vol. 84, pp. 4195-4199, June 1987 Genetics DNA polymerase III of Escherichia coli is required for UV and ethyl methanesulfonate mutagenesis (DNA replication/SOS repair) MICHAEL E. HAGENSEE, TERRY L. TIMME, SHARON K. BRYAN, AND ROBB E. MOSES Department of Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 Communicated by Daniel Nathans, March 9, 1987 (receivedfor review January 7, 1987) ABSTRACT Strains of Escherichia coli possessing the polC+ by transduction. Strain ERli is an E486 (polC486) (8) pebAl mutation, a functional DNA polymerase I, and a derivative made by P1 transduction ofa TnJO linked topcbAl temperature-sensitive mutation in DNA polymerase m can from RM552. Strain RM552 is an ESli (8) derivative con- survive at the restrictive temperature (430C) for DNA poly- taining TnJO linked to pcbAl (zic-J: :TnJO) transduced from a merase m. The mutation rate of the bacterial genome of such CSM61 derivative (7). Strain SB229 was constructed by strains after exposure to either UV light or ethyl methanesul- transduction of recA56 srlJ300::TnJO into JM103. fonate was measured by its rifampicin resistance or amino acid Plasmid pDS4-26 was provided by C. McHenry. It contains requirements. In addition, Weigle mutagenesis of preirradi- the coding region for the a subunit of DNA polymerase III ated X phage was also measured. In all cases, no increase in (9). Plasmid pSB5 is a clone of the a subunit of DNA mutagenesis was noted at the restrictive temperature for DNA polymerase III derived in our laboratory. polymerase HI. Introduction of a cloned DNA polymerase HI Materials. Media were purchased from Difco. EtMes was gene returned the mutation rate of the bacterial genome as well obtained from Kodak, and rifampicin was purchased from as the Weigle mutagenesis to normal at 43C. Using a recA-LacZ Sigma. fusion, the SOS response after UV irradiation was measured Procedures. Phage X was grown and X lysogens were and found to be normal at the restrictive and permissive constructed using standard procedures. Transformation was temperature for DNA polymerase III, as was induction of X performed as described by Hanahan (10). prophage. Recombination was also normal at either tempera- To assess the mutation rate, cells were collected in ture. Our studies demonstrate that a functional DNA polymer- midlogarithmic phase and resuspended to half their original ase III is strictly required for mutagenesis at a step other than volume in 0.05 M K2HPO4 (pH 7.4). Cells were either SOS induction. UV-irradiated using a germicidal lamp (General Electric) with a UV flux of 1 J.m-2.sec-l at room temperature or The functional DNA polymerase III holoenzyme complex of exposed to EtMes at a concentration of 0.2 M at 32 or 43°C. Escherichia coli is composed ofat least seven proteins (1, 2). Samples were removed at time intervals to measure cell These components interact to replicate the E. coli genome at survival, concentrated, and plated on indicator plates at the high fidelity. The a subunit of this complex possesses the desired temperature (32 or 43°C). The indicator plates con- polymerizing activity and is encoded by the dnaE (polC) gene sisted of either L-agar with rifampicin at a concentration of (3). Temperature-sensitive mutations at this locus prevent 100 ,ug/ml or M9 plates lacking leucine. Mutation rate was replication at the restrictive temperature of 43°C (4). Muta- calculated as colonies on indicator plates divided by survi- tions at the dnaE locus may produce strains with an increase vors on L-agar. D37 values (the doses necessary to reduce the in the spontaneous mutation rate (5) as well as UV-induced surviving fractions to e-1 or 0.37) were determined graphi- mutagenesis (6). cally. The pcbAl mutation allows DNA polymerase I-dependent The Weigle mutagenesis experiments were performed replication ofthe bacterial genome without a functional DNA essentially as described by Defais et al. (11) using wild-type polymerase III a subunit (7). Strains containing the pcbAl X. Reactivation was determined from the total number of mutation, a functional DNA polymerase I, and a tempera- surviving plaques, whereas mutagenesis was determined ture-sensitive DNA polymerase III are viable at the restric- from the number of clear plaques. tive temperature (43°C) for DNA polymerase III and, there- The SOS response was measured by assaying ,B-galacto- fore, can be used to assess the role of DNA polymerase III sidase activity from a X lysogen carrying a recA-lacZ fusion in mutagenesis. Using such strains, we find that DNA (XGE190) provided by G. Weinstock (12). Units of *- polymerase III is