Bivalvia, Pteriomorphia) and Its Evolutionary Significance

Total Page:16

File Type:pdf, Size:1020Kb

Bivalvia, Pteriomorphia) and Its Evolutionary Significance Zoomorphology (2003) 122:145–159 DOI 10.1007/s00435-003-0080-5 ORIGINAL ARTICLE Antonio G. Checa · Antonio P. Jimnez-Jimnez Rib fabrication in Ostreoidea and Plicatuloidea (Bivalvia, Pteriomorphia) and its evolutionary significance Received: 24 January 2003 / Accepted: 8 May 2003 / Published online: 24 June 2003 Springer-Verlag 2003 Abstract Ribs of Ostreoidea and Plicatuloidea are de- Introduction fined as antimarginal, that is, perpendicular to the margin throughout growth. Morphogenetically, these ribs are Ribs are by far the most common sculptural elements of unique, since, unlike radial ribs, they are secreted by a the shell of Bivalvia. They can be classified into three homogeneous mantle margin. Based also on the recon- main morphological categories: radial, commarginal, and structed shell secretion cycle in Bivalvia, we propose that oblique (Fig. 1A–C). Radial ribs can be defined as ribs of Ostreoidea and Plicatuloidea are formed by a helicospirals that diverge from the umbo and represent the mantle margin which, upon extension from the shell growth trajectories of particular portions of the mantle margin, stretches and folds by taking the preformed ribs specialized for rib secretion, which were identified and as templates. In extending perpendicular to the margin (as defined by Stone (1998) as corpora spinosa (see below). in all Bivalvia growing isometrically), such a mantle Commarginal ribs run parallel to the margin and are extends the rib pattern antimarginally. Ribs of this kind secreted by periodic extension of the mantle all along its are purely mechanical structures, as their arrangement length above the shell margin. Commarginal is preferred depends on the mechanical properties of the mantle and over the less accurate term concentric (see Cox 1969). on the environmental conditions. This explains the high Both the radial and commarginal patterns characterize irregularity of such ribbing patterns. The presence of large groups of bivalves, for example, radial ribs are the antimarginal ribs in both the Ostreoidea and Plicatuloidea only ones present in Pectinidae and Arcoidea, whereas sheds light on their origin. The first known oyster, Crassatellidae secrete exclusively commarginal ribs. Both Actinostreon cristadifformis, probably derived from an antimarginally ribbed Prospondylidae gen. indet. in the Late Permian or Early Triassic. Antimarginally ribbed Triassic species formerly included in Placunopsis origi- nated both the Dimyidae Atreta in the Late Triassic and Enantiostreon in the Mid Triassic, which was transitional to Plicatulidae. Therefore, Dimyidae and Plicatulidae are closely connected and grouped under Plicatuloidea, to which Ostreoidea is phylogenetically unrelated. Keywords Bivalves · Oysters · Morphology · Shell · Evolution A. G. Checa ()) · A. P. Jimnez-Jimnez Departamento de Estratigrafa y Paleontologa, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain Fig. 1A–D The four main morphogenetic varieties of bivalve ribs. e-mail: [email protected] A Radial (Pecten, Pectinidae). B Commarginal (Bassina, Veneri- dae). C Oblique (Divaricella, Lucinidae). D Antimarginal (Cu- Tel.: +34-958-243201 bitostrea, Ostreidae) Fax: +34-958-248528 146 Fig. 2A–F Examples of antimarginal ribs in Ostreoidea (A, B, D– Upper Coniacian, Wadi Sudr, Sinai (Egypt), specimen in Malchus F) and Plicatuloidea (C). A Ostrea lamellosa Brocchi, 1814, left (1990), plate 1, Fig. 7. E Ambigostrea villei (Coquand, 1862), right valve, EPUGR.JJ-Ju-10, Pliocene, El Alquin, Almera (Spain). B valve, Uppermost Campanian, between Qena and Quseir (Egypt), Hyotissa hyotis (Linnaeus, 1758), right valve, EPUGR.JJ-Ju-12, specimen in Malchus (1990), plate 23, Fig. 3. F Agerostrea Pliocene, El Alquin, Almera (Spain). C Plicatula gibbosa ungulata (Schlotheim, 1813), left valve, Maastrichtian, Ammonite Lamarck, 1801, left valve, EPUGR.BV.510, Recent, Gasparilla Hills (Egypt), specimen in Malchus (1990), plate 15, Fig. 8 Island (Mxico). D Oscillopha dichotoma (Bayle, 1849), left valve, kinds of ribs may coexist in some other groups and, commarginal. Several varieties are subsumed under this occasionally, on the same shell, thus producing cancellate general term including the single oblique, divaricate, ornamentation. A third, less common type, is the oblique rasp-like, and