Distinct Camp Response Element-Binding Protein (CREB) Domains Stimulate Different Steps in a Concerted Mechanism of Transcription Activation

Total Page:16

File Type:pdf, Size:1020Kb

Distinct Camp Response Element-Binding Protein (CREB) Domains Stimulate Different Steps in a Concerted Mechanism of Transcription Activation Distinct cAMP response element-binding protein (CREB) domains stimulate different steps in a concerted mechanism of transcription activation Jeong-a Kim, Jingfang Lu, and Patrick G. Quinn* Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033 Edited by Robert G. Roeder, The Rockefeller University, New York, NY, and approved August 9, 2000 (received for review January 21, 2000) Hormones and neurotransmitters rapidly change patterns of gene could promote any (7, 9, 10) or all (11) of the steps in expression in target cells by activating protein kinases that phos- transcription initiation in response to cAMP. However, inter- phorylate and modify the activity of CREB and other transcription pretation of these studies is limited by the possible complica- factors. Although CREB was initially characterized as mediating the tion that PKA phosphorylates and changes the activity of other response to cAMP, CREB phosphorylation and activation are stim- proteins in the nuclear extracts. ulated by diverse extracellular signals and protein kinases in The CREB protein contains two distinct activation domains, a essentially all cells and tissues. CREB stimulates transcription constitutive activation domain (CAD) and a kinase-inducible do- through a constitutive activation domain (CAD), which interacts main (KID) that can act independently to facilitate either consti- with the promoter recognition factor TFIID, and through a kinase- tutive or kinase-inducible transcription activation (13, 14). The inducible domain (KID), when Ser-133 is phosphorylated. The CAD in CREB interacts with the hTAF130͞dTAF110 subunit of present study provides new insight into the mechanism of activa- TFIID, which may facilitate recruitment of a polymerase complex tion by showing that each of the CREB domains contributes to assembly (15, 16) (E. Felinski, J.K., L.J., and P.G.Q., unpublished transcription initiation by stimulating sequential steps in the tran- work). We mapped the interaction between the TATA-binding scription reaction. The CAD effectively assembled a polymerase protein (TBP)-associated factor (TAF) and CREB to hydrophobic complex, as evidenced by constitutive activation in vivo and stim- residues in the CREB CAD (15). Subsequent work showed that ulation of single-round transcription in vitro. In contrast, phos- these mutations also abolish (i) interaction between the proteins in phorylation of the KID in CREB stimulated isomerization of the vitro,(ii) recruitment of a polymerase-containing complex, and (iii) polymerase complex, as determined by abortive initiation, and transcription activation in transfection studies, thereby providing a promoter clearance and͞or reinitiation, as measured by multiple genetic link between interaction, recruitment, and transcription rounds of transcription. Our results provide evidence for a new activation (E. Felinski and P.G.Q., unpublished work). An analo- model for CREB-mediated induction through a concerted mecha- gous mechanism is used to stimulate transcription activation by nism involving establishment of a polymerase complex by the CAD, other constitutively active factors (17–20) and ligand-inducible followed by stimulation of isomerization, promoter clearance, nuclear receptors (21, 22). and͞or reinitiation by phosphorylated KID to enhance target gene Phosphorylation of CREB on Ser-133 has been demon- transcription. strated to promote association with CREB-binding protein (CBP). Bacterially expressed CREB binds CBP in a strictly mportant features of kinase-inducible gene regulation