Optical Properties of Doped Silver Sulfide Nanoparticles
Total Page:16
File Type:pdf, Size:1020Kb
Al-Azhar University- Gaza Deanship of Postgraduate Studies Faculty of Science Department of Physics Optical Properties of Doped Silver Sulfide Nanoparticles BY Aowda Musbah Mohamed Shallah Supervisors Prof. Talaat M. Hammad Prof. Jamil K. Salem Prof. of Material Science . Prof . of Physical Chemistry. Physics Department –Faculty of Science . Chemistry Department – Faculty of Science. Al-Azhar University of Gaza . Al- Azhar University of Gaza. Submitted In Partial Fulfillment Of The Requirements For The Degree of Master of Science In Physics . 1440 Dedication To Hojat Allah for his kind help, To the spirit of my dear father (Abu – sager), To my mother (Ohm Nemer), brothers and sisters, To my wife (Ohm Abed –Raheem), To my daughters (Helen,Remass , and farehan), To my son (Abed – Raheem), To my friends, To anyone who does all his best for Islam and Palestine. I Acknowledgement I am grateful to Allah who helped me to finish this study. I would like to express my deep appreciation to my supervisors especially Prof. T. M. Hammad who give me all the information about Nanophysics , additionally Prof. Hammad get me all kind of help in these work. and Prof. J. K. Salem for their great help and guidance during my work in the research. I would like to thank Physics Department Faculty of Science in Al-Azhar University of Gaza for giving me the opportunity to complete my postgraduate studies. My gratitude also extended to all staff members of Physics Department at Al-Azhar University, as well as staff members of Postgraduate Studies. I wish to express my sincere thanks, and love to my family, friends especially:Dr Ramadan shallah , Prof. Hassan Ashour, Drsalah Farage, Mahmood Ayoup, Ehap Gota, Mohamed Wahpa , and anyone who has offered to me any kind of help. II Abstract Silver sulfide nanoparticles doped with metal ions (Cupper, Cadmium, Cobalt, Magnesium and Nickel), were successively synthesized by wet chemical method. The influence of doping condition concentrations on the formation, morphology and optical properties of doped Ag2S have been investigated and discussed. Transmission electron microscope (TEM), UV–vis spectrophotometer and PL spectrophotometer also has been used to characterize the doped Ag2S nanoparticles. The TEM results show that the products were spherical to ellipsoid shaped particles with size of about 5–18 nm for all Cd and Co-doped Ag2S nanoparticles. A red shift phenomenon was found to increase directly with the concentration of Cd, Mg, Cu and Co doped on to the Ag2S; this effect has been observed in the UV–vis spectra and Pl spectra of samples. The particle size of the Ni-doped Ag2S nanoparticles can be reduced and causes small blue shifts observed in the Pl and UV–vis spectra. An increase in the intensity of the deep trap emission of Co and Mg-doped Ag2S is observed with increasing their concentration, while the PL intensity of Cu, Ni and Cd-doped Ag2S decreases. A novel PL phenomenon can be observed from the Ag2S nanoparticles doped