required for mutagenesis of the bacterial galactosidase activity were as given by Miller (13). genome by either UV irradiation or ethyl methanesulfonate (EtMes) exposure as well as for Weigle mutagenesis. DNA RESULTS polymerase III is not required for induction of the SOS response or DNA recombination. Mutagenesis Requires DNA Polymerase III a-Subunit Ac- tivity. The strain CSM61 contains the pcbAl mutation, a functional DNA polymerase I, and a temperature-sensitive MATERIALS AND METHODS mutation in the a subunit of DNA polymerase III. DNA Strains. The bacterial strains used are listed in Table 1. replication in this strain at 43°C (7) requires DNA polymerase CSM61 and CSM14 are spontaneous, temperature-resistant I. CSM61 was exposed to UV irradiation, and rifampicin- revertants from HS432 (polAl, polB100, polC1O26, pcbAl) as resistant mutants arising were measured at 32 and 43°C. At previously described (7). CSM98 is a CSM61 derivative made the permissive temperature for DNA polymerase III (32°C), the number of mutations increased with increasing exposure to At the for DNA The publication costs of this article were defrayed in part by page charge UV light (Fig. 1B). restrictive temperature payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact. Abbreviation: EtMes, ethyl methanesulfonate. 4195 Downloaded by guest on September 29, 2021 4196 Genetics: Hagensee et al. Proc. Natl. Acad. Sci. USA 84 (1987) Table 1. Bacterial strains Relevant genotype or Strain phenotype Source 55. CSM14 polA+, polB100, polClO26, 50 pcbAl, Leu-, His-, tr This laboratory CSM61 polAl, polB100, polCJO26, pcbAl, sup(PolI), 45 Leu-, His-, tr This laboratory CSM98 polA+, polB100, polC+, 40 pcbAl, Leu-, His-, tr This laboratory 0) ER11 E486 (polC486), pcbAl ° 35 zic-l::TnlO, tr This laboratory SB229 JM103 recA56, 30 - srll300::TnlO This laboratory O 320C W3110 Wild type J. Cairns 0 25 - tr, Temperature-resistant. , 20 - polymerase III (43°C), the background spontaneous mutation rate is the same as at 32°C, but there was no increase in the 15- number of mutations with increasing exposure to UV light. CSM61 was also exposed to a second mutagen, EtMes, and 10 the results were similar (Fig. 1A). CSM61 is phenotypically PolI+ because of a suppressor polAl amber and in 5 430C mutation (7) acting on the mutation, 0 extracts this strain has 10-15% ofthe wild-type level of DNA I I I I I polymerase I activity. This level is sufficient to allow normal 0 20 40 60 80 100 120 140 DNA repair at 32°C and to support replication at 43°C. seconds of UV at 50cm However, one might question if the failure of mutagenesis at a level DNA I FIG. 2. UV mutagenesis in ERll. Mutants were scored as 43°C is due to low of polymerase activity. rifampicin-resistant colonies. D37 values were 35 sec at 32 and 43°C. Strain CSM14 is an isogenic strain with an intragenic muta- UV flux was 1 Jm-2-sec-1. tion producing a polA+ allele giving DNA polymerase I with normal properties after a 1000-fold purification (S.K.B. and R.E.M., unpublished results). Strain CSM14 shows the same These results were also confirmed by using a second response to UV irradiation (Fig. 1C) and EtMes exposure marker, leucine prototrophy, to score for mutations. Strains (not shown) as CSM61. We conclude that the lack of CSM61 and ERll showed less than 1 Leu+ revertant per 108 mutagenesis at 43°C is not due to low levels of DNA survivors at 430C after EtMes exposure for 30 min but polymerase I. A nonisogenic polCts strain containing pcbAl, showed greater than 20 Leu+ revertants per 108 survivors at ERll (polC486), also showed no increase in the UV-induced 320C. mutagenesis at the restrictive temperature (Fig. 2). The same To rule out a simple temperature effect on mutagenesis, we result occurred with EtMes. This indicates that the deficit at constructed a polC+ strain, CSM98, which is isogenic to 43°C is not polC allele-specific. CSM61 and CSM14. As seen in Fig. 3 A and B, this strain A B C 22 32°C 18 U) 0 :314 32°C Cu 0 10 20 30 0 40 80 120 0 20 60 100 140 minutes with .2M EMS seconds of UV at 50cm seconds of UV at 50cm FIG. 1. Mutagenesis in CSM61 after EtMes (EMS) (A) or UV (B) exposure and also in CSM14 after UV exposure (C). Mutants were scored as rifampicin-resistant colonies. D37 values at 32 and 43°C were 16 min in A and 32 sec in both B and C. UV flux was 1 J'm-2-sec-1. Cells from either strain held at 32 or 43°C in phosphate buffer did not show an increase in rifampicin-resistant mutants after 30 min. Survival rate was greater than 90%o in buffer at both temperatures. Downloaded by guest on September 29, 2021 Genetics: Hagensee et al.