straight ornaments (Seilacher 1972; Checa one. Oblique ribs can be defined as those having 2002), all of which are morphogenetically related, since directions that are intermediate between radial and they arise essentially by contact-guidance mechanisms 147 (Checa 2002). Oblique ribs are not exclusive to any sputter-coated with gold (Polaron E5000). Electron micrographs supraspecific taxon with the exception the Divaricellinae were obtained with a Zeiss DSM 950. (Lucinoidea). Authors describing ribs of Ostreoidea (mainly Ostrei- dae, since the Gryphaeidae are usually smooth) and Results Plicatuloidea have invariably considered them to be radial (see, for example, Slack-Smith 1998), but a careful Comparative morphology of radial and antimarginal ribs inspection reveals that ribs in both groups diverge from of Ostreoidea and Plicatuloidea the shell center to remain approximately perpendicular to the shell margin throughout growth (Figs. 1D, 2). Ribs of Besides Camptonectes (Waller 1986), Ostreoidea, and this kind can be termed antimarginal and were initially Plicatuloidea, we have encountered antimarginal sculp- recognized and defined in Camptonectes (Pectinidae) by tures in other Pectinidae (such as Cyclopecten), Galeom- Waller (1986). Antimarginal ribs only follow radial matidae (Galeomma, Ephippodonta), Mytilidae (Septifer, directions at the ventral margin, whereas toward the sides Crenella, Urumella, Lithophaga), Limidae (Divarilima), they curve laterally to form broader angles with the radial Lucinidae (Epicodakia), and in juvenile Neoleptonidae directions. Although antimarginal ribs fit into the oblique (Neolepton), Nuculidae (Nucula), and Phyllobryidae condition, they should be kept separate on a morphoge- (Phyllobrya) (see illustrations in Gofas 1991; Hayami netic basis. and Kase 1993; Gofas and Salas 1996; Salas and Gofas Antimarginal ribs of Ostreoidea and Plicatuloidea are 1998; Checa 2002; N. Malchus personal communication). unique among present-day bivalves. Their pattern of An extensive review of literature and museum material lateral divergence is not easy to understand and, since reveals that antimarginal ribs are the only kind found in their singularity has gone unnoticed to earlier authors, Recent and fossil Ostreoida. The same applies to Plicat- there are no morphogenetic studies dealing with them, uloidea, with the exception of radially ribbed species therefore constituting a morphological enigma. The assigned to Plicatula, which were relatively common present study is dedicated to unraveling their morpho- between the Hauterivian and the Eocene (see, for genesis and exploring their systematic and evolutionary example, Squires and Saul 1997; El-Hedeny et al. significance. 2001). Whether or not they belonged to a single or several offshoots of antimarginally ribbed Plicatulidae is a matter of future study. Antimarginal ribs of these two Materials and methods groups show features that make them distinct from the antimarginal sculpture of other Bivalvia, which is Observations have been made on a large number of Recent and restricted to the outer shell layers. In oysters, on the fossil species both from the literature and from collections. In contrary, ribs are plicae (following the terminology of particular, we have had access to material housed in the following Stenzel 1971) that affect the entire thickness of the shell institutions: Departamento de Estratigrafa y Paleontologa, Uni- margin and replicate mutually on both valves. There are versidad de Granada (labeled EPUGR), Museo Nacional de Ciencias Naturales, Madrid (MNCN), Geologisch-palontologi- nevertheless two ways in which the shell corrugates. In sches Institut, Philipps Universitt Marburg (GPIUM), and Staat- most Ostreoida and in many species of Plicatula (partic- liches Museum fr Naturkunde Stuttgart (SMNS). ularly thick-shelled ones) folds of the shell margin fade We observed specimens with soft parts of the oysters Ostrea out quickly toward the shell interior on the inner shell edulis Linnaeus, 1758, provided at Centro de Cultivos Marinos PEMARES, El Rompido (Huelva, Spain), Crassostrea gigas surface (Fig. 3A). The position of the mantle margin (Thunberg, 1793), sampled in the intertidal of Roche (Cdiz, within the shell in the resting position is usually marked Spain) and Santa Luza (Algarve, Portugal), and Saccostrea by an internal shell deposit forming a marginal flange, the echinata (Quoy and Gaimard, 1835), from Ehime (Matsuyama, shell