with Cu, Cd, Co, Mg and Ni ions. This result indicates the important roles of dopants in controlling the emission color from Ag2S nanoparticles. The band gap values of the pure and doped Ag2S nanoparticles formed with various concentrations of the dopants and their particle sizes were estimated using the Brus equation. III ملخص الرسالة تم تخليق الجسيمات النانونية من كبريتيد الفضة المطعم بأيونات المعادن )نحاس ، والكادميوم ، والكوبالت ، والمغنيسيوم ، والنيكل( على التوالي بطريقة كيميائية رطبة. و لقد تم فحص ومناقشة تأثير تركيزات اﻻيونات المطعمة على تكوين المورفولوجي والخصائص البصرية. كما استخدم مجهر اﻹلكتروني النافذ ، واﻷشعة فوق البنفسجية الطيفية ومقياس التحليل بالوميض البصري لفحص الجسيمات النانوية كبريتيد الفضة المطعم بأيونات المعادن. وأظهرت نتائج مجهر اﻹلكتروني النافذ أن شكل العينات كانت جزيئات كروية الشكل أو اهليلجيه بمتوسط حجم 5–18 نانومتر لجميع الجسيمات النانونية المطعمة. ولقد لوحظ بحدوث ظاهرة اﻻزاحه نحو اﻷحمر بزياده تراكيز النحاس ، والكادميوم ، والكوبالت ، والمغنيسيوم ؛ وقد لوحظ هذا التأثير في أطياف اﻷشعة فوق البنفسجية الطيفية ومقياس التحليل بالوميض البصري. كما تبين بان حجم الجسيمات النانونية لكبريتيد الفضة المطعم بالنيكل تقل تدريجيا بزيادة تركيز نسب النيكل وتسبب بأزاحه صغيرة نحو اﻷزرق في كما هو واضح في أطياف اﻷشعة فوق البنفسجية الطيفية ومقياس التحليل بالوميض البصري. ولقد لوحظت زيادة في شدة انبعاث المصيدة العميقة لـ لكبريتيد الفضة المطعم بالمغنيسيوم والكوبالت بزيادة تركيزهم ، في حين تقل كثافته في حاله التطعيم بالنحاس ، والكادميوم ، والنيكل. وتشير هذه النتيجة إلى اﻷدوار المهمة في عمليه التطعيم بالتحكم في لون اﻻنبعاثات من الجسيمات النانوية لكبريتيد الفضة. ولقد تم حساب قيم فجوة الطاقة في الجسيمات النانوية النقية والمطعمة لكبريتيد الفضة والتي تشكلت بتركيزات مختلفة وأحجامها الجسيمية باستخدام معادلة برص. IV TABLE OF CONTENTS Dedication I Acknowledgment II Abstract III Arabic Abstract IV Table of contents V List of Figures VIII List of tables X List of Abbreviations XI List of Symbols XII CHAPTER (1) INTRODUCTION TO NANOSIENCE 1.1 General Introduction. 2 1.2 Nanoscience. 2 1.3 Why Do Physical Properties Changes At Nanoscale? 3 1.4 Quantum size effects. 4 1.5 Properties of Nanomaterials. 6 1.6 Applications of Nanocrystaline materials. 7 1.7 Synthesis of Nanocrystal line materials. 8 1.7.1 Wet Chemical Methods (Bottom-up method). 9 1.7.2 Freeze-drying and Spray-drying. 10 1.7.3 Co-precipitation method. 10 1.7.4 Sol-gel method. 10 1.8 Semiconductor Nano particles. 11 1.9 Silver sulfide. 12 1.9.1 Cupper sulfide. 13 1.9.2 Cadmium sulfide. 14 1.9.3 Cobalt sulfide. 14 1.9.4 Magnesium sulfide. 15 1.9.5 Nickel sulfide. 15 1.10 Literature review. 15 V 1.11 Aims of present work. 19 CHAPTER (2 ) 20 EXPERIMENTAL 2.1 Introduction 21 2.2 Synthesis of Nanoparticles by wet chemical method. 21 2.3 Materials. 21 2.3.1Synthesis of undoped Ag2S nanoparticles. 21 2.3.2 Synthesis of doped Ag2S nanoparticles. 22 2.4 Characterization Techniques . 22 2.4.1 Transmission Electron Microscope (TEM). 23 2.4.2 Ultraviolet -Visible Spectroscopy (UV- vis). 24 2.4.2.1 UV Absorption . 25 2.4.2.2 UV-Visible Spectra. 26 2.4.3 Photoluminescence Phenomenon. 27 2.5 Instrumentation. 