Application of Near and Mid-Infrared Spectroscopy to Determine Cheese Quality and Authenticity

Total Page:16

File Type:pdf, Size:1020Kb

Application of Near and Mid-Infrared Spectroscopy to Determine Cheese Quality and Authenticity Food Bioprocess Technol (2008) 1:117–129 DOI 10.1007/s11947-007-0033-y Application of Near and Mid-Infrared Spectroscopy to Determine Cheese Quality and Authenticity Tony Woodcock & Colette C. Fagan & Colm P. O’Donnell & Gerard Downey Received: 27 July 2007 /Accepted: 22 October 2007 /Published online: 17 November 2007 # Springer Science + Business Media, LLC 2007 Abstract This paper reviews the current state of develop- Introduction ment of both near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for process monitoring, quality In common with the processed food industry at large, the control, and authenticity determination in cheese processing. dairy industry has come under increasing pressure to Infrared spectroscopy has been identified as an ideal process deliver products of high and constant quality into the analytical technology tool, and recent publications have market place (Downey et al. 2005). Globally, cheese demonstrated the potential of both NIR and MIR spectrosco- represents about 30% of total dairy product sales with a py, coupled with chemometric techniques, for monitoring forecast of 9.8% sales growth between 2003 and 2007 coagulation, syneresis, and ripening as well as determination (Farkye 2004). It is important to determine cheese quality of authenticity, composition, sensory, and rheological param- in a rapid and cost-effective manner. eters. Recent research is reviewed and compared on the basis The chemical characteristics of cheeses have been of experimental design, spectroscopic and chemometric traditionally undertaken by different physico-chemical methods employed to assess the potential of infrared methods to determine pH, fat content, nitrogen fractions, spectroscopy as a technology for improving process control volatile fatty acids, organic acids, and so on (Karoui et al. and quality in cheese manufacture. Emerging research areas 2007). These methods can be labour-intensive and expen- for these technologies, such as cheese authenticity and food sive. In addition to the need for efficiency, there is an chain traceability, are also discussed. emerging need in food processing for all major composi- tional and quality parameters to be determined online and in real-time. The potential of techniques such as infrared spectroscopy, ultrasound, and computer vision to fulfil Keywords Spectroscopy. Cheese . Authenticity. Quality. these needs have been examined. Food manufacturers are Near-infrared . Mid-infrared . Process analytical technology also required to demonstrate the authenticity of their products. The rights of consumers and genuine food processors in terms of food adulteration and fraudulent or deceptive practices in food processing are set out in a recent European Union regulation regarding food safety and : : T. Woodcock C. C. Fagan (*) C. P. O’Donnell traceability (European Commission 2002). The European Biosystems Engineering, School of Agriculture, Union systems for the promotion and protection of food Food Science and Veterinary Medicine, products of recognized quality and origin and selected University College Dublin, Dublin 4, Ireland examples of protected cheeses are listed in Table 1. e-mail: [email protected] Considerable work has been carried out in the area of : cheese quality and authenticity determination using near- T. Woodcock G. Downey infrared (NIR) and mid-infrared (MIR) spectroscopic tech- Teagasc, Ashtown Food Research Centre, Ashtown, niques at laboratory scale. Recent technical developments in Dublin 15, Ireland NIR and MIR spectroscopy and chemometrics will facilitate 118 Food Bioprocess Technol (2008) 1:117–129 Table 1 European Commission systems for the promotion and protection of food products of recognized quality and origin and selected examples of protected cheeses System Legislation Types of food protected No of cheeses Selected examples of protected protected cheeses Protected designation of European Council Regulation Foodstuffs which are produced, 139 Fromage de Herve origin (PDO) (EC) No 2081/92 processed, and prepared (Belgium) in a given geographical area using Feta (Greece) recognized know-how Manouri (Greece) Cabrales (Spain) Beaufort (France) Salers (France) Imokilly Regato (Ireland) Bitto (Italy) Buxton Blue (United Kingdom) Protected geographical European Council Regulation Foodstuffs in which a common 12 Danablu (Denmark) indication (PGI) (EC) No 2081/92 geographical link occurs in at least Esrom (Denmark) one of the stages of production, Queso de Valderón (Spain) processing, or preparation Emmental de Savoie (France) Tomme de Savoie (France) Tomme de Pyrénées (France) Svecia (Sweden) Teviotdale cheese (United Kindom) Traditional speciality European Council Regulation Foodstuffs possessing a traditional 2 Mozzerella (Italy) guaranteed (TSG) (EC) No 2082/92 character, either n the composition or Hushållsost (Sweden) means of production the transfer of this technology from laboratory to online authenticity determination of cheese. The review will be application, which, in addition to the rapid, non-destructive divided into sections according to the parameter of the and relatively low-cost nature of infrared spectroscopy, make cheese being measured, i.e., process monitoring of coagu- it an ideal process analytical technology (PAT) tool. lation, syneresis, and ripening and determination of PAT is a system for designing, analyzing, and controlling authenticity, composition, sensory, and rheological param- manufacturing through timely measurements of critical eters. A brief overview of NIR and MIR spectroscopy and quality and performance attributes of raw and in-process chemometric analysis will also be provided. materials and processes (Balboni 2003). The implementa- tion of a PAT system in cheese manufacture would assist in achieving the production goal of a consistently high-quality Overview of NIR and MIR Spectroscopy product. However, this requires the control of the manu- facturing process through real-time analysis of critical NIR radiation is defined as that wavelength region from quality parameters. Therefore, PAT tools, i.e., techniques 750 to 2,500 nm lying between the visible light and the and technologies, which can rapidly, accurately, and infrared light (Büning-Pfaue 2003). NIR spectroscopy is a preferably non-destructively assess the quality and func- physical, non-destructive high-precision technology requir- tional properties of cheese, such as infrared spectroscopy, ing minimal or no sample preparation. It is also well suited are essential for the modern cheese industry. This will allow to online use. Once calibrated, an NIR spectrometer may be for increased process monitoring and control of cheese operated with minimal training. A typical NIR food manufacturing. spectrum has two dominant and broad peaks located near The majority of published research focuses on one 1,440 and 1,930 nm. These peaks are due to water and are particular type of cheese, one quality parameter or one responsible for some typical complications encountered in sensing technology. The objective of this review was to chemometric analysis. Effects of hydrogen bonding and present a comprehensive overview of recent developments sample temperature are also found to affect the reliability of in the area of cheese quality and authenticity determination NIR spectroscopic results (Büning-Pfaue 2003). The main using NIR and MIR spectroscopy. This will facilitate a full disadvantage of NIR spectroscopy is its weak sensitivity to assessment of the potential of these techniques as PAT tools minor constituents such as salt and water-soluble nitrogen. in the areas of process monitoring, quality control and The sensitivity limit is about 0.1% for most constituents Food Bioprocess Technol (2008) 1:117–129 119 (Iwamoto and Kawano 1992). The development of instru- Chemometrics mentation, measurement techniques, and chemometrics applicable to the food industry has been widely reviewed Chemometrics can be described as going beyond the in a number of recent publications (Benson 2003; Penner limitations of univariate statistics using multivariate meth- 2003; Wehling 2003; Millar 2004; Sayago et al. 2004). The odologies derived from mathematics, statistics, and com- first NIR spectra of casein, fat, lactose, and powdered milk puter science (Geladi 2003). Multivariate calibration and were obtained by Goulden (1957). NIR spectroscopy has multivariate classification are two of the most common traditionally been applied for the measurement of composi- multivariate methodologies. Multivariate