interior being flat or almost flat along this line. On Japan). Specimens of two unidentified species of Plicatula with preserved soft parts from Baha (Brazil) and Perim Island (Yemen) the contrary, in a few Ostreoida, and in thin-shelled were on loan from the Musum National d’Histoire Naturelle de species of Plicatula, shell folds affect the whole shell Paris (MNHN). Soft parts of bivalves of other groups already thickness (Fig. 3B). From here on, we will use the term present in the EPUGR collection were also studied: Pecten antimarginal to refer to ribs of the kind found in maximus (Linnaeus, 1758), Aequipecten opercularis (Linnaeus, Ostreoidea and Plicatuloidea. 1758), Mimachlamys varia (Linnaeus, 1758) (Pectinidae), Anomia ephippium
Recommended publications
  • Analysis of Synonymous Codon Usage Patterns in Sixty-Four Different Bivalve Species
    Analysis of synonymous codon usage patterns in sixty-four diVerent bivalve species Marco Gerdol1, Gianluca De Moro1, Paola Venier2 and Alberto Pallavicini1 1 Department of Life Sciences, University of Trieste, Trieste, Italy 2 Department of Biology, University of Padova, Padova, Italy ABSTRACT Synonymous codon usage bias (CUB) is a defined as the non-random usage of codons encoding the same amino acid across diVerent genomes. This phenomenon is common to all organisms and the real weight of the many factors involved in its shaping still remains to be fully determined. So far, relatively little attention has been put in the analysis of CUB in bivalve mollusks due to the limited genomic data available. Taking advantage of the massive sequence data generated from next generation sequencing projects, we explored codon preferences in 64 diVerent species pertaining to the six major evolutionary lineages in Bivalvia. We detected remarkable diVerences across species, which are only partially dependent on phylogeny. While the intensity of CUB is mild in most organisms, a heterogeneous group of species (including Arcida and Mytilida, among the others) display higher bias and a strong preference for AT-ending codons. We show that the relative strength and direction of mutational bias, selection for translational eYciency and for translational accuracy contribute to the establishment of synonymous codon usage in bivalves. Although many aspects underlying bivalve CUB still remain obscure, we provide for the first time an overview of this phenomenon
    [Show full text]
  • Aequipecten Opercularis (Linnaeus, 1758)
    Aequipecten opercularis (Linnaeus, 1758) AphiaID: 140687 VIEIRA Animalia (Reino) > Mollusca (Filo) > Bivalvia (Classe) > Autobranchia (Subclasse) > Pteriomorphia (Infraclasse) > Pectinida (Ordem) > Pectinoidea (Superfamilia) > Pectinidae (Familia) © Vasco Ferreira Mouna Antit, via WoRMS v_s_ - iNaturalist.org Facilmente confundível com: 1 Pecten maximus Vieira Principais ameaças Sinónimos Aequipecten heliacus (Dall, 1925) Chlamys bruei coeni Nordsieck, 1969 Chlamys bruei pulchricostata Nordsieck, 1969 Chlamys opercularis (Linnaeus, 1758) Ostrea dubia Gmelin, 1791 Ostrea elegans Gmelin, 1791 Ostrea florida Gmelin, 1791 Ostrea opercularis Linnaeus, 1758 Ostrea plana Gmelin, 1791 Ostrea radiata Gmelin, 1791 Ostrea regia Gmelin, 1791 Ostrea versicolor Gmelin, 1791 Pecten (Chlamys) vescoi Bavay, 1903 Pecten audouinii Payraudeau, 1826 Pecten cretatus Reeve, 1853 Pecten daucus Reeve, 1853 Pecten heliacus Dall, 1925 Pecten lineatus da Costa, 1778 Pecten lineatus var. albida Locard, 1888 Pecten lineatus var. bicolor Locard, 1888 Pecten opercularis (Linnaeus, 1758) 2 Pecten opercularis var. albopurpurascens Lamarck, 1819 Pecten opercularis var. albovariegata Clement, 1875 Pecten opercularis var. aspera Bucquoy, Dautzenberg & Dollfus, 1889 Pecten opercularis var. concolor Bucquoy, Dautzenberg & Dollfus, 1889 Pecten opercularis var. depressa Locard, 1888 Pecten opercularis var. elongata Jeffreys, 1864 Pecten opercularis var. luteus Lamarck, 1819 Pecten pictus da Costa, 1778 Pecten subrufus Pennant, 1777 Pecten vescoi Bavay, 1903 Referências basis of record Gofas, S.; Le Renard, J.; Bouchet, P. (2001). Mollusca. in: Costello, M.J. et al. (eds), European Register of Marine Species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Patrimoines Naturels. 50: 180-213. [details] additional source Ardovini, R.; Cossignani, T. (2004). West African seashells (including Azores, Madeira and Canary Is.) = Conchiglie dell’Africa Occidentale (incluse Azzorre, Madeira e Canarie).
