Gene Expression and Regulation 4

Total Page:16

File Type:pdf, Size:1020Kb

Gene Expression and Regulation 4 © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Gene expression and regulation 4 David G. Bear Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM TRANSLATION OF A MESSENGER RNA (mRNA) isolated from a cell in the salivary gland of an insect Chironomous tentans in this digitally colored trans- mission electron micrograph. Translation is the pro- cess by which ribosomes (blue particles) translocate along the mRNA (pink strand) and read its sequence in three nucleotide units called codons. As the ribo- some moves to each codon on the mRNA, it inserts the appropriate amino acid into the growing protein chain (green filaments). (© Dr. Elena Kiseleva/SPL/ Photo Researchers, Inc.) CHAPTER OUTLINE 4.1 Introduction 4.12 Translation is a three-stage process that decodes an 4.2 Genes are transcription units mRNA to synthesize a protein 4.3 Transcription is a multistep process directed by 4.13 Translation is catalyzed by the ribosome DNA-dependent RNA polymerase 4.14 Translation is guided by a large number of protein 4.4 RNA polymerases are large multisubunit protein factors that regulate the interaction of amino- complexes acylated tRNAs with the ribosome 4.5 Promoters direct the initiation of transcription 4.15 Translation is controlled by the interaction of the 4.6 Activators and repressors regulate transcription 5′ and 3′ ends of the mRNA and by translational initiation repressor proteins 4.7 Transcriptional regulatory circuits control eukaryotic 4.16 Some mRNAs are translated at specific locations cell growth, proliferation, and differentiation within the cytoplasm 4.17 Sequence elements in the 5 and 3 untranslated 4.8 The 5′ and 3′ ends of mature mRNAs are generated ′ ′ by RNA processing regions determine the stability of an mRNA 4.9 Terminators direct the end of transcription elongation 4.18 Noncoding RNAs are important regulators of gene expression 4.10 Introns in eukaryotic pre-mRNAs are removed by the spliceosome 4.19 What’s next? 4.11 Alternative splicing generates protein diversity 4.20 Summary References 2ND PAGES 9781284023558_CH04_0103.indd 103 6/11/13 4:20 PM © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION 4.1 Introduction DNA Key concepts Replication • DNA functions as the template for the synthesis of Reverse Transcription RNA by RNA polymerase (transcription). Messenger transcription RNA (mRNA) directs the synthesis of proteins by the ribosome (translation). • The genetic code refers to the set of 64 base RNA triplets (codons) that are read by the ribosome Replication during translation. Translation • Each of the 61 codons codes for 1 of the 20 common amino acids, whereas 3 codons cause the ribosome to stop translation. Protein • In prokaryotes, transcription and translation of mRNA occur concomitantly in the same region of the cell. • In eukaryotes, transcription and mRNA processing occur concomitantly inside the nucleus, whereas FIGURE 4.1 The Central Dogma of Molecular Biology. The translation occurs subsequent to the export of the Central Dogma states that DNA serves as the template mRNA to the cytoplasm. for the synthesis of RNA by the enzyme RNA polymerase (transcription) and the RNA transcript is decoded by the Modern biology began in the early part of the ribosome to synthesize a polypeptide (translation). The 20th century with the direct examination of the enzyme reverse transcriptase can synthesize DNA from structure and function of cells, first by improved RNA. Reverse transcription is a rare event in normal cells. microscopy techniques that permitted the de- Many RNA viruses contain a reverse-transcriptase gene tailed study of cell structure and then by high- in their genome. speed centrifugation methods that facilitated biochemical isolation and characterization of mechanisms of transcription and translation, cytoplasmic and nuclear subcellular fractions. with details of the structural and functional Geneticists focused on the relationship between properties of RNA polymerases that tran- the dynamic structure of chromosomes within scribe the genome and ribosomes that trans- the cell nucleus and the mechanisms of genetic late mRNA to make protein. This work also inheritance, which culminated with the eluci- revealed that transcription and translation are dation of the structures of DNA and RNA and an coupled in bacteria—the mRNA is translated understanding of the genetic code. The scientific concomitantly as the newly synthesized RNA revolution of molecular biology that took place emerges from the active site of RNA poly- in the mid-20th century provided a framework merase (FIGURE 4.2). known as the Central Dogma of Molecular Biology: DNA functions as the template for the synthesis of RNA (transcription) and RNA directs the synthesis of protein by ribosomes Transcription (translation), as depicted in FIGURE 4.1. Initially, molecular biology focused on reconciling the classical concept of the gene— the unit of information controlling inherited DNA traits—with the more modern tenets of the RNA Central Dogma. These studies led to the One Gene-One Protein Hypothesis that posited Translation a gene to be the unit of genetic information that directs the synthesis of a specific mRNA, which in turn encodes an individual protein. Much of the early work on the Central Dogma Ribosome translates mRNA was carried out using a nonpathogenic strain of the bacterium Escherichia coli because of the ease of genetic manipulation and the ability to FIGURE 4.2 Gene expression in prokaryotes. Prokaryotes easily fractionate the bacterial cellular compo- do not have a cell nucleus. Thus, transcription and trans- nents for biochemical analysis. Studies with lation take place in the same cellular compartment and E. coli provided our first understanding of the occur concomitantly. 