are that phosphorylation-dependent manner and overexpression of Imany of the target genes exhibit basal expression and the CBP augmented induction of a somatostatin reporter by response to kinase activation is extremely rapid, occurring within CREB in F9 cells (23). In that study, CBP also bound TFIIB, minutes (1, 2). CREB was first described as a transcription factor suggesting that it enhances activation through recruitment of mediating induction by extracellular signals activating adenylate essential components of the polymerase complex. In another cyclase and protein kinase A (PKA), which phosphorylates study, CBP binding to CREB was reported in the absence of Ser-133 in CREB and enhances its transcriptional activity (3). CREB phosphorylation (24). More recently, phosphorylated Subsequently, several other signaling pathways were demon- CREB was shown to interact with RNA polymerase complexes strated to activate protein kinases that phosphorylate Ser-133 in HeLa cell nuclear extracts, an effect that could be blocked and enhance transcription of cAMP response element (CRE)- with a CBP peptide that bound CREB or antibody against containing genes in a variety of cells and tissues (calmodulin RNA helicase A (25, 26). It was proposed that phosphorylated kinase, mitogen-activated protein kinase͞p90rsk, protein kinase CREB activates transcription through interaction with CBP C, p38, and protein kinase B (PKB͞Akt) (4, 5). and recruitment of RNA polymerase II complexes. However, For any gene to be transcribed, there must be recruitment the assays used in that study did not assess the contribution of of a polymerase complex, isomerization to expose the template CREB phosphorylation to discrete steps in transcription ini- strand, and promoter clearance of the polymerase to transcribe tiation. Phosphorylated CREB would have to interact with the the body of the gene (6). Previous studies, based on the binding polymerase complex to have an effect on transcription, of heterogeneous activating transcription factor (ATF)͞CREB whether at the recruitment step or at later steps, e.g., isomer- proteins to CRE sites, have produced conflicting results ization, promoter clearance, or reinitiation. (7–12). Early studies using footprinting demonstrated that the presence of an ATF͞CRE site in a promoter produced an extended footprint, caused by a complex containing RNA This paper was submitted directly (Track II) to the PNAS office. polymerase II and TFIIB, TFIID, and TFIIE (7, 8). We Abbreviations: CAD, constitutive activation domain; KID, kinase-inducible domain; CRG, CREB-Gal4; PKA, cAMP-activatable protein kinase A; CRE, cAMP response element; CBP, previously showed that stimulation of in vitro transcription by CREB-binding protein; 5XGT, minimal promoter controlled by five Gal4 sites; G4-DBD, Gal4 cAMP-activatable PKA required a CRE site in the template DNA binding domain. and could be inhibited by a PKA-specific inhibitor peptide or *To whom reprint requests should be addressed. E-mail: [email protected]. by the addition of phosphatase but PKA did not affect binding The publication costs of this article were defrayed in part by page charge payment. This of CREB (12). Additional in vitro transcription studies by article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. others suggested that factors associated with ATF͞CRE sites §1734 solely to indicate this fact. 11292–11296 ͉ PNAS ͉ October 10, 2000 ͉ vol. 97 ͉ no. 21 Downloaded by guest on September 26, 2021 Fig. 1. Distinct activities of the CAD and KID in CREB in phosphorylation-dependent transcription activation in vivo and in vitro.