approaches can be tional parameters of food products. However, it can also be used to overcome problems in spectroscopy such as used for the determination of complex quality properties collinearity, i.e., where variables in the calibration have such as texture and sensory attributes. Figure 1 shows high correlations between them or where it is difficult to examples of NIR spectra of processed cheese. select a specific wavelength for calibration, as infrared MIR Spectroscopy is the measurement of the wavelength spectrum frequently contain data points carrying over- and intensity of the absorption of the mid-infrared range lapping information. Multivariate calibration approaches (4,000–200 cm−1, 2,500–50,000 nm) by a sample. The MIR such as principal component analysis (PCA) and partial range is sufficiently energetic to excite molecular vibrations least-squares regression may be used to remove these to higher energy levels. The wavelength of MIR absorption redundancies from the data. These
Recommended publications
  • Mechanism and Control of the Eye Formation in Cheese
    International Dairy Journal 47 (2015) 118e127 Contents lists available at ScienceDirect International Dairy Journal journal homepage: www.elsevier.com/locate/idairyj Mechanism and control of the eye formation in cheese * Dominik Guggisberg a, , Philipp Schuetz b, c, Hans Winkler a, Rudolf Amrein a, Ernst Jakob a, Marie-Therese Frohlich-Wyder€ a, Stefan Irmler a, Walter Bisig a, Iwan Jerjen b, Mathieu Plamondon b, Jürgen Hofmann b, Alexander Flisch b, Daniel Wechsler a a Agroscope, Institute for Food Sciences IFS, CH-3003 Bern, Switzerland b EMPA, Center for X-ray Analytics, CH-8600 Dübendorf, Switzerland c Lucerne University of Applied Sciences and Arts, CH-6048 Horw, Switzerland article info abstract Article history: The production of Swiss-type cheeses with a typical number, size, and distribution of eyes is a difficult Received 28 August 2014 task, especially when bactofuged or microfiltrated milk is utilised. In this study, the potential of mi- Received in revised form croparticles (plant origin) to influence eye formation in cheese, was assessed. Eight experimental 5 March 2015 Emmental cheeses were produced with one replicate from microfiltrated milk with addition of 0.0625 Accepted 6 March 2015 e4.000 mg of powdered hay to the milk (90 L) and ripened for 130 days. Eye formation was quantified by Available online 20 March 2015 means of X-ray computed tomography (between 30 and 130 days). The contents of fat, water, citric acid, lactic acid, and volatile carboxylic acids were determined at 130 days. The results demonstrate that microparticles of plant origin act as eye nuclei that control the number (P < 0.001) and size of the eyes in cheese in a dose-dependent manner.
    [Show full text]
  • Swiss Cheese
    ALP science 2008, No. 518 SWISS CHEESE Technical-scientific information Contents 1 Introduction 3 2 What factors affect eye development in Swiss cheese? 4 3 What causes «blind» Emmental cheese? 5 4 What causes irregular eye formation, slits or cracks in Emmental cheese? 6 5 What is aspartase of Propionibacterium? 7 6 How does aspartase of Propionibacterium affect Swiss cheese? 8 7 How may the size and quantity of the eyes in Emmentaltype cheese be controlled? 9 8 How do I control the elastic texture of Swiss-typ cheese? 12 9 Why does Swiss cheese have a sweet fl avour? 14 10 What are the causes of the most common fl avour defects of Swiss cheese? 14 ALP science 11 Is my Emmental cheese hygienically safe? 16 Title Swiss cheese Picture on cover Emmentaler Switzerland Published in Woodhead Publishing in Food Science, Technology and Nutrition, Cheese problems solved, 2007, [117–127], p. 246–265 Authors Marie-Therese Fröhlich-Wyder and Hans-Peter Bachmann Publisher Agroscope Liebefeld-Posieux Research Station ALP Schwarzenburgstrasse 161 CH-3003 Berne Telefon +41 (0)31 323 84 18 Fax +41 (0)31 323 82 27 http: www.alp.admin.ch e-mail: [email protected] Contact Marie-Therese Fröhlich-Wyder, ALP Telefon +41 (0)31 323 82 23 Fax +41 (0)31 323 82 27 e-mail: [email protected] Layout Müge Yildirim, ALP Publication frequency Several times yearly at irregular intervals ISSN 1660-7856 (online) 2 Marie-Therese Fröhlich-Wyder and Hans-Peter Bachmann SWISS CHEESE 1 Introduction Swiss-type cheeses were originally manufactured in the Em- Today, Emmental-type cheese (Fig.