104 CHAPTER 4 Gene expression and regulation 2ND PAGES 2ND PAGES 9781284023558_CH04_0103.indd 104 6/11/13 4:21 PM © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION In the latter half of the 20th century, in- In addition to splicing, eukaryotic mRNAs un- vestigations of gene expression in several eu- dergo other posttranscriptional modifications, karyotic model systems, including the yeast including the addition of a 7-methylguanosine Saccharomyces cerevisiae, the insect Drosophila (7-MeG) cap to the 5′ end and a poly(A) tail melanogaster, and the human HeLa cultured cell comprising 100 to 300 adenosine ribonucleo- line, showed that many fundamental mecha- tides on the 3′ end. Selected mRNAs can also nisms of gene expression are conserved among have additional bases added posttranscription- all organisms; however, there are some basic ally in a process referred to as mRNA editing. differences between prokaryotes and eukary- Analogous to transcription–translation coupling otes, particularly with regard to the posttran- in prokaryotes, most eukaryotic mRNA process- scriptional pathways of mRNA biosynthesis ing reactions are coupled to transcription. (FIGURE 4.3). Some of the greatest similarities, as well as One of the most surprising discoveries was some of the biggest differences, between pro- that most protein-coding genes in higher eukary- karyotic and eukaryotic cells are at the final step otes are interrupted with DNA segments, termed of gene expression—translation. Prokaryotes introns, that are transcribed into RNA but are re- lack a cell nucleus, and the translation complex moved before translation. Ribonucleoprotein (ribosomes and associated factors) is in direct (RNP) complexes, referred to as spliceosomes, contact with the transcription apparatus on the were found to excise the introns from the orig- chromosomal DNA, whereas in eukaryotes the inal mRNA, or pre- mRNA, and to ligate the transcription and RNA processing reactions oc- remaining expressed mRNA sequences, termed cur in the nucleus and translation occurs in exons, together to form the mature mRNA. the cytoplasm. This separation of RNA biosyn- thesis from translation necessitates the pack- aging of mRNA into an mRNA RNP (mRNP) complex that then must be exported through Exon 1 Exon 2 the pores of the nuclear envelope into the cy- DNA Intron toplasm before translation. In spite of the extra steps between transcription and translation in eukaryotes, the prokaryotic and eukaryotic translational machineries are very similar. In fact, some of the highest evolutionary conser- Transcription vation of macromolecular structure and func- Nucleus tion among species is found in ribosomes and associated translational factors. 5 Intron The information contained in a mature 3 Pre-mRNA mRNA for making a protein is decoded by the ribosome. The ribosome reads the mRNA se- Intron Splicing quence in three-nucleotide units referred to 5 as codons. Because there are four different 3 nucleotide bases in DNA and RNA—A, G, C, mRNA and T (U in RNA)—there are 64 possible codons (FIGURE 4.4). Each codon specifies the insertion Transport by the ribosome of a specific amino acid into tRNA the protein. Twenty amino acids are commonly 5 3 found in proteins; thus, some amino acids are specified by more than one codon. In general, Ribosome codons that encode the same amino acid differ Translation Cytoplasm by only one base. The tendency for amino acids with chemically similar functional groups to be represented by related codons minimizes the effects of mutations by increasing the like- Protein lihood that a single random base change will FIGURE 4.3 Gene expression in eukaryotes. Eukaryotes result in an alternative amino acid substitu- contain a cell nucleus where transcription and RNA pro- tion with similar molecular characteristics. For cessing occur. The mRNA transcript is exported from the example, a mutation of CUC to CUG has no nucleus to the cytoplasm where translation takes place. effect, because both codons represent leucine. 4.1 Introduction 105 2ND PAGES 2ND PAGES 9781284023558_CH04_0103.indd 105 6/11/13 4:21 PM © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION cases, the first codon that specifies a protein First Position Second Position Third Position (5’-end) (3’-end) sequence is AUG, which specifies the amino acid methionine and is referred to as the start U C A G codon.