(a) CAD, KID, and DNA-binding domain each contain amino acids 1–8 of CREB plus the indicated CREB amino acid sequence fused to amino acids 4–94 of the Gal4 DNA-binding domain. (b) JEG3 cells were cotransfected with the 5XGT-Luciferase reporter plasmid plus expression plasmids for CREB-Gal4 proteins Ϯ the catalytic subunit of PKA. The data represent the means Ϯ SEM of five independent experiments. (c) A representative experiment shows the effects of PKA titration on in vitro transcription mediated by CRG or S133A. (d) Western blots of purified CREB-GAL4 proteins, incubated ϯ 1 unit of PKA, were performed with anti-CREB (Upper) or anti-P-CREB (Lower) antisera. In the present study, we used assays for discrete steps in tran- specific activity in a mobility shift assay. Where indicated, 0.5 scription initiation to determine the separate and combined con- unit of PKA͞0.5 ␮M okadaic acid were added to phosphorylate tributions of the CREB-activation domains, CAD and KID, to P-KID and P-CRG, after which 0.5 unit of PKA inhibitor was regulation of these different steps in transcription activation. Either added to inhibit further PKA activity. Phosphorylation of CRG or both of the CREB-activation domains were linked to the Gal4 proteins by PKA was demonstrated by Western blotting with a DNA-binding domain in fusion proteins that were used to assess CREB phospho-Ser-133-specific antibody. Rat liver nuclear transcription activation in vivo and in vitro. We directly examined extract preparation and in vitro transcription were performed as the contributions of these activation domains to recruitment, described (12), with the following modifications: in vitro reac- isomerization, or promoter clearance͞reinitiation with single- tions contained 50 ␮g of nuclear extract͞150 fmol of template round transcription, abortive initiation, or multiple-round in vitro (750 fmol of Gal4 sites)͞750 fmol of CREB-Gal4 protein. transcription assays, respectively. We show that the CAD in CREB Template, nuclear extract, and CREB-Gal4 proteins were pre- mediated assembly of a polymerase complex, a process that was incubated for 10 min to allow formation of a preinitiation unaffected by phosphorylation of KID. In contrast, the KID in complex before the addition of nucleotides. In vitro transcription CREB, but not
Recommended publications
  • CHD7 Represses the Retinoic Acid Synthesis Enzyme ALDH1A3 During Inner Ear Development
    CHD7 represses the retinoic acid synthesis enzyme ALDH1A3 during inner ear development Hui Yao, … , Shigeki Iwase, Donna M. Martin JCI Insight. 2018;3(4):e97440. https://doi.org/10.1172/jci.insight.97440. Research Article Development Neuroscience CHD7, an ATP-dependent chromatin remodeler, is disrupted in CHARGE syndrome, an autosomal dominant disorder characterized by variably penetrant abnormalities in craniofacial, cardiac, and nervous system tissues. The inner ear is uniquely sensitive to CHD7 levels and is the most commonly affected organ in individuals with CHARGE. Interestingly, upregulation or downregulation of retinoic acid (RA) signaling during embryogenesis also leads to developmental defects similar to those in CHARGE syndrome, suggesting that CHD7 and RA may have common target genes or signaling pathways. Here, we tested three separate potential mechanisms for CHD7 and RA interaction: (a) direct binding of CHD7 with RA receptors, (b) regulation of CHD7 levels by RA, and (c) CHD7 binding and regulation of RA-related genes. We show that CHD7 directly regulates expression of Aldh1a3, the gene encoding the RA synthetic enzyme ALDH1A3 and that loss of Aldh1a3 partially rescues Chd7 mutant mouse inner ear defects. Together, these studies indicate that ALDH1A3 acts with CHD7 in a common genetic pathway to regulate inner ear development, providing insights into how CHD7 and RA regulate gene expression and morphogenesis in the developing embryo. Find the latest version: https://jci.me/97440/pdf RESEARCH ARTICLE CHD7 represses the retinoic acid synthesis enzyme ALDH1A3 during inner ear development Hui Yao,1 Sophie F. Hill,2 Jennifer M. Skidmore,1 Ethan D. Sperry,3,4 Donald L.