28 2.5.1 Optical Excitative Sources. 29 2.5.2 Wavelength Selectors. 29 2.5.3 Cells. 30 2.5.4 Detectors and Data Output. 30 2.5.5 Photoluminescence Spectra. 30 CHAPTER (3) 31 RESULTS AND DISSCUSSION 3.1. Introduction. 32 3.2 Cupper – doped silver sulfide nanoparticles. 32 3.2.1 Morphologies of Cu -doped by (TEM). 32 3.2.2 Optical Properties of Cu- doped Ag2S. 34 3.2.2.1 UV- vis absorption spectra. 34 3.2.2.2 Photoluminescence studies of Cu-doped Ag2S nanoparticles. 38 3.3 Cadmium – doped silver sulfide nanoparticles. 40 3.3.1 Morphologies of Cd -doped by (TEM). 40 3.3.2 Optical Properties of Cd- doped Ag2S. 42 3.3.2.1 UV- vis absorption spectra. 42 VI 3.3.2.2 Photoluminescence studies of Cd-doped Ag2S nanoparticles. 46 3.4 Cobalt- doped silver sulfide nanoparticles. 48 3.4.1 Morphologies of Co -doped by (TEM). 48 3.4.2 Optical Properties of Co- doped Ag2S. 50 3.4.2.1 UV- vis absorption spectra. 50 3.4.2.2 Photoluminescence studies of Co-doped Ag2S nanoparticles. 54 3.5 Magnesium – doped silver sulfide nanoparticles. 56 3.5.1 Morphologies of Mg -doped by (TEM).. 56 3.5.2 Optical Properties of Mg – doped Ag2S. 57 3.5.2.1 UV- vis absorption spectra. 57 3.5.2.2 Photoluminescence studies of Mg-doped Ag2S nanoparticles. 59 3.6 Nickel – doped silver sulfide nan particles. 62 3.6.1 Morphologies of Ni – doped by (TEM). 62 3.6.2 Optical Properties of Ni – doped Ag2S . 64 3.6.2.1 UV- vis spectroscopy. 64 3.6.2.2 Photoluminescence studies of Ni-doped Ag2S nanoparticles. 67 CONCLUSIONS. 69 Scope of Future Research 70 REFERENCESE. 71 PAPERS. VII LIST OF FIGURES Fig.(1.1) The energy levels become discrete at nanoscale. 3 Fig.(1.2) Surface area to volume ratio increases at nanoscale. 4 Comparison of the “top-down” and “bottom-up” approach to Fig.(1.3) 9 nanomaterials synthesis. Structure of silver sulfide. Yellow and blue spheres represent S, Fig.(1.4) 13 and Ag atoms, respectively. Fig.(2.1) Schematic diagram of experimental set up. 22 Fig.(2.2) Schematic of TEM contents. 23 Fig.(2.3) Band gap and conduction band energy. 24 Fig.(2.4) Basic schematic of UV- Vis spectrometer. 25 Fig.(2.5) Basic Principle of luminescence. 28 Fig.(2.6) Block diagram of the Fluorescence Spectrophotometer. 29 TEM images and histograms of undopedAg2S (a) 0 % and (b) 6 Fig.(3.1) 33 % Cu-doped Ag2S. Fig.(3.2) UV-vis spectra of Cu- doped Ag2S. 35 Fig.(3.3) Optical band gab energy of Cu- doped Ag2S. 35 Variations of particle size and band gab energy with cupper Fig.(3.4) 37 concentration. Variation of band gab energy with the particle size of Cu-doped Fig.(3.5) 37 Ag2S . Fig.(3.6) PL spectra of Cu-doped Ag2S nanoparticles. 39 Fig.(3.7) Normalized PL spectra of Cu-doped Ag2S nanoparticles. 39 TEM images and histograms of undopedAg2S (a) 0 % and (b) 6 Fig.(3.8) 41 % Cd-doped Ag2S. Fig.(3.9) UV- vis spectra of Cd– doped Ag2S. 43 Fig.(3.10) Optical band gab energy of Cd- doped Ag2S. 43 Variations of particle size and band gab of energy with Fig.(3.11) 45 cadmium concentration. Variation of band gab energy with the particle size of Cd-doped Fig.(3.12) 45 Ag2S. Fig.(3.13) PL spectra of Cd-doped Ag2S.