Some Studies and Comments on Toxication-Detoxication Systems

Total Page:16

File Type:pdf, Size:1020Kb

Some Studies and Comments on Toxication-Detoxication Systems Environmental Health Perspectives Some Studies and Comments on Hepatic and Extrahepatic Microsomal Toxication-Detoxication Systems. A Limited Discussion of Some of the Heterogeneities of These Systems and of Their Responses to Stimulation of Enzyme "Induction" by James R. Fouts, Ph. D.* Introduction and other purposes), or water (such as chem- icals used in purifying the water or pollu- Much of what will be discussed in this tants that cannot be removed), or air (odors, paper can be referred to as drug metabolism, perfumes, and particulates-some added or drug-metabolizing systems and some fac- deliberately, some we can't or don't remove) tors which affect these systems, for example and which we ingest in the process of living by causing enzyme induction. If such terms and working in an environment increasingly as "drug metabolism" and "enzyme induc- filled with effectors of these enzyme sys- tion" are not further defined and explained, tems. To replace "drug metabolizing en- many people will still know what I am talk- zymes" with "xenobiotic or foreign chemical ing about and referring to. However, this metabolizing systems" recognizes part of the sloppy language may needlessly restrict the problem-some of the substrates of these interest and importance of some of the enzymes are not drugs; (b) drug or xeno- research going on in this field. Attempts to biotic metabolizing systems can cause acti- overcome this language-semantics barrier vation and inactivation of chemicals- have been partly successful and need to be sometimes even in sequence with or on the refined and extended. Some points needing same substrate. Thus, changes in activity of emphasis in my opinion are: (a) drug metab- the drug or xenobiotic metabolizing systems olizing systems have a number of substrates can either increase or decrease the toxicity that are not drugs. Some of these are of chemicals serving as substrates of these "normal" substrates such as steroids, fatty systems. Such changes can be specific for acids, vitamins, and hormones. Other sub- one substrate or apply to several substrates strates include chemicals that are present in and at the same time may make one sub- our food (such as preservatives, coloring strate more toxic and another less so. What agents, food additives for taste, odor control often determines toxicity and actions of a chemical is the balance between metabolism to toxic vs. less-toxic metabolites. This *Chief, Pharmacology and Toxicology Branch, National Institute of Environmental Health Sciences, balance may be shifted by increasing any or National Institutes of Health, Box 12233 Research all of these metabolisms or by increasing Triangle Park, North Carolina, 27707 some more than others, as well as by the October 1972 55 simpler examples of increasing one- kind throw up his hands in despair at this point (toxication) of reaction and decreasing since alternatives to "drug metabolizing another (detoxication) or vice versa. Thus, enzymes" are not easy to sell to anyone, let two points come out-drug or xenobiotic alone think up. But the lack of viable alter- metabolizing systems are not just "detoxi- natives has led to a lot of "clubs" who do cation mechanisms" and increases or induc- not communicate well with each other and tion of these systems can lead at the same the whole subject suffers. I will now close or different times to intoxication as well as this part of the introduction by choosing my detoxication relative to the "before induc- label for these systems: toxication- tion" stage; (c) toxication-detoxication sys- detoxication systems, only wishing I could tems include many reactions that are not somehow also add: ... that may use as oxidative in nature, are not cytochrome substrates drugs, foreign chemicals, or endog- P450 requiring, are not restricted to the enous lipid-class members such as steroids, liver, and can occur elsewhere than in the fatty acids, and vitamins, or endogenous microsomes. Therefore, to talk only about non-lipids like thyroxine, and certain amines hepatic microsomal drug oxidations and (even epinephrine or precursors), and may further to consider only those which involve even be systems that neither toxify nor cytochrome P450 is to talk about a very detoxify, but rather only metabolize these small (but vigorously and intensely studied) various substrates, and whose metabolism part of the body's systems for metabolizing can be characterized as oxidative and non- endogenous and exogenous chemicals. oxidative, synthetic and hydrolytic, involving One cannot really deal with these three many organs besides liver, and including a problem areas merely by recycling the lot of non-cytochrome P450 dependent nomenclature. Yet our use of convenient but systems. inexact items can, by repetition, cause some Having spent so much time on broadening dulling of our appreciation of the problems perspectives, I must now hasten to assure we are making for ourselves and colleagues the reader that I cannot possibly deal with in other disciplines who need to inform us all these matters in this paper. Indeed the and vice versa about common research main subjects covered will be few in number efforts with these systems. People who work and terribly selective since I prefer to write on "drug metabolizing enzyme systems" will about my own work and not that of others. tend to use drugs as substrates and think of This will not be a general review of drug or the systems primarily in terms of their roles xenobiotic metabolism, since I think plenty in therapeutics. Scientists who study "xeno- of these already exist. Instead, I wish to biotic metabolizing systems" will think write about three research projects that have largely in terms of non-drug substrates and been under study in my laboratory over the perhaps concentrate on the role of these last few