Recommended publications
  • Functional Annotation of Exon Skipping Event in Human Pora Kim1,*,†, Mengyuan Yang1,†,Keyiya2, Weiling Zhao1 and Xiaobo Zhou1,3,4,*
    D896–D907 Nucleic Acids Research, 2020, Vol. 48, Database issue Published online 23 October 2019 doi: 10.1093/nar/gkz917 ExonSkipDB: functional annotation of exon skipping event in human Pora Kim1,*,†, Mengyuan Yang1,†,KeYiya2, Weiling Zhao1 and Xiaobo Zhou1,3,4,* 1School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA, 2College of Electronics and Information Engineering, Tongji University, Shanghai, China, 3McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA and 4School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA Received August 13, 2019; Revised September 21, 2019; Editorial Decision October 03, 2019; Accepted October 03, 2019 ABSTRACT been used as therapeutic targets (3–8). For example, MET has lost the binding site of E3 ubiquitin ligase CBL through Exon skipping (ES) is reported to be the most com- exon 14 skipping event (9), resulting in an enhanced expres- mon alternative splicing event due to loss of func- sion level of MET. MET amplification drives the prolifera- tional domains/sites or shifting of the open read- tion of tumor cells. Multiple tyrosine kinase inhibitors, such ing frame (ORF), leading to a variety of human dis- as crizotinib, cabozantinib and capmatinib, have been used eases and considered therapeutic targets. To date, to treat patients with MET exon 14 skipping (10). Another systematic and intensive annotations of ES events example is the dystrophin gene (DMD) in Duchenne mus- based on the skipped exon units in cancer and cular dystrophy (DMD), a progressive neuromuscular dis- normal tissues are not available.
    [Show full text]
  • Transcriptional Targets of Hepatocyte Growth Factor Signaling and Ki-Ras Oncogene Activation in Colorectal Cancer
    Oncogene (2006) 25, 91–102 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc ORIGINAL ARTICLE Transcriptional targets of hepatocyte growth factor signaling and Ki-ras oncogene activation in colorectal cancer IM Seiden-Long1,2, KR Brown1,2, W Shih1, DA Wigle3, N Radulovich1, I Jurisica1,2,4 and M-S Tsao1,2,5 1Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; 2Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; 3Department of Surgery, University of Toronto, Toronto, Ontario, Canada; 4Department of Computer Science, University of Toronto, Toronto, Ontario, Canada and 5Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada Both Ki-ras mutation and hepatocyte growth factor Introduction (HGF) receptor Met overexpression occur at high frequency in colon cancer. This study investigates the Colorectal carcinogenesis is characterized by a well- transcriptional changes induced by Ki-ras oncogene and delineated series of genetic mutations and aberrant gene HGF/Met signaling activation in colon cancer cell lines in expression events (Fearon and Vogelstein, 1990). Ki-ras vitro and in vivo. The model system used in these studies oncogene activation and the overexpression of growth included the DLD-1 colon cancer cell line with a mutated factor receptors on the cell surface have been shown to Ki-ras allele, and the DKO-4 cell line generated from play important rolesin colon cancer progression DLD-1, with its mutant Ki-ras allele inactivated by (Shirasawa et al., 1993; Fazekas et al., 2000). Ki-ras is targeted disruption.