    [Show full text]
  • A Guide to Kowalski's Specialty Cheese Read
    Compliments of Kowalski’s WWW.KOWALSKIS.COM A GUIDE TO ’ LOCALOUR FAVORITE CHEESES UNDERSTANDING CHEESE TYPES ENTERTAINING WITH CHEESE CHEESE CULTURES OF THE WORLD A PUBLICATION WRITTEN AND PRODUCED BY KOWALSKI’S MARKETS Printed November 2015 SPECIALTY CHEESE EXPERIENCE or many people, Kowalski’s Specialty Cheese Department Sadly, this guide could never be an all-inclusive reference. is their entrée into the world of both cheese and Kowalski’s Clearly there are cheese types and cheesemakers we haven’t Fitself. Many a regular shopper began by exclusively shopping mentioned. Without a doubt, as soon as this guide goes to this department. It’s a tiny little microcosm of the full print, our cheese selection will have changed. We’re certainly Kowalski’s experience, illustrating oh so well our company’s playing favorites. This is because our cheese departments are passion for foods of exceptional character and class. personal – there is an actual person in charge of them, one Cheese Specialist for each and every one of our 10 markets. When it comes to cheese, we pay particular attention Not only do these specialists have their own faves, but so do to cheeses of unique personality and incredible quality, their customers, which is why no two cheese sections look cheeses that are perhaps more rare or have uncommon exactly the same. But though this special publication isn’t features and special tastes. We love cheese, especially local all-encompassing, it should serve as an excellent tool for cheeses, artisanal cheeses and limited-availability treasures. helping you explore the world of cheese, increasing your appreciation and enjoyment of specialty cheese and of that Kowalski’s experience, too.
    [Show full text]
  • Split Defect and Secondary Fermentation in Swiss-Type Cheeses - a Review David F.M
    Split defect and secondary fermentation in Swiss-type cheeses - A review David F.M. Daly, Paul L.H. Mcsweeney, Jeremiah J. Sheehan To cite this version: David F.M. Daly, Paul L.H. Mcsweeney, Jeremiah J. Sheehan. Split defect and secondary fermentation in Swiss-type cheeses - A review. Dairy Science & Technology, EDP sciences/Springer, 2010, 90 (1), 10.1051/dst/2009036. hal-00895710 HAL Id: hal-00895710 https://hal.archives-ouvertes.fr/hal-00895710 Submitted on 1 Jan 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Dairy Sci. Technol. 90 (2010) 3–26 Available online at: © INRA, EDP Sciences, 2009 www.dairy-journal.org DOI: 10.1051/dst/2009036 Review Split defect and secondary fermentation in Swiss-type cheeses – A review 1,2 2 1 David F.M. DALY , Paul L.H. McSWEENEY , Jeremiah J. SHEEHAN * 1 Moorepark Food Research Centre, Teagasc, Fermoy, Co. Cork, Ireland 2 Department of Food and Nutritional Sciences, University College, Cork, Ireland Received 15 December 2008 – Revised 25 May 2009 – Accepted 4 September 2009 Published online 16 October 2009 Abstract – Split and secondary fermentation defects in Swiss-type cheese varieties are manifested as undesirable slits or cracks that may lead to downgrading of the cheese.