    [Show full text]
  • Oncjuly3 6..6
    Oncogene (1999) 18, 4137 ± 4143 ã 1999 Stockton Press All rights reserved 0950 ± 9232/99 $12.00 http://www.stockton-press.co.uk/onc Tax protein of HTLV-1 inhibits CBP/p300-mediated transcription by interfering with recruitment of CBP/p300 onto DNA element of E-box or p53 binding site Takeshi Suzuki1, Masami Uchida-Toita1 and Mitsuaki Yoshida*,1 1Department of Cellular and Molecular Biology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan Tax protein of human T-cell leukemia virus type 1 Tax was originally identi®ed as a transcriptional (HTLV-1) is a potent transcriptional regulator which can activator for viral gene expression and then was shown activate or repress speci®c cellular genes and has been to activate a wide variety of cellular genes (Yoshida et proposed to contribute to leukemogenic processes in al., 1995). Tax was also demonstrated to inhibit adult T-cell leukemia. The molecular mechanism of Tax- expression of several genes. In addition to the mediated trans-activation has been well investigated. transcriptional deregulation, we found that Tax binds However, trans-repression by Tax remains to be studied to p16ink4a protein, a cyclin-dependent kinase (CDK) in detail, although it is known to require a speci®c DNA inhibitor, and suppresses its inhibitory activity pre- element such as E-box or p53 binding site. Examining venting the cell from undergoing growth arrest (Suzuki possible mechanisms of trans-repression, we found that et al., 1996). These pleiotropic functions of Tax aect co-expression of E47 and p300 activated E-box multiple regulatory processes of cells and are believed dependent transcription and this activation was eciently to play roles at least in the initial stage of repressed by Tax.
    [Show full text]
  • Transcrip\Onal and Epigene\C Changes During Heart Disease
    786/110 Transcrip)onal and Epigene)c Changes during Heart Disease Danish Sayed Unique Features of Heart • Involuntary, rhythmic, cyclic contractions • Terminally differentiated, postnatal myocytes increase in size not numbers for growth • Number of non myocytes (e.g. fibroblasts) is more (60-70%) compared to number of myocytes (~30%). Neonate Heart Postnatal Growth “Physiological” Adult Heart - Exercise - Hypertension - Pregnancy - Aortic Stenosis - Sarcomeric Gene mutation - Myocardial Infarction - Dilated Cardiomyopathy Physiological Pathological Hypertrophy Hypertrophy Dilatation and Failure Compensatory Decompensation Overload • Increase in cardiomyocyte size • Chamber dilatation and mass, resulting in enlarged heart • Decreased Ventricular Wall • Increase in generalized gene Thickness and Increased expression, superimposed with wall tension significant increase in specialized genes, fetal gene • Altered Ca+2 handling program • Increased wall thickness • Increased myocardial • Switch to glucose metabolism apoptosis for energy Compromised Maintained Cardiac Cardiac function and Function and Output Output Modulators of Cardiac Hypertrophy L-Type Ca+2 Ang II, ET-1 Channel α-Adrenergic β-Adrenergic Mechanical Ca+2 Insulin-like Growth Stretch + Factor Na Gq Gs P Ca+2 PKA PLC Adenylyl Integrin Cyclase Ca+2 RAS-GTP Na+ PI3K IP3 DAG cAMP Calcineurine FAK AKT Ca+2 Rho PKC PKA Ras mTOR Rac GSK3β 4EBP1 Rock MLCK NFAT MAPK eIF2B p70S6K eIF4E ME ME ME ME GATA4 GATA4 MEF2 Sarcomere SRF Translation AC AC Transcription HDAC Histone Acetylation HAT Modificatn. Methylation HMT Chromatin Demethylases Remodeling Phosphorylation DNA Methylation Transcriptional Modificatn. General Factors Transcription factors TFIIA, TFIIB, TFIID… Promoter Specific Factors GATA family, NFATc family Activity Recruitment Gene Regulation RNA Polymerase II Dynamics Initiation Elongation Translation factors e.g.