    [Show full text]
  • Epigenetic Modulating Chemicals Significantly Affect the Virulence
    G C A T T A C G G C A T genes Article Epigenetic Modulating Chemicals Significantly Affect the Virulence and Genetic Characteristics of the Bacterial Plant Pathogen Xanthomonas campestris pv. campestris Miroslav Baránek 1,* , Viera Kováˇcová 2 , Filip Gazdík 1 , Milan Špetík 1 , Aleš Eichmeier 1 , Joanna Puławska 3 and KateˇrinaBaránková 1 1 Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, 69144 Lednice, Czech Republic; fi[email protected] (F.G.); [email protected] (M.Š.); [email protected] (A.E.); [email protected] (K.B.) 2 Institute for Biological Physics, University of Cologne, 50923 Köln, Germany; [email protected] 3 Department of Phytopathology, Research Institute of Horticulture, 96-100 Skierniewice, Poland; [email protected] * Correspondence: [email protected]; Tel.: +420-519367311 Abstract: Epigenetics is the study of heritable alterations in phenotypes that are not caused by changes in DNA sequence. In the present study, we characterized the genetic and phenotypic alterations of the bacterial plant pathogen Xanthomonas campestris pv. campestris (Xcc) under different treatments with several epigenetic modulating chemicals. The use of DNA demethylating chemicals unambiguously caused a durable decrease in Xcc bacterial virulence, even after its reisolation from Citation: Baránek, M.; Kováˇcová,V.; infected plants. The first-time use of chemicals to modify the activity of sirtuins also showed Gazdík, F.; Špetík, M.; Eichmeier, A.; some noticeable results in terms of increasing bacterial virulence, but this effect was not typically Puławska, J.; Baránková, K. stable. Changes in treated strains were also confirmed by using methylation sensitive amplification Epigenetic Modulating Chemicals (MSAP), but with respect to registered SNPs induction, it was necessary to consider their contribution Significantly Affect the Virulence and to the observed polymorphism.
    [Show full text]
  • L2-Transcription.Pdf
    Transcription BIOL201 Daniel Gautheret [email protected] • Chapitre 1: Transcription et RNA polymérase • Chapitre 2: Initiation, élongation et terminaison • Chapitre 3: Régulation: l’exemple procaryote • Chapitre 4: Maturation de l’ARN chez les eucaryotes V. 2012.0 Chapitre 1 Transcription et RNA polymérase 2 L’intuition de la transcription Chez les eucaryotes: ADN dans le noyau Machinerie de synthèse dans le cytoplasme Hypothèse d’un l’intermédiaire ARN 3 Etapes-clé de la découverte de l’ARN messager • 1957: concept d’un « adaptateur ARN » (Crick) • 1956-57: Découverte progressive d’une nouvelle fraction d’ARN, polymorphe • 1959-60: découverte d’une « ARN polymérase » capable de synthétiser de l’ARN à partir d’ADN. • 1961. Mise au point des techniques d’hybridation ADN- ARN sur filtre de nitrocellulose. -> l’ARN est complémentaire d’un seul brin d’ADN • 1961. Démonstration de l’existence d’un ARN messager (Jacob & Monod) • 1961. Purification d’ARN polymérase bactérienne et synthèse in vitro d’ARN à partir de matrice ADN 4 Rappel: différences ADN/ARN ARN ADN ribose désoxyribose 5 Bases de l’ADN et de l’ARN Base puriques ADN: T ARN: U Base pyrimidiques 6 Structure des ARN • Molécule ordonnée linéaire O • Orientée 5’P->3’OH P • Grand nombre de O H2C structures secondaires possibles 7 Décodage du gène dans la cellule bactérienne ADN ARN polymérase Ribosome grande sous-Unité ribosome ARNm Ribosome petite sous-Unité Protéine ARNr ARNt aminoacides Membrane cellulaire 8 Les principaux ARN dans une bactérie • ARN ribosomiques (ARNr)
    [Show full text]
  • Towards a Molecular Understanding of Microrna-Mediated Gene Silencing
    REVIEWS NON-CODING RNA Towards a molecular understanding of microRNA-mediated gene silencing Stefanie Jonas and Elisa Izaurralde Abstract | MicroRNAs (miRNAs)­ are a conserved class of small non-coding RNAs that assemble with Argonaute proteins into miRNA-induced silencing complexes (miRISCs) to direct post-transcriptional silencing of complementary mRNA targets. Silencing is accomplished through a combination of translational repression and mRNA destabilization, with the latter contributing to most of the steady-state repression in animal cell cultures. Degradation of the mRNA target is initiated by deadenylation, which is followed by decapping and 5ʹ‑to‑3ʹ exonucleolytic decay. Recent work has enhanced our understanding of the mechanisms of silencing, making it possible to describe in molecular terms a continuum of direct interactions from miRNA target recognition to mRNA deadenylation, decapping and 5ʹ‑to‑3ʹ degradation. Furthermore, an intricate interplay between translational repression and mRNA