    [Show full text]
  • Biochemical Composition and Condition of Crassostrea Gigas (Thunberg, 1793) in Relation to Integrated Multi-Trophic Aquaculture (IMTA) Feed Sources
    Biochemical composition and condition of Crassostrea gigas (Thunberg, 1793) in relation to integrated multi-trophic aquaculture (IMTA) feed sources vorgelegt von: Maximilian Felix Schupp geb. am 06.06.1990 in Lippstadt Erstgutachter: Zweitgutachter: Dr. Adrian Bischoff-Lang Prof. Dr. Bela H. Buck Universität Rostock Alfred-Wegener-Institut Agrar- und Umweltwissenschaftliche Helmholtz Zentrum für Polar Fakultät und Meeresforschung (AWI) Lehrstuhl Aquakultur und Sea-Ranching MASTERARBEIT im Studiengang Aquakultur und Sea-Ranching Agrar- und Umweltwissenschaftliche Fakultät Rostock, 2015 Directory 1 INTRODUCTION .................................................................................................. 1 2 BACKGROUND ..................................................................................................... 5 2.1 Biology of Crassostrea gigas ............................................................................................................. 5 2.2 Lipids and fatty acids...................................................................................................................... 10 3 MATERIALS AND METHODS ......................................................................... 12 3.1 Specimen .......................................................................................................................................... 12 3.2 Experimental setup ......................................................................................................................... 12 3.3 Determination of dry weight
    [Show full text]
  • The Shell Matrix of the European Thorny Oyster, Spondylus Gaederopus: Microstructural and Molecular Characterization
    The shell matrix of the european thorny oyster, Spondylus gaederopus: microstructural and molecular characterization. Jorune Sakalauskaite, Laurent Plasseraud, Jérôme Thomas, Marie Alberic, Mathieu Thoury, Jonathan Perrin, Frédéric Jamme, Cédric Broussard, Beatrice Demarchi, Frédéric Marin To cite this version: Jorune Sakalauskaite, Laurent Plasseraud, Jérôme Thomas, Marie Alberic, Mathieu Thoury, et al.. The shell matrix of the european thorny oyster, Spondylus gaederopus: microstructural and molecular characterization.. Journal of Structural Biology, Elsevier, 2020, 211 (1), pp.107497. 10.1016/j.jsb.2020.107497. hal-02906399 HAL Id: hal-02906399 https://hal.archives-ouvertes.fr/hal-02906399 Submitted on 17 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The shell matrix of the European thorny oyster, Spondylus gaederopus: microstructural and molecular characterization List of authors: Jorune Sakalauskaite1,2, Laurent Plasseraud3, Jérôme Thomas2, Marie Albéric4, Mathieu Thoury5, Jonathan Perrin6, Frédéric Jamme6, Cédric Broussard7, Beatrice Demarchi1, Frédéric Marin2 Affiliations 1. Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; 2. Biogeosciences, UMR CNRS 6282, University of Burgundy-Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France. 3. Institute of Molecular Chemistry, ICMUB UMR CNRS 6302, University of Burgundy- Franche-Comté, 9 Avenue Alain Savary, 21000 Dijon, France.