    [Show full text]
  • Repressor to Activator Switch by Mutations in the First Zn Finger of The
    Proc. Nat!. Acad. Sci. USA Vol. 88, pp. 7086-7090, August 1991 Biochemistry Repressor to activator switch by mutations in the first Zn finger of the glucocorticoid receptor: Is direct DNA binding necessary? (interleukin 1 indudbility/dexamethasone modulation/DNA-binding domain mutants/interleukin 6 and c-fos promoters) ANURADHA RAY, K. STEVEN LAFORGE, AND PRAVINKUMAR B. SEHGAL* The Rockefeller University, New York, NY 10021 Communicated by Igor Tamm, May 20, 1991 (receivedfor review March 15, 1991) ABSTRACT Transfection ofHeLa cells with cDNA vectors previous experiments in HeLa cells transfected with cDNA expressing the wild-type human glucocorticoid receptor (GR) vectors constitutively expressing the wild type (wt) but not enabled dexamethasone to strongly repress cytokine- and sec- the inactive carboxyl-terminal truncation mutants of GR, we ond messenger-induced expression of cotransfected chimeric observed that dexamethasone (Dex) strongly repressed the reporter genes containing transcription regulatory DNA ele- induction by interleukin 1 (IL-1), tumor necrosis factor, ments from the human interleukin 6 (IL-6) promoter. Deletion phorbol ester, or forskolin of IL-6-chloramphenicol acetyl- of the DNA-binding domain or of the second Zn finger or a transferase (CAT) constructs containing IL-6 DNA from point mutation in the Zn catenation site in the second finger -225 to +13. Dex also repressed induction of IL-6- blocked the ability of GR to mediate repression of the IL-6 thymidine kinase (TK)-CAT chimeric constructs containing promoter.
    [Show full text]
  • Identification of a Family of Camp Response Element-Binding Protein Coactivators by Genome-Scale Functional Analysis in Mammalian Cells
    Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells Vadim Iourgenko*†, Wenjun Zhang*†, Craig Mickanin*, Ira Daly*, Can Jiang*, Jonathan M. Hexham*, Anthony P. Orth‡, Loren Miraglia‡, Jodi Meltzer*, Dan Garza*, Gung-Wei Chirn*, Elizabeth McWhinnie*, Dalia Cohen*, Joanne Skelton*, Robert Terry*, Yang Yu*, Dale Bodian*, Frank P. Buxton*, Jian Zhu*, Chuanzheng Song*, and Mark A. Labow*§ *Department of Functional Genomics, Novartis Institute for Biomedical Research, 100 Technology Square, Cambridge, MA 02139; and ‡Genomics Institute, Novartis Research Foundation, 10675 John Jay Hopkins Drive, Suite F117, San Diego, CA 92121 Edited by Peter K. Vogt, The Scripps Research Institute, La Jolla, CA, and approved July 30, 2003 (received for review May 8, 2003) This report describes an unbiased method for systematically de- of screening data and further experiments demonstrated that the termining gene function in mammalian cells. A total of 20,704 IL-8 promoter contained an unrecognized cAMP response predicted human full-length cDNAs were tested for induction of element (CRE)-like element that was activated by a protein, the IL-8 promoter. A number of genes, including those for cyto- termed transducer of regulated cAMP response element-binding kines, receptors, adapters, kinases, and transcription factors, were protein (CREB) TORC1, which is the founding member of a identified that induced the IL-8 promoter through known regula- conserved family of CREB coactivators. Thus, screening of tory sites. Proteins that acted through a cooperative interaction arrayed cDNAs represents an unbiased approach for identifica- between an AP-1 and an unrecognized cAMP response element tion of gene function and elucidation of pathways that regulate (CRE)-like site were also identified.
    [Show full text]
  • A STAT Protein Domain That Determines DNA Sequence Recognition Suggests a Novel DNA-Binding Domain
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain Curt M. Horvath, Zilong Wen, and James E. Darnell Jr. Laboratory of Molecular Cell Biology, The Rockefeller University, New York, New York 10021 Statl and Stat3 are two members of the ligand-activated transcription factor family that serve the dual functions of signal transducers and activators of transcription. Whereas the two proteins select very similar (not identical) optimum binding sites from random oligonucleotides, differences in their binding affinity were readily apparent with natural STAT-binding sites. To take advantage of these different affinities, chimeric Statl:Stat3 molecules were used to locate the amino acids that could discriminate a general binding site from a specific binding site. The amino acids between residues -400 and -500 of these -750-amino-acid-long proteins determine the DNA-binding site specificity. Mutations within this region result in Stat proteins that are activated normally by tyrosine phosphorylation and that dimerize but have greatly reduced DNA-binding affinities. [Key Words: STAT proteins; DNA binding; site selection] Received January 6, 1995; revised version accepted March 2, 1995. The STAT (signal transducers and activators if transcrip- Whereas oligonucleotides representing these selected se- tion) proteins have the dual purpose of, first, signal trans- quences exhibited slight binding preferences, the con- duction from ligand-activated receptor kinase com- sensus sites overlapped sufficiently to be recognized by plexes, followed by nuclear translocation and DNA bind- both factors. However, by screening different natural ing to activate transcription (Darnell et al.