    [Show full text]
  • Characterization of Propionibacteria in Swiss Raw Milk by Biochemical and Molecular-Biological Methods
    Research Collection Doctoral Thesis Characterization of propionibacteria in Swiss raw milk by biochemical and molecular-biological methods Author(s): Fessler, Denise Sophie Publication Date: 1997 Permanent Link: https://doi.org/10.3929/ethz-a-001855109 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH No. 12328 Characterisation of propionibacteria in Swiss raw milk by biochemical and molecular-biological methods A thesis submitted to the Swiss Federal Institute of Technology (ETH), Zurich for the degree of Doctor of Technical Sciences presented by DENISE SOPHIE FESSLER Dipl. Lm.-lng. ETH born September 25th, 1969 citizen of Walzenhausen (AR) accepted on the recommendation of Prof. Dr. Z. Puhan, examiner Dr. M. G. Casey, co-examiner Dr. S. Lortal, co-examiner Zurich 1997 To my parents Acknowledgements I would like to express my sincere gratitude to Prof. Dr. Z. Puhan for giving me the chance to carry out this thesis and for his supervision. Very special and warm thanks belong to Dr. M. G. Casey for supporting me. He gave me invaluable suggestions and always had an open ear for my problems. Without his patience and confidence this thesis would not have been possible. I thank Dr. Sylvie Lortal for taking over the external examination of this work. I would like to extend my appreciation to the whole Department of Bio¬ chemistry, FAM. I thank Dr. M. Furst, Dr. J. Jimeno, Dr. A. Baer and Dr. J. Meyer for their backing and Mrs.
    [Show full text]
  • Abstract Ameerally, Angelique
    ABSTRACT AMEERALLY, ANGELIQUE DANIELLE. Sensory and Chemical Properties of Gouda Cheese. (Under the direction of MaryAnne Drake). Gouda cheese (G) is a Dutch, washed curd cheese that is traditionally produced from bovine milk and brined before ripening for 1-20 months. In response to domestic and international demand, U.S. production of Gouda cheese has more than doubled in recent years. An understanding of the chemical and sensory properties of G can help manufacturers to create desirable products. The objective of this study was to determine the chemical and sensory properties of Gouda cheeses. Commercial Gouda cheeses (n=36, 3 mo to 5 y, domestic and international) were obtained in duplicate lots. Volatile compounds were extracted (SPME) and analyzed by gas chromatography olfactometry (GCO) and gas chromatography mass spectrometry (GCMS). Physical analyses included pH, proximate analysis, salt content, organic acid analysis by HPLC, and color. Flavor and texture properties were determined by descriptive sensory analysis. Focus groups were conducted with cheese followed by consumer acceptance testing (n=153) with selected cheeses. Ninety aroma active compounds were detected in cheeses by SPME- GC-O. Key volatile compounds in Gouda cheeses included dimethyl sulfide, 2,3- butanedione, 2/3-methylbutanal, ethyl butyrate, acetic acid, and methional. Older cheeses had higher organic acid concentrations, higher fat and salt content, and lower moisture content than younger G. Younger cheeses were characterized by milky, whey, sour aromatic, and diacetyl flavors while older G were characterized by fruity, caramel, malty/nutty, and brothy flavors. International cheeses were differentiated by the presence of low intensities of cowy/barny and grassy flavors.
    [Show full text]
  • The Role of Propionibacteria in the Split Defect of Swiss Cheese
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1972 The oler of propionibacteria in the split defect of Swiss cheese David Howard Hettinga Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, and the Food Science Commons Recommended Citation Hettinga, David Howard, "The or le of propionibacteria in the split defect of Swiss cheese " (1972). Retrospective Theses and Dissertations. 5210. https://lib.dr.iastate.edu/rtd/5210 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Identification of Propionibacteria Isolated from Brown Spots of Swiss Hard and Semi-Hard Cheeses Denise Fessler, Michael G
    Identification of propionibacteria isolated from brown spots of Swiss hard and semi-hard cheeses Denise Fessler, Michael G. Casey, Zdenko Puhan To cite this version: Denise Fessler, Michael G. Casey, Zdenko Puhan. Identification of propionibacteria isolated from brown spots of Swiss hard and semi-hard cheeses. Le Lait, INRA Editions, 1999, 79 (2), pp.211-216. hal-00929644 HAL Id: hal-00929644 https://hal.archives-ouvertes.fr/hal-00929644 Submitted on 1 Jan 1999 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lait (1999) 79, 211-216 211 © InralElsevier, Paris Original article Identification of propionibacteria isolated from brown spots of Swiss hard and semi-hard cheeses Denise Fesslera, b, Michael G. Casey?", Zdenko Puhan" a Laboratory of Dairy Science, Swiss Federal Institute of Technology, Zurich, Switzerland b Federal Dairy Research Institute, 3003 Bern, Switzerland (Received 22 September 1997; accepted 8 September 1998) Abstract - One hundred and thirty-five propionibacteria isolated from brown spots of Appenzell, Emmental, Raclette and Sbrinz cheese were analyzed by random amplified polymorphie deoxyri- bonucleic acid (RAPD) and protein profiling. Both Propionibacteriumfreudenreichii subsp. shennanii and P.freudenreichii subsp.freudenreichii seem to be involved in the formation ofbrown spots in ail these cheeses.