Recommended publications
  • Principles and Methods for the Risk Assessment of Chemicals in Food
    WORLD HEALTH ORGANIZATION ORGANISATION MONDIALE DE LA SANTE EHC240: Principles and Methods for the Risk Assessment of Chemicals in Food SUBCHAPTER 4.5. Genotoxicity Draft 12/12/2019 Deadline for comments 31/01/2020 The contents of this restricted document may not be divulged to persons other than those to whom it has been originally addressed. It may not be further distributed nor reproduced in any manner and should not be referenced in bibliographical matter or cited. Le contenu du présent document à distribution restreinte ne doit pas être divulgué à des personnes autres que celles à qui il était initialement destiné. Il ne saurait faire l’objet d’une redistribution ou d’une reproduction quelconque et ne doit pas figurer dans une bibliographie ou être cité. Hazard Identification and Characterization 4.5 Genotoxicity ................................................................................. 3 4.5.1 Introduction ........................................................................ 3 4.5.1.1 Risk Analysis Context and Problem Formulation .. 5 4.5.2 Tests for genetic toxicity ............................................... 14 4.5.2.2 Bacterial mutagenicity ............................................. 18 4.5.2.2 In vitro mammalian cell mutagenicity .................... 18 4.5.2.3 In vivo mammalian cell mutagenicity ..................... 20 4.5.2.4 In vitro chromosomal damage assays .................. 22 4.5.2.5 In vivo chromosomal damage assays ................... 23 4.5.2.6 In vitro DNA damage/repair assays ....................... 24 4.5.2.7 In vivo DNA damage/repair assays ....................... 25 4.5.3 Interpretation of test results ......................................... 26 4.5.3.1 Identification of relevant studies............................. 27 4.5.3.2 Presentation and categorization of results ........... 30 4.5.3.3 Weighting and integration of results .....................
    [Show full text]
  • Spontaneous and Ethyl Methanesulfonate-Induced Mutations Controlling Viability in Drosophila Melanogaster
    SPONTANEOUS AND ETHYL METHANESULFONATE-INDUCED MUTATIONS CONTROLLING VIABILITY IN DROSOPHILA MELANOGASTER. I. RECESSIVE LETHAL MUTATIONS OHM1 OHNISHI Laboratory of Genetics, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan Manuscript received December 18, 1976 Revised copy received July 15,1977 ABSTRACT The efficiency of the adult feeding method for EMS treatment in Dro- sophila melanogaster was studied by measuring the frequency of induced recessive lethals on the second chromosome. The treatment was most effective when mature spermatozoa or spermatids were treated and was much less effec- tive on earlier stages. The number of mutations induced was proportional to the concentration except at the highest doses. The recessive lethal rate was estimated to be about 0.012 per second chromosome per IO-4~.In addition, about 0.004-0.005 recessive lethals per 10-4 M were found in a later genera- tion in chromosomes that had not shown the lethal effect in the previous gen- eration. When the experiments are done in a consistent manner and gametes treated as mature sperm or spermatids are sampled, the results are highly reproducible. However, modifications of the procedure, such as starvation before EMS treatment, can considerably alter the effectiveness of the mutagen. A central problem in population genetics is the relative importance of various factors determining genetic variability in natural populations. Interest in recurrent mutation as a major source of variation has been stimulated by the work of MUKAIand his associates (MUKAI1964; MUKAIet al. 1972), who re- ported a very high spontaneous rate for viability-affecting polygenic mutations in Drosophila melanogaster. From the standpoint of human welfare, the im- portance of mutations is enhanced by the possibility that a number of chemi- cals in our environment may be mutagenic.