    [Show full text]
  • The Role of ATP-Dependent Chromatin Remodeling Enzyme CHD7 in the Development and Maintenance of Murine Neural Stem Cells By
    The role of ATP-dependent chromatin remodeling enzyme CHD7 in the development and maintenance of murine neural stem cells by Joseph Anthony Micucci A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biological Chemistry) in the University of Michigan 2013 Dissertation Committee: Associate Professor Donna M. Martin, Co-Chair Adjunct Assistant Professor Daniel A. Bochar, Co-Chair Assistant Professor Shigeki Iwase Associate Professor Raymond C. Trievel Professor Michael D. Uhler Associate Professor Anne B. Vojtek When I heard the learn’d astronomer; When the proofs, the figures, were ranged in columns before me; When I was shown the charts and the diagrams, to add, divide, and measure them; When I, sitting, heard the astronomer, where he lectured with much applause in the lecture-room, How soon, unaccountable, I became tired and sick; Till rising and gliding out, I wander’d off by myself, In the mystical moist night-air, and from time to time, Look’d up in perfect silence at the stars. Walt Whitman Leaves of Grass. 1900 Never give up! Trust your instincts! Peppy Hare Star Fox 64 1997 © Joseph Anthony Micucci 2013 Dedication To Kristen, Thank you for supporting me and keeping me grounded for the last 10 years, much to your own chagrin. ii Acknowledgements First, I would like to thank my incredible wife, Kristen. I have no idea how we made it through the last five and a half years with our marriage and happiness intact. I think we would both agree that the cats were excellent arbiters.
    [Show full text]
  • A Choice Between Transcriptional Enhancement and Repression by the V-Erba Oncoprotein Governed by One Nucleotide in a Thyroid Hormone Responsive Half Site
    Oncogene (2000) 19, 3563 ± 3569 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc A choice between transcriptional enhancement and repression by the v-erbA oncoprotein governed by one nucleotide in a thyroid hormone responsive half site ML Andersson1 and B VennstroÈ m*,1 1Department of Cell and Molecular Biology (CMB), Karolinska Institute, Box 285, S-171 77 Stockholm, Sweden The v-erbA oncoprotein (P75gag-v-erbA) can repress thyroid paradigm view of P75gag-v-erbA in transcription is that hormone receptor induced transcriptional activation of P75gag-v-erbA functions as a dominant transcriptional target genes. A central question is how hormone repressor on activated transcription induced by TR responsive elements in a target gene determine the (Damm et al., 1989; Disela et al., 1991; Zenke et al., transcriptional regulation mediated by P75gag-v-erbA.We 1988). addressed this with receptors chimeric between Hormone response elements for TR (TREs) have P75gag-v-erbA and thyroid hormone receptor (TR) by testing been identi®ed in upstream or intron regions of several their regulatory activities on thyroid hormone response genes that are important in development and in elements (TREs) diering in the sequence of the homeostasis (Baniahmad et al., 1990; Desai-Yajnik et consensus core recognition motif AGGTCA. We report al., 1995; Farsetti et al., 1992; Glass et al., 1987; Petty here that enhances, TR dependent transcriptional et al., 1990; Tsika et al., 1990; WahlstroÈ m et al., 1992; activation is conferred by P75gag-v-erbA when the thymidine Wong et al., 1997). These elements contain AGGTCA in the half site recognition motif is exchanged for an or AGGACA hexamers in which two or more motifs adenosine.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7820,442 B2 Petersen-Mahrt Et Al