    [Show full text]
  • Split Defect and Secondary Fermentation in Swiss-Type Cheeses – a Review
    Dairy Sci. Technol. 90 (2010) 3–26 Available online at: © INRA, EDP Sciences, 2009 www.dairy-journal.org DOI: 10.1051/dst/2009036 Review Split defect and secondary fermentation in Swiss-type cheeses – A review 1,2 2 1 David F.M. DALY , Paul L.H. McSWEENEY , Jeremiah J. SHEEHAN * 1 Moorepark Food Research Centre, Teagasc, Fermoy, Co. Cork, Ireland 2 Department of Food and Nutritional Sciences, University College, Cork, Ireland Received 15 December 2008 – Revised 25 May 2009 – Accepted 4 September 2009 Published online 16 October 2009 Abstract – Split and secondary fermentation defects in Swiss-type cheese varieties are manifested as undesirable slits or cracks that may lead to downgrading of the cheese. Split defect is associated with an excessive production of gas or an unsuitable cheese body that cannot accommodate gas produced, or a combination of both factors. Secondary fermentation is the apparent production of gas after the desired propionic fermentation of the warm room has taken place. No consensus exists as to the definitive causes of the defects, but possible causes are reviewed under factors that are associated with rheological behaviour (including cheese manufacture, acidification, intact protein content and proteolysis, seasonality of milk supply and ripening or storage temperature and duration) or with overproduction of gas (including milk microflora, propionic acid bacteria (PAB) – in particular strains with high aspartase activity and ability to grow at low temperatures, lactic acid bacteria, interactions between starter bacteria, facultatively heterofermentative lactobacilli (FHL) and other sources of gas including butyric acid fermentation). The influence of other parameters such as copper concentration, air incorporation, salt content, rind formation and cheese wrapping materials is also considered.
    [Show full text]
  • Isolation and Characterization of Nonstarter Lactobacillus Spp
    ISOLATION AND CHARACTERIZATION OF NONSTARTER LACTOBACILLUS SPP. IN SWISS CHEESE AND ASSESSMENT OF THEIR ROLE ON SWISS CHEESE QUALITY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Nurdan A. Kocaoglu-Vurma, M.S. ***** The Ohio State University 2005 Dissertation Committee: Dr. W. James Harper, Adviser Approved by Dr. Polly D. Courtney Dr. Mike Mangino _______________________ Adviser Dr. Ahmed E. Yousef Food Science and Nutrition Graduate Program ABSTRACT Nonstarter Lactobacillus strains affect the quality of many cheese varieties. Though the use of Lactobacillus casei as an adjunct culture is common for Swiss-type cheese manufactured in Switzerland, few published reports exist on adjunct use and none exist for adjunct use in U.S.-manufactured Swiss cheese. High quality Swiss cheeses vary in sensory, chemical, microbiological, and physical characteristics. Determining the compositional characteristics of commercial Swiss cheeses will establish the typical range for each characteristic in cheeses intended for the American market and will complement descriptive sensory and consumer preference studies. The objectives of this study were to isolate and identify nonstarter Lactobacillus strains in high quality commercial Swiss cheeses, to investigate citrate metabolism among nonstarter lactobacilli, to study the effect of nonstarter Lactobacillus strains as adjunct cultures on Swiss cheese characteristics, and to determine chemical, microbiological, and physical characteristics of commercial Swiss-type cheeses. Lactobacilli were selected from six domestic and two European Swiss cheeses with selective medium and the strains from each cheese were genetically typed and speciated. Qualitative and quantitative citrate utilization assays were performed on each strain.