    [Show full text]
  • Effects of Ethyl Methanesulfonate on Morphological and Physiological Traits of Plants Regenerated from Stevia (Stevia Rebaudiana Bertoni) Calli
    Gerami et al.: Effects of ethyl methanesulfonate morphological and physiological traits of plants regenerated from stevia - 373 - EFFECTS OF ETHYL METHANESULFONATE ON MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS OF PLANTS REGENERATED FROM STEVIA (STEVIA REBAUDIANA BERTONI) CALLI GERAMI, M.1 – ABBASPOUR, H.1* – GHASEMIOMRAN, V.2* – PIRDASHTI, H.2 1Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran (Mahyar Gerami: +98-11-44221387, e-mail: [email protected]; Dr. Hossein Abbaspour: +98-232-5235016, e-mail: [email protected]) 2Department of Agronomy & Plant Breeding, Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran (Dr. Valiollah Ghasemiomran: +98-11-33687744, e-mail: [email protected]; Dr.Hemmatollah Pirdashti: +98-11-33687744, e-mail:[email protected]) *Corresponding authors e-mail: [email protected], [email protected] (Received 8th Nov 2016; accepted 17th Jan 2017) Abstract. Calli induced from leaf explants cultured on medium containing 0.1 mg/L thidiazuron (TDZ) were exposed to various concentrations of EMS ( 0.1, 0.2, and 0.5%) at different time courses (30, 60, and 120 minutes). The effects of the various concentrations of EMS and different exposure times and the interactions of these factors on the traits of regenerated calli were significant. The number of produced shoots declined with increases in EMS concentrations and in exposure durations. EMS also had significant effects on the morphological and physiological traits of the regenerated plants. Among the 12 studied traits, the M10, M11, and M6 mutant lines exhibited the highest variation in terms of morphological and physiological characteristics compared to the control.
    [Show full text]
  • ETHYL METHANESULFONATE-INDUCED REVERSION of BACTERIOPHAGE T4rii MUTANTS
    ETHYL METHANESULFONATE-INDUCED REVERSION OF BACTERIOPHAGE T4rII MUTANTS DAVID R. KRIEG Biology Division, Oak Ridge National Laboratory,l Oak Ridge, Tennessee Received December 11. 1962 methanesulfonate (EMS2) is an alkylating agent that can react with E~~a~ellularvirus particles to produce many mutations with rather little killing (LOVELESS1958). The induced mutations may be delayed by several generations (GREENand KRIEG1961 ) . The mutagen reacts with three of the four bases naturally occurring in DNA (REINERand ZAMENHOF1957; BROOKES and LAWLEY1960, 1961a, 1962; PAL1962), yet there is reason to suspect that it might be quite specific as to the type of base pair changes it usually induces. The purpose of this investigation was to compare the frequencies of EMS-induced mutations at various sites within the rII region of bacteriophage T4, and to test the notion that predominantly one type of base pair substitution might be induced. Four years ago in this laboratory, during a search for strongly EMS-revertible point mutants. D. M. GREENfound that some AP mutants [mutants which had been produced from standard I+ phage by AP) were quite EMS-revertible, but that none of the 18 EMS-produced mutants he examined were induced by EMS to revert to a comparable extent. This prompted the working hypothesis that one of the base pair transitions-either GC to AT or AT to GC-was much more strongly inducible by EMS than was the other transition. It was decided to test this possible specificity by checking a group of EMS mutants for EMS-induced reversion by a more sensitive test than had been previously employed, and to test similarly additional base analog and proflavin mutants.