    [Show full text]
  • Annual Report Fy2016
    ANNUAL REPORT FY2016 AFFILIATED WITH Affiliated with Cornell University PRI: WHO WE ARE Founded in 1932, the Paleontological Research Institution (PRI) pursues and integrates education and research, and interprets the history and systems of the Earth and its life. Our aim is to increase knowledge, educate society, and encourage wise stewardship of the Earth. PRI has two campuses and one large plot of forest property north of Ithaca, NY. Palmer Hall Museum of the Earth Named in honor of Katherine Palmer Opened in 2003, the Museum of the Earth (Director, 1952-1978), Palmer Hall is the is home to temporary and permanent Institution’s main building, housing PRI’s exhibitions that teach visitors about the collections, laboratories, library, and offices. history of life on Earth. Cayuga Nature Center Smith Woods The Cayuga Nature Center merged with Located in Trumansburg, NY, Smith Woods PRI in 2013. The Nature Center’s education is the largest plot of old-growth forest in programs and exhibitions focus on the central New York. More than 32 acres large, natural history of the Cayuga Lake basin, Smith Woods serves as a research and and are conducted in the Lodge and on the education resource for elementary through 120 acres of woodlands and fields on-site. graduate students. TABLE OF CONTENTS DIRECTOR’S AND PRESIDENT’S MESSAGE 2-3 PRI SERVES: 2016-2016 AT A GLANCE 4-5 RESEARCH 6-9 PUBLICATIONS 10-11 COLLECTIONS 12-13 EDUCATION 14-18 GRANTS 19 CORNELL UNIVERSITY RELATIONS 20-23 MUSEUM OF THE EARTH 24-25 CAYUGA NATURE CENTER 26-27 EXHIBITIONS 28-31 COMMUNITY ACCESSIBILITY 32-33 INTERNS AND VOLUNTEERS 34-35 DONOR SUPPORT 36-39 FINANCIAL ACTIVITY STATEMENT 40 BOARD OF TRUSTEES AND STAFF 41 FRONT COVER BACKGROUND IMAGE: Blue sky at the Cayuga Nature Center.
    [Show full text]
  • The Marine Mollusca of Suriname (Dutch Guiana) Holocene and Recent
    THE MARINE MOLLUSCA OF SURINAME (DUTCH GUIANA) HOLOCENE AND RECENT Part II. BIVALVIA AND SCAPHOPODA by G. O. VAN REGTEREN ALTENA Rijksmuseum van Natuurlijke Historie, Leiden "The student must know something of syste- matic work. This is populary supposed to be a dry-as-dust branch of zoology. In fact, the systematist may be called the dustman of biol- ogy, for he performs a laborious and frequently thankless task for his fellows, and yet it is one which is essential for their well-being and progress". Maud D. Haviland in: Forest, steppe and tundra, 1926. CONTENTS Ι. Introduction, systematic survey and page references 3 2. Bivalvia and Scaphopoda 7 3. References 86 4. List of corrections of Part I 93 5. Plates 94 6. Addendum 100 1. INTRODUCTION, SYSTEMATIC SURVEY AND PAGE REFERENCES In the first part of this work, published in 1969, I gave a general intro- duction to the Suriname marine Mollusca ; in this second part the Bivalvia and Scaphopoda are treated. The system (and frequently also the nomen- clature) of the Bivalvia are those employed in the "Treatise on Invertebrate Paleontology, (N) Mollusca 6, Part I, Bivalvia, Volume 1 and 2". These volumes were issued in 1969 and contain the most modern system of the Bivalvia. For the Scaphopoda the system of Thiele (1935) is used. Since I published in 1968 a preliminary list of the marine Bivalvia of Suriname, several additions and changes have been made. I am indebted to Messrs. D. J. Green, R. H. Hill and P. G. E. F. Augustinus for having provided many new coastal records for several species.