degradation is emerging. Deadenylation MicroRNAs (mi­RNAs) are conserved post-transcriptional recruit additional protein partners to mediate silenc- 5,6 Shortening of mRNA poly(A) regulators of gene expression that are integral to ing . Silencing occurs through a combination of tails. In eukaryotes, this almost all known biological processes, including translational repression, deadenylation, decapping and process is catalysed by the cell growth, proliferation and differentiation, as well 5ʹ‑to‑3ʹ mRNA degradation5,6 (FIG. 1). The GW182 pro- consecutive but partially as organismal metabolism and development1. The teins play a central part in this process and are among redundant action of two 5,6 cytoplasmic deadenylase number of mi­RNAs encoded within the genomes of the most extensively studied AGO partners .
    [Show full text]
  • CHD7 Represses the Retinoic Acid Synthesis Enzyme ALDH1A3 During Inner Ear Development
    CHD7 represses the retinoic acid synthesis enzyme ALDH1A3 during inner ear development Hui Yao, … , Shigeki Iwase, Donna M. Martin JCI Insight. 2018;3(4):e97440. https://doi.org/10.1172/jci.insight.97440. Research Article Development Neuroscience CHD7, an ATP-dependent chromatin remodeler, is disrupted in CHARGE syndrome, an autosomal dominant disorder characterized by variably penetrant abnormalities in craniofacial, cardiac, and nervous system tissues. The inner ear is uniquely sensitive to CHD7 levels and is the most commonly affected organ in individuals with CHARGE. Interestingly, upregulation or downregulation of retinoic acid (RA) signaling during embryogenesis also leads to developmental defects similar to those in CHARGE syndrome, suggesting that CHD7 and RA may have common target genes or signaling pathways. Here, we tested three separate potential mechanisms for CHD7 and RA interaction: (a) direct binding of CHD7 with RA receptors, (b) regulation of CHD7 levels by RA, and (c) CHD7 binding and regulation of RA-related genes. We show that CHD7 directly regulates expression of Aldh1a3, the gene encoding the RA synthetic enzyme ALDH1A3 and that loss of Aldh1a3 partially rescues Chd7 mutant mouse inner ear defects. Together, these studies indicate that ALDH1A3 acts with CHD7 in a common genetic pathway to regulate inner ear development, providing insights into how CHD7 and RA regulate gene expression and morphogenesis in the developing embryo. Find the latest version: https://jci.me/97440/pdf RESEARCH ARTICLE CHD7 represses the retinoic acid synthesis enzyme ALDH1A3 during inner ear development Hui Yao,1 Sophie F. Hill,2 Jennifer M. Skidmore,1 Ethan D. Sperry,3,4 Donald L.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Translation Quality Control Is Critical for Bacterial Responses to Amino Acid Stress
    Translation quality control is critical for bacterial responses to amino acid stress Tammy J. Bullwinklea and Michael Ibbaa,1 aDepartment of Microbiology, The Ohio State University, Columbus, OH 43210 Edited by Dieter Söll, Yale University, New Haven, CT, and approved January 14, 2016 (received for review December 22, 2015) Gene expression relies on quality control for accurate transmission Despite their role in accurately translating the genetic code, of genetic information. One mechanism that prevents amino acid aaRS editing pathways are not conserved, and their activities misincorporation errors during translation is editing of misacy- have varying effects on cell viability. Mycoplasma mobile, for lated tRNAs by aminoacyl-tRNA synthetases. In the absence of example, tolerates relatively high error rates during translation editing, growth is limited upon exposure to excess noncognate and apparently has lost both PheRS and leucyl-tRNA synthetase proofreading activities (4). Similarly, the editing activity of amino acid substrates and other stresses, but whether these physi- Streptococcus pneumoniae ological effects result solely from mistranslation remains unclear. To IleRS is not robust enough to com- pensate for its weak substrate specificity, leading to the formation explore if translation quality control influences cellular processes Ile Ile other than protein synthesis, an Escherichia coli strain defective in of misacylated Leu-tRNA and Val-tRNA species (5). Also, in contrast to its cytoplasmic and bacterial counterparts, Saccha- Tyr-tRNAPhe editing was used. In the absence of editing, cellular Phe romyces cerevisiae mitochondrial PheRS completely lacks an levels of aminoacylated tRNA were elevated during amino acid editing domain and instead appears to rely solely on stringent stress, whereas in the wild-type strain these levels declined under Phe/Tyr discrimination to maintain specificity (6).