    USOO7820442B2 (12) United States Patent (10) Patent No.: US 7820,442 B2 Petersen-Mahrt et al. (45) Date of Patent: Oct. 26, 2010 (54) ACTIVATION INDUCED DEAMINASE (AID) Yamanaka et al., Apollipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals, Proc. (75) Inventors: Svend K. Petersen-Mahrt, Cambridge Natl. Acad. Sci. USA, Biochemisty, Aug. 1995, vol. 92, pp. 8483 (GB); Reuben Harris, Cambridge (GB); 8487. International Search Report Related To PCT/GB 03/02002. Michael Samuel Neuberger, Cambridge Martin A. et al., Activation-Induced Cytidine Deaminase Turns On (GB); Rupert Christopher Somatic Hypermutation. In Hybridomas, Nature, vol. 415, Feb. 24. Landsdowne Beale, Cambridge (GB) 2002, pp. 802-806. Jarmuz A. et al. An Anthropoid-Specific Locus Of Orphan C To U (73) Assignee: Medical Research Council, London RNA-Editing Enzymes On Chromosome-22, Genomics, vol. 79, No. (GB) 3, Mar. 2002, pp. 285-296. Manis JP, Mechanism And Control OfClass-Switch Recombination, (*) Notice: Subject to any disclaimer, the term of this Trends in Immunology, Elsevier, Cambridge, GB, vol. 23, No. 1, Jan. patent is extended or adjusted under 35 1, 2002, pp. 31-39. U.S.C. 154(b) by 0 days. MacGinnitie A.J. et al., Mutagenesis. Of Apobec-1. The Catalytic Subunit Of The Mammalian Apollipoprotein B mRNA Editing (21) Appl. No.: 10/985,321 Enzyme, Reveals Distinct Domains That Meiate Cytosine Nucleoside Deaminase, RNA Binding, and RNA Editing Activity, The Journal of Biological Chemistry, vol. 270, No. 24. Jun. 16, 1995, (22) Filed: Nov. 10, 2004 pp. 14768-14775. Okazaki IM. et al., The Aid Enzyme Induces Class Switch Recom (65) Prior Publication Data bination.
    [Show full text]
  • Regulation of Gene Expression (PDF)
    17 REGULATION OF GENE EXPRESSION ERIC J. NESTLER STEVEN E. HYMAN For all living cells, regulation of gene expression by extracel- OVERVIEW OF TRANSCRIPTIONAL lular signals is a fundamental mechanism of development, CONTROL MECHANISMS homeostasis, and adaptation to the environment. Indeed, Regulation of Gene Expression by the the ultimate step in many signal transduction pathways is the modification of transcription factors that can alter the Structure of Chromatin expression of specific genes. Thus, neurotransmitters, In eukaryotic cells, DNA is contained within a discrete or- growth factors, and drugs are all capable of altering the ganelle called the nucleus, which is the site of DNA replica- patterns of gene expression in a cell. Such transcriptional tion and transcription. Within the nucleus, chromo- regulation plays many important roles in nervous system somes—which are extremely long molecules of DNA—are functioning, including the formation of long-term memo- wrapped around histone proteins to form nucleosomes, the ries. For many drugs, which require prolonged administra- major subunits of chromatin (1–3). To fit within the nu- tion for their clinical effects (e.g., antidepressants, antipsy- cleus, much of the DNA is tightly packed into a ‘‘coiled chotics), the altered pattern of gene expression represents coil.’’ Compared with transcriptionally quiescent regions, therapeutic adaptations to the initial acute action of the actively transcribed regions of DNA may be more than drug. 1,000-fold further extended. Chromatin does not just serve Mechanisms that underlie the control of gene expression a structural role, however; in eukaryotes, chromatin plays are becoming increasingly well understood. Every conceiv- a critical role in transcriptional regulation.