    [Show full text]
  • VINCENZO's Cheese Fondue Flyer
    Emmentaler Gruyere Soft green hills, romantic villages, farmhouses This extra special delicacy from the Gruy- that hide beneath gigantic roofs, and richly dec- ere district of Switzerland is well known as orated homesteads mark the charming charac- the basic ingredient in fondue. But with its ter of the region from which this magnificent delightfully nutty, spicy, full flavor, it is deli- cheese originates. Emmentaler is known for its cious as a table cheese as well. Upon eat- grand size and its handmade quality. For more ing Gruyere, one immediately recognizes History than one-and-a-half centuries to date, Emmen- the taste of whole milk that is used exclu- This warm cheese dish originated in Switzerland taler has been made in village cheese dairies. sively in making this grand cheese. We and more specifically in the Canton of Neu- say it is grand because a whole wheel of chatel. The dish consists of at least two varieties The Emmentaler cheese-making process is an Gruyere weighs about 80 pounds. In fact, it of cheese that are melted with wine and a bit of old tradition using pure cow’s milk and a matu- takes over 100 gallons of milk to make a flour and served communally out of pot called a ration period of at least four months. This pro- single wheel of Gruyere! Enjoy this tradi- "caquelon". Long forks are used by each guest tional favorite julienned into a chef's salad, to spear a cube of bread then the bread is cess allows the rind to develop in an entirely dipped into the cheese and eaten.
    [Show full text]
  • Cheese Shop Mystery Cheese List
    "The Long Quiche Goodbye" Cheeses Source Flavor Abbaye de Belloc Sheep Rich, caramelized flavors Artisanal cheese Goat/Wisconsin Fictional Artisanal cheese Goat/Two Plug Fictional Nickels Brie Cow Creamy wonder Cabot Clothbound Cheddar Cow Rich, firm Caerphilly Cow Pleasant, creamy, buttery Camembert Cow Ripe, hint of soil Crème fraiche Cow Sour cream Délice de Rougemont Cow Complex, earthy, succulent Double cream Gouda Cow/Pace Hill Fictional Farm Dry Jack Cow Like Parmigiano, dry, nutty Emmental (Ementhaler) Cow Like Swiss, creamy, pungent Franche-Comté/Jura Cow Hint of hazelnuts and toffee Gorgonzola Cow Sharp, tangy, savory Gouda Cow Semi-soft, milder than cheddar Grayson, Virginia Cow Beefy taste with nutty overtones Gruyère Cow Sweet but slightly salty Humboldt Fog Goat Subtle, tangy, ribbon of ash Kindred Brebis Goat Fictional Manchego Sheep Nutty and salty, firm Mascarpone Cow Double- or triple-cream, like pudding Mitica Romao Sheep Salty and sharp, like Parmigiano Monterey Jack Cow Mild and gooey Morbier Cow With a streak of ash, complex, bold, soft Parmesan (Parmegiano) Cow Salty and nutty, hard Pecorino Sheep Crumbly, buttery and nutty Perrin Haute-Savoie Cow Beefy flavor Petit Basque Sheep Slightly oily, earthy and nutty Raclette Cow Fruity, more pronounced than Gruyère Red Hawk Cowgirl Creamery Cow Triple-cream, salty, meaty, pungent Ricotta salata Sheep Salty, milky, like dry feta Stilton Cow Bold blue Taleggio Cow Pungent to the nose but creamy and fruity Tomme Crayeuse Cow Robust with salty overtones Triple Crème cheese
    [Show full text]