    [Show full text]
  • Oncjuly3 6..6
    Oncogene (1999) 18, 4137 ± 4143 ã 1999 Stockton Press All rights reserved 0950 ± 9232/99 $12.00 http://www.stockton-press.co.uk/onc Tax protein of HTLV-1 inhibits CBP/p300-mediated transcription by interfering with recruitment of CBP/p300 onto DNA element of E-box or p53 binding site Takeshi Suzuki1, Masami Uchida-Toita1 and Mitsuaki Yoshida*,1 1Department of Cellular and Molecular Biology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan Tax protein of human T-cell leukemia virus type 1 Tax was originally identi®ed as a transcriptional (HTLV-1) is a potent transcriptional regulator which can activator for viral gene expression and then was shown activate or repress speci®c cellular genes and has been to activate a wide variety of cellular genes (Yoshida et proposed to contribute to leukemogenic processes in al., 1995). Tax was also demonstrated to inhibit adult T-cell leukemia. The molecular mechanism of Tax- expression of several genes. In addition to the mediated trans-activation has been well investigated. transcriptional deregulation, we found that Tax binds However, trans-repression by Tax remains to be studied to p16ink4a protein, a cyclin-dependent kinase (CDK) in detail, although it is known to require a speci®c DNA inhibitor, and suppresses its inhibitory activity pre- element such as E-box or p53 binding site. Examining venting the cell from undergoing growth arrest (Suzuki possible mechanisms of trans-repression, we found that et al., 1996). These pleiotropic functions of Tax aect co-expression of E47 and p300 activated E-box multiple regulatory processes of cells and are believed dependent transcription and this activation was eciently to play roles at least in the initial stage of repressed by Tax.
    [Show full text]
  • Transcrip\Onal and Epigene\C Changes During Heart Disease
    786/110 Transcrip)onal and Epigene)c Changes during Heart Disease Danish Sayed Unique Features of Heart • Involuntary, rhythmic, cyclic contractions • Terminally differentiated, postnatal myocytes increase in size not numbers for growth • Number of non myocytes (e.g. fibroblasts) is more (60-70%) compared to number of myocytes (~30%). Neonate Heart Postnatal Growth “Physiological” Adult Heart - Exercise - Hypertension - Pregnancy - Aortic Stenosis - Sarcomeric Gene mutation - Myocardial Infarction - Dilated Cardiomyopathy Physiological Pathological Hypertrophy Hypertrophy Dilatation and Failure Compensatory Decompensation Overload • Increase in cardiomyocyte size • Chamber dilatation and mass, resulting in enlarged heart • Decreased Ventricular Wall • Increase in generalized gene Thickness and Increased expression, superimposed with wall tension significant increase in specialized genes, fetal gene • Altered Ca+2 handling program • Increased wall thickness • Increased myocardial • Switch to glucose metabolism apoptosis for energy Compromised Maintained Cardiac Cardiac function and Function and Output Output Modulators of Cardiac Hypertrophy L-Type Ca+2 Ang II, ET-1 Channel α-Adrenergic β-Adrenergic Mechanical Ca+2 Insulin-like Growth Stretch + Factor Na Gq Gs P Ca+2 PKA PLC Adenylyl Integrin Cyclase Ca+2 RAS-GTP Na+ PI3K IP3 DAG cAMP Calcineurine FAK AKT Ca+2 Rho PKC PKA Ras mTOR Rac GSK3β 4EBP1 Rock MLCK NFAT MAPK eIF2B p70S6K eIF4E ME ME ME ME GATA4 GATA4 MEF2 Sarcomere SRF Translation AC AC Transcription HDAC Histone Acetylation HAT Modificatn. Methylation HMT Chromatin Demethylases Remodeling Phosphorylation DNA Methylation Transcriptional Modificatn. General Factors Transcription factors TFIIA, TFIIB, TFIID… Promoter Specific Factors GATA family, NFATc family Activity Recruitment Gene Regulation RNA Polymerase II Dynamics Initiation Elongation Translation factors e.g.