    [Show full text]
  • GENETIC EFFECTS of ETHYL METHANESULFONATE and GAMMA RAY TREATMENT of the PROEMBRYO in MAIZE HE Well Differentiated Meristematic
    GENETIC EFFECTS OF ETHYL METHANESULFONATE AND GAMMA RAY TREATMENT OF THE PROEMBRYO IN MAIZE N. K. CHATTERJEEl, A. L. CASPAR, AND W. R. SINGLETON The Blandy Experimental Farm, University of Virginia, Boyce Received April 29, 1965 HE well differentiated meristematic region in the embryo of a mature maize Tseed limits the classical seed irradiation procedure in the study of induced mu- tations in this plant. The meristematic region contains up to six embryonic leaves (STEINand STEFFENSEN1959). Any mutation induced by irradiating a seed will be produced in only a sector of the plant, and the mutated area is not likely to occur both in the ear and tassel. A mutation thus occurring in either of them would result in a heterozygous plant in the second generation 'which segregates in the third generation. This difficulty could be overcome by using the one-celled proembryo as the experimental material, which affords an opportunity of obtain- ing a uniform (nonchimeric) plant. Moreover, studies on radiosensitivities of developing embryos of plants and animals by different workers (STADLER1930; BUTLER 1936; RUSSELLand Rus- SELL 1954; SARIC1957; MERICLEand MERICLE1961; etc.), since the pioneering radiation work of GAGER(1908) with developing embryos of Oenothera, have shown that early embryonic stages are more sensitive to radiation than are later stages. The work of STADLER(1930) on the genetic effects of X rays on maize proembryos has indicated the potentialities of the maize proembryo in the study of radiation induced mutations. Work at the Blandy Experimental Farm of the University of Virginia (SINGLETON1961 ; VARMA,CASPAR and SINGLETON1962, 1963) has shown that the 24-48 hour old maize proembryo is a sensitive stage for inducing mutations by gamma radiation.
    [Show full text]
  • 811.Full.Pdf
    Copyright 0 1986 by the Genetics Society of America DNA SEQUENCE ANALYSIS OF MUTAGENICITY AND SITE SPECIFICITY OF ETHYL METHANESULFONATE IN UVR+ AND UVRB- STRAINS OF ESCHERICHIA COLI PHILIP A. BURNS,' FRANCES L. ALLEN AND BARRY W. GLICKMAN Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J lP3 Canada Manuscript received December 11, 1985 Revised copy accepted April 26, 1986 ABSTRACT EMS-induced mutations within a 180 base pair region of the lacl gene of E. coli were cloned and sequenced. In total, 105 and 79 EMS-induced mutations from a Uvr+ and a UvrB- strain, respectively, were sequenced. The specificity of EMS-induced mutagenesis was very similar in the two strians; G:C + A:T transitions accounted for all but three of the mutants. The overall frequency of induced mutation was fivefold higher in the UvrB- strain compared to the Uvr+ strain. This demonstrates, at the DNA sequence level, that the presumed pre- mutagenic lesion, 06-ethylguanine, is subject to repair by the uvrABC excision repair system of E. coli. An analysis of mutation frequencies with respect to neighboring base sequence, in the two strains, shows that 06-ethylguanine lesions adjacent to A:T base pairs present better targets for the excision repair machin- ery than those not adjacent to A:T base pairs. UTATIONAL spectra produced by mutagens in various repair back- M grounds can provide important information about the role of different premutagenic lesions and repair systems in the mutagenic process. Until re- cently, such studies have involved the characterization of comparatively small numbers of mutants or reversion analyses at relatively few sites.
    [Show full text]
  • Genome-Wide Analysis of Artificial Mutations Induced by Ethyl
    G C A T T A C G G C A T genes Article Genome-Wide Analysis of Artificial Mutations Induced by Ethyl Methanesulfonate in the Eggplant (Solanum melongena L.) 1,2, , 1,2 1,2 1,2 1,2 1,2 Xi-ou Xiao * y, Wenqiu Lin , Ke Li , Xuefeng Feng , Hui Jin and Huafeng Zou 1 South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China 2 Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China * Correspondence: [email protected]; Tel.:+86-0759-2859139 Present Address: Room 507, Huxiu Road No.1, Mazhang District, Zhanjiang 52491, y Guangdong Province, China. Received: 14 June 2019; Accepted: 1 August 2019; Published: 7 August 2019 Abstract: Whole-genome sequences of four EMS (ethyl methanesulfonate)-induced eggplant mutants were analyzed to identify genome-wide mutations. In total, 173.01 GB of paired-end reads were obtained for four EMS-induced mutants and (WT) wild type and 1,076,010 SNPs (single nucleotide polymorphisms) and 183,421 indels were identified. The most common mutation type was C/G to T/A transitions followed by A/T to G/C transitions. The mean densities were one SNP per 1.3 to 2.6 Mb. The effect of mutations on gene function was annotated and only 7.2% were determined to be deleterious. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed 10 and 11 genes, which were nonsynonymous mutation or frameshift deletion in 48-5 and L6-5 involved in the anthocyanin biosynthesis or flavone and flavonol biosynthesis.