    [Show full text]
  • Transcription Coactivators and Corepressors
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 32, No. 2, 53-60, June 2000 Dissecting the molecular mechanism of nuclear receptor action: transcription coactivators and corepressors Jae Woon Lee1,2,4, JaeHun Cheong1,2, nucleosomal remodeling histone acetyl transferase (HAT) Young Chul Lee1,2, Soon-Young Na1,3 or deacetylase (HDAC) activities. Thus, these proteins and Soo-Kyung Lee1,3 appear to function by either remodeling chromatin struc- tures and/or acting as adapter molecules between nu- clear receptors and the components of the basal trans- 1 Center for Ligand and Transcription criptional apparatus. Herein, we discuss the recent pro- 2 Hormone Research Center gress in studies of these coactivators and corepressors 3 Department of Biology, Chonnam National University, of nuclear receptors. Kwangju 500-757, Korea 4 Corresponding author: Tel, +82-62-530-0910; Fax, +82-62-530-0772; E-mail, [email protected] The p160 Family Accepted 21 June 2000 A group of related proteins were found to enhance Abbreviations: HRE, hormone response elements; LBD, ligand ligand-induced transactivation function of several nuclear binding domain; AF2, activation function; HAT, histone acetyl trans- receptors, named the p160 family. These proteins are ferase; HDAC, deacetylase; CBP, CREB-binding protein; TRAPs, grouped into three subclasses based on their sequence homology; i.e., SRC-1/NCoA-1 (Hong et al., 1997; Torchia thyroid homone receptor associated proteins; VDR, vitamin D3; ASC-1, activating signal cointegrator-1; RAR, retinoic acid receptor et al., 1997; Voegel et al., 1998), TIF2/GRIP1/NCoA-2 (Hong et al., 1997; Voegel et al., 1998), and p/CIP/ ACTR/AIB1/xSRC-3 (Anzick et al., 1997; Chen et al., 1997; Kim et al., 1998; Torchia et al., 1997).
    [Show full text]
  • Silencers, Enhancers, and the Multifunctional Regulatory Genome
    TIGS 1628 No. of Pages 3 Trends in Genetics Spotlight Silencers, Enhancers, difficulty of assaying for silencers has sna-binding silencers failed to do so. resulted in a paucity of clearly defined Remarkably, all but one of the identified si- and the Multifunctional examples, and little understanding of their lencers were known, or shown, to function Regulatory Genome characteristics and mechanism of action. as enhancers, based on reporter gene fi 1,2,3,4,5, However, a recent rst-of-its-kind large- analysis, in a different tissue. Marc S. Halfon * scale screen has now led to a significant in- crease in the number of known silencers Although such ‘bifunctional’ elements have Negative regulation of gene expres- [4]. Rather than being the negative counter- been observed previously, they had ap- sion by transcriptional silencers has parts to enhancers, the data suggest that peared to be exceptions rather than the been difficult to study due to limited most, if not all, silencers are in fact en- rule. However, current results imply that all defined examples. A new study by hancers, and that activation and silencing silencers may also be enhancers. By con- Gisselbrecht et al. has dramatically are merely two sides of the same cis- trast, most known enhancers tested in [4] regulatory coin. did not show silencer activity. It remains increased the number of identified unknown whether most enhancers there- silencers and reveals that they are Gisselbrecht et al. [4] screened for silencers fore lack this ability or whether these en- bifunctional regulatory sequences by placing putative silencer sequences up- hancers have silencing activity in a tissue that also act as gene expression- stream of a reporter cassette comprising a or time point not observable in the study.
    [Show full text]