    [Show full text]
  • The Complexity of Mirna-Mediated Repression
    Cell Death and Differentiation (2015) 22, 22–33 & 2015 Macmillan Publishers Limited All rights reserved 1350-9047/15 www.nature.com/cdd Review The complexity of miRNA-mediated repression A Wilczynska*,1 and M Bushell*,1 Since their discovery 20 years ago, miRNAs have attracted much attention from all areas of biology. These short (B22 nt) non-coding RNA molecules are highly conserved in evolution and are present in nearly all eukaryotes. They have critical roles in virtually every cellular process, particularly determination of cell fate in development and regulation of the cell cycle. Although it has long been known that miRNAs bind to mRNAs to trigger translational repression and degradation, there had been much debate regarding their precise mode of action. It is now believed that translational control is the primary event, only later followed by mRNA destabilisation. This review will discuss the most recent advances in our understanding of the molecular underpinnings of miRNA-mediated repression. Moreover, we highlight the multitude of regulatory mechanisms that modulate miRNA function. Cell Death and Differentiation (2015) 22, 22–33; doi:10.1038/cdd.2014.112; published online 5 September 2014 Facts impact their protein output. The dysregulation of miRNA expression in many disease conditions has been thoroughly miRNA-mediated translational repression is a pre-requisite documented (for details see Croce1). In addition, extensive for target mRNA degradation. shortening of mRNA 30UTRs, which causes loss of miRNA RNA helicases are critical to the inhibition of translation target sites resulting in the post-transcriptional upregulation initiation by miRNA. of critical oncogenes, has been observed in cancer cells Modifications of RISC components have critical roles in (Figure 2d).2,3 Conversely, lengthening of 30UTRs and thus an controlling the miRNA pathway.
    [Show full text]
  • Inosine in Biology and Disease
    G C A T T A C G G C A T genes Review Inosine in Biology and Disease Sundaramoorthy Srinivasan 1, Adrian Gabriel Torres 1 and Lluís Ribas de Pouplana 1,2,* 1 Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; [email protected] (S.S.); [email protected] (A.G.T.) 2 Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Catalonia, Spain * Correspondence: [email protected]; Tel.: +34-934034868; Fax: +34-934034870 Abstract: The nucleoside inosine plays an important role in purine biosynthesis, gene translation, and modulation of the fate of RNAs. The editing of adenosine to inosine is a widespread post- transcriptional modification in transfer RNAs (tRNAs) and messenger RNAs (mRNAs). At the wobble position of tRNA anticodons, inosine profoundly modifies codon recognition, while in mRNA, inosines can modify the sequence of the translated polypeptide or modulate the stability, localization, and splicing of transcripts. Inosine is also found in non-coding and exogenous RNAs, where it plays key structural and functional roles. In addition, molecular inosine is an important secondary metabolite in purine metabolism that also acts as a molecular messenger in cell signaling pathways. Here, we review the functional roles of inosine in biology and their connections to human health. Keywords: inosine; deamination; adenosine deaminase acting on RNAs; RNA modification; translation Citation: Srinivasan, S.; Torres, A.G.; Ribas de Pouplana, L. Inosine in 1. Introduction Biology and Disease. Genes 2021, 12, 600. https://doi.org/10.3390/ Inosine was one of the first nucleobase modifications discovered in nucleic acids, genes12040600 having been identified in 1965 as a component of the first sequenced transfer RNA (tRNA), tRNAAla [1].
    [Show full text]