    [Show full text]
  • Title: Effects of Ethyl Methanesulfonate (EMS) on Seedling and Yield Contributing Traits in Basmati Rice
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 March 2021 doi:10.20944/preprints202103.0453.v1 Title: Effects of Ethyl methanesulfonate (EMS) on Seedling and Yield contributing Traits in Basmati Rice Authors list: Muhammad Rashid, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan. email:[email protected] Areeqa Shamshad, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan email:[email protected] Ljupcho Jankuloski, FAO/IAEA, Plant Breeding and Genetics Laboratories, Vienna, Austria email: [email protected] Abstract Increasing genetic diversity in crop plants has been used for chemical mutagenesis. Through the application of various mutagenic agents, over 430 new varieties have been derived as rice mutants (Oryza sativa L.) Chemical mutagens such as ethyl methane sulphonate (EMS), diepoxybutane derivative (DEB), sodium azide, and gamma ray, x-ray, and quick neutron irradiation have been commonly used to induce a large number of functional variations in rice and others crops. Among chemical mutagens, ethyl methane sulfonate (EMS) is the alkylating agent most widely used in plants because it induces nucleotide substitutions to be extremely frequent, as detected in various genomes. In this study, seeds of potential genotype of the popular variety, (Oryza sativa L. Super Basmati variety) were treated with EMS at concentrations of 0.25%, 0.50%, 0.75%, 1% and 1.5%. Various measurements on the M1 generation determined EMS sensitivity. As concentration of applied EMS increased, will decrease in germination, shoot length, root length, plant height, productive tillers, Panicle Length, Total Spikelet, sterile spikelet and fertility under field conditions were observed in M1 generation as compared to the non-treatment control.
    [Show full text]
  • Principles for Evaluating Health Risks in Children Associated with Exposure to Chemicals
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization or the World Health Organization. Environmental Health Criteria 237 PRINCIPLES FOR EVALUATING HEALTH RISKS IN CHILDREN ASSOCIATED WITH EXPOSURE TO CHEMICALS First drafts prepared by Dr Germaine Buck Louis, Bethesda, USA; Dr Terri Damstra, Research Triangle Park, USA; Dr Fernando Díaz- Barriga, San Luis Potosi, Mexico; Dr Elaine Faustman, Washington, USA; Dr Ulla Hass, Soborg, Denmark; Dr Robert Kavlock, Research Triangle Park, USA; Dr Carole Kimmel, Washington, USA; Dr Gary Kimmel, Silver Spring, USA; Dr Kannan Krishnan, Montreal, Canada; Dr Ulrike Luderer, Irvine, USA; and Dr Linda Sheldon, Research Triangle Park, USA Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO) and the World Health Organization (WHO). The overall objec- tives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes,
    [Show full text]
  • EMS-Induced Mutagenesis of Clostridium Carboxidivorans for Increased Atmospheric CO2 Reduction Efficiency and Solvent Production
    microorganisms Article EMS-Induced Mutagenesis of Clostridium carboxidivorans for Increased Atmospheric CO2 Reduction Efficiency and Solvent Production Naoufal Lakhssassi 1,2, Azam Baharlouei 1, Jonas Meksem 3, Scott D. Hamilton-Brehm 4, David A. Lightfoot 2, Khalid Meksem 2,* and Yanna Liang 1,5,* 1 Department of Civil and Environmental Engineering, 1230 Lincoln Drive, Southern Illinois University Carbondale, Carbondale, IL 62901, USA; [email protected] (N.L.); [email protected] (A.B.) 2 Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; [email protected] 3 Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA; [email protected] 4 Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA; [email protected] 5 Department of Environmental and Sustainable Engineering, 1400 Washington Ave, State University of New York at Albany, Albany, NY 12222, USA * Correspondence: [email protected] (K.M.); [email protected] (Y.L.) Received: 1 July 2020; Accepted: 10 August 2020; Published: 14 August 2020 Abstract: Clostridium carboxidivorans (P7) is one of the most important solvent-producing bacteria capable of fermenting syngas (CO, CO2, and H2) to produce chemical commodities when grown as an autotroph. This study aimed to develop ethyl methanesulfonate (EMS)-induced P7 mutants that were capable of growing in the presence of CO2 as a unique source of carbon with increased solvent formation and atmospheric CO2 reduction to limit global warming. Phenotypic analysis including growth and end product characterization of the P7 wild type (WT) demonstrated that this strain grew better at 25 ◦C than 37 ◦C when CO2 served as the only source of carbon.