    [Show full text]
  • Eumarcia Paupercula (Bivalvia: Veneridae) from Maputo Bay, Mozambique
    Western Indian Ocean JOURNAL OF Marine Science Volume 16 | Issue 2 | Jul – Dec 2017 | ISSN: 0856-860X Chief Editor José Paula Western Indian Ocean JOURNAL OF Marine Science Chief Editor José Paula | Faculty of Sciences of University of Lisbon, Portugal Copy Editor Timothy Andrew Editorial Board Lena GIPPERTH Joseph MAINA Sweden Australia Serge ANDREFOUËT France Johan GROENEVELD Aviti MMOCHI South Africa Tanzania Ranjeet BHAGOOLI Mauritius Issufo HALO Nyawira MUTHIGA Salomão BANDEIRA South Africa/Mozambique Kenya Mozambique Christina HICKS Brent NEWMAN Betsy Anne BEYMER-FARRIS Australia/UK South Africa USA/Norway Johnson KITHEKA Jan ROBINSON Jared BOSIRE Kenya Seycheles Kenya Kassim KULINDWA Sérgio ROSENDO Atanásio BRITO Tanzania Portugal Mozambique Louis CELLIERS Thierry LAVITRA Melita SAMOILYS South Africa Madagascar Kenya Pascale CHABANET Blandina LUGENDO Max TROELL Reunion (France) Tanzania Sweden Published biannually Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research generated in the Western Indian Ocean (WIO) region, in particular on the sustainable use of coastal and marine resources. This is central to the goal of supporting and promoting sustainable coastal development in the region, as well as contributing to the global base of marine science. The journal publishes original research articles dealing with all aspects of marine science and coastal manage- ment. Topics include, but are not limited to: theoretical studies, oceanography, marine biology and ecology, fisheries, recovery and restoration processes, legal and institutional frameworks, and interactions/relationships between humans and the coastal and marine environment. In addition, Western Indian Ocean Journal of Marine Science features state-of-the-art review articles and short communications.
    [Show full text]
  • Early Ontogeny of Jurassic Bakevelliids and Their Bearing on Bivalve Evolution
    Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution NIKOLAUS MALCHUS Malchus, N. 2004. Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontologica Polonica 49 (1): 85–110. Larval and earliest postlarval shells of Jurassic Bakevelliidae are described for the first time and some complementary data are given concerning larval shells of oysters and pinnids. Two new larval shell characters, a posterodorsal outlet and shell septum are described. The outlet is homologous to the posterodorsal notch of oysters and posterodorsal ridge of arcoids. It probably reflects the presence of the soft anatomical character post−anal tuft, which, among Pteriomorphia, was only known from oysters. A shell septum was so far only known from Cassianellidae, Lithiotidae, and the bakevelliid Kobayashites. A review of early ontogenetic shell characters strongly suggests a basal dichotomy within the Pterio− morphia separating taxa with opisthogyrate larval shells, such as most (or all?) Praecardioida, Pinnoida, Pterioida (Bakevelliidae, Cassianellidae, all living Pterioidea), and Ostreoida from all other groups. The Pinnidae appear to be closely related to the Pterioida, and the Bakevelliidae belong to the stem line of the Cassianellidae, Lithiotidae, Pterioidea, and Ostreoidea. The latter two superfamilies comprise a well constrained clade. These interpretations are con− sistent with recent phylogenetic hypotheses based on palaeontological and genetic (18S and 28S mtDNA) data. A more detailed phylogeny is hampered by the fact that many larval shell characters are rather ancient plesiomorphies. Key words: Bivalvia, Pteriomorphia, Bakevelliidae, larval shell, ontogeny, phylogeny. Nikolaus Malchus [[email protected]], Departamento de Geologia/Unitat Paleontologia, Universitat Autòno− ma Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain.
    [Show full text]
  • Olympia Oyster (Ostrea Lurida)
    COSEWIC Assessment and Status Report on the Olympia Oyster Ostrea lurida in Canada SPECIAL CONCERN 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Olympia Oyster Ostrea lurida in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 56 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report(s): COSEWIC. 2000. COSEWIC assessment and status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 30 pp. (www.sararegistry.gc.ca/status/status_e.cfm) Gillespie, G.E. 2000. COSEWIC status report on the Olympia Oyster Ostrea conchaphila in Canada in COSEWIC assessment and update status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-30 pp. Production note: COSEWIC acknowledges Graham E. Gillespie for writing the provisional status report on the Olympia Oyster, Ostrea lurida, prepared under contract with Environment Canada and Fisheries and Oceans Canada. The contractor’s involvement with the writing of the status report ended with the acceptance of the provisional report. Any modifications to the status report during the subsequent preparation of the 6-month interim and 2-month interim status reports were overseen by Robert Forsyth and Dr. Gerald Mackie, COSEWIC Molluscs Specialist Subcommittee Co-Chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’huître plate du Pacifique (Ostrea lurida) au Canada.
    [Show full text]
  • The Marine and Brackish Water Mollusca of the State of Mississippi
    Gulf and Caribbean Research Volume 1 Issue 1 January 1961 The Marine and Brackish Water Mollusca of the State of Mississippi Donald R. Moore Gulf Coast Research Laboratory Follow this and additional works at: https://aquila.usm.edu/gcr Recommended Citation Moore, D. R. 1961. The Marine and Brackish Water Mollusca of the State of Mississippi. Gulf Research Reports 1 (1): 1-58. Retrieved from https://aquila.usm.edu/gcr/vol1/iss1/1 DOI: https://doi.org/10.18785/grr.0101.01 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf Research Reports Volume 1, Number 1 Ocean Springs, Mississippi April, 1961 A JOURNAL DEVOTED PRIMARILY TO PUBLICATION OF THE DATA OF THE MARINE SCIENCES, CHIEFLY OF THE GULF OF MEXICO AND ADJACENT WATERS. GORDON GUNTER, Editor Published by the GULF COAST RESEARCH LABORATORY Ocean Springs, Mississippi SHAUGHNESSY PRINTING CO.. EILOXI, MISS. 0 U c x 41 f 4 21 3 a THE MARINE AND BRACKISH WATER MOLLUSCA of the STATE OF MISSISSIPPI Donald R. Moore GULF COAST RESEARCH LABORATORY and DEPARTMENT OF BIOLOGY, MISSISSIPPI SOUTHERN COLLEGE I -1- TABLE OF CONTENTS Introduction ............................................... Page 3 Historical Account ........................................ Page 3 Procedure of Work ....................................... Page 4 Description of the Mississippi Coast ....................... Page 5 The Physical Environment ................................ Page '7 List of Mississippi Marine and Brackish Water Mollusca . Page 11 Discussion of Species ...................................... Page 17 Supplementary Note .....................................
    [Show full text]
  • Paleoecology of Late Cretaceous Methane Cold-Seeps of the Pierre Shale, South Dakota
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 10-2014 Paleoecology of Late Cretaceous methane cold-seeps of the Pierre Shale, South Dakota Kimberly Cynthia Handle Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/355 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Paleoecology of Late Cretaceous methane cold-seeps of the Pierre Shale, South Dakota by Kimberly Cynthia Handle A dissertation submitted to the Graduate Faculty in Earth and Environmental Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2014 i © 2014 Kimberly Cynthia Handle All Rights Reserved ii This manuscript has been read and accepted for the Graduate Faculty in Earth and Environmental Sciences in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Neil H. Landman____________________________ __________________ __________________________________________ Date Chair of Examining Committee Harold C. Connolly, Jr.___ ____________________ __________________ __________________________________________ Date Deputy - Executive Officer Supervising Committee Harold C. Connolly, Jr John A. Chamberlain Robert F. Rockwell The City University of New York iii ABSTRACT The Paleoecology of Late Cretaceous methane cold-seeps of the Pierre Shale, South Dakota By Kimberly Cynthia Handle Adviser: Neil H. Landman Most investigations of ancient methane seeps focus on either the geologic or paleontological aspects of these extreme environments.
    [Show full text]
  • Cementing Mussels to Oysters in the Pteriomorphian Tree: a Phylogenomic Approach
    Cementing mussels to oysters in the pteriomorphian tree: a phylogenomic approach The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lemer, Sarah, Vanessa L. González, Rüdiger Bieler, and Gonzalo Giribet. 2016. “Cementing mussels to oysters in the pteriomorphian tree: a phylogenomic approach.” Proceedings of the Royal Society B: Biological Sciences 283 (1833): 20160857. doi:10.1098/ rspb.2016.0857. http://dx.doi.org/10.1098/rspb.2016.0857. Published Version doi:10.1098/rspb.2016.0857 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:27822350 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Cementing mussels to oysters in the rspb.royalsocietypublishing.org pteriomorphian tree: a phylogenomic approach Sarah Lemer1, Vanessa L. Gonza´lez2,Ru¨diger Bieler3 and Gonzalo Giribet1 Research 1Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cite this article: Lemer S, Gonza´lez VL, Bieler 26 Oxford Street, Cambridge, MA 02138, USA 2Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, R, Giribet G. 2016 Cementing mussels to Washington, DC 20013, USA oysters in the pteriomorphian tree: a phylo- 3Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, genomic approach. Proc. R. Soc. B 283: IL 60605, USA 20160857. SL, 0000-0003-0048-7296 http://dx.doi.org/10.1098/rspb.2016.0857 Mussels (Mytilida) are a group of bivalves with ancient origins and some of the most important commercial shellfish worldwide.
    [Show full text]