    [Show full text]
  • Molecular Analysis of Ethyl Methanesulfonate-Induced
    [CANCERRESEARCH54,3001-3006,June1, 1994] Molecular Analysis of Ethyl Methanesulfonate-induced Mutations at the hprt Gene in the Ethyl Methanesulfonate-sensitive Chinese Hamster Cell Line EM-Cl! and Its Parental Line CHO9' Christel W. Op het Veld, Matgorzata Z. Zdzienicka, Harry Vrieling, Paul H. M. Lohman, and Albert A. van Zeeland2 MGC-Department of Radiation Genetics and Chemical Muzagenesis, State University of Leiden, Wassenaarseweg 72, 2333 AL Leiden [C. W. 0. h. V., M. Z. Z., H. V., P. H. M. L., A. A. V. Z.J, and J. A. Cohen Institute, Interuniversizy Research Institute for Radiopathology and Radiation Protection, Leiden [M. Z. Z., H. V., A. A. v. Z.J, the Netherlands ABSTRACF strong nucleophiles like the N-7 position of guanine, resulting in a relatively low 06/N-7-alkylguanine ratio. The Chinese hamster cell line EM-Cl! has been shown to be 5 times Molecular analysis of induced mutations, i.e. , the determination of more sensitive than its parental line CHO9, but not hypermutable, after mutational spectra, provides a valuable tool for the identification of treatment with ethyl methanesulfonate. Ethyl methanesulfonate-induced adducts that are involved in mutation induction. Moreover, the use of mutational spectra were determined at the hprt locus to investigate DNA repair deficient cell lines will generate additional information whether the same ndducts are responsible for mutation induction in both cell lines. The mutational spectra for EM-C!! and CHO9 show an im concerning the mutagenic potential of different types of DNA adducts. portent difference. GC-'AT transitions were found in both cell lines at Recently, a Chinese hamster ovary cell line, EM-Cl 1, which is very similar frequencies; however, the spectrum of CHO9 contains a class of sensitive to the cell killing effects of EMS, was isolated in our AT—'GCtransitions,which seems to be replaced by a group of deletions laboratory (2).
    [Show full text]
  • A Review of the Genetic Effects of Ethyl Methanesulfonate Gary A. Sega
    Mutation Research, 134 (1984) 113-142 113 Elsevier MTR 07179 A review of the genetic effects of ethyl methanesulfonate Gary A. Sega Biology Division, Oak Ridge National Laboratory *, Oak Ridge, TN 37831 (U.S.A.) (Received 10 October 1983) (Revision received 23 May 1984) (Accepted 25 May 1984) Contents Summary .............................................................................. 113 Introduction ........................................................................... 114 Chemical and physical properties ............................................................. 114 Interaction with DNA ..................................................................... 115 Review of mutagenicity data ................................................................ 117 Effects of EMS in viruses ................................................................. 117 Genetic effects in prokaryotes .............................................................. 118 Genetic effects in fungi .................................................................. 119 Genetic effects in plants .................................................................. 121 Insects ................................................................................ 123 Drosophila ........................................................................... 123 Other insects .......................................................................... 125 Mammalian cell culture .................................................................... 126 Chinese hamster cells ...................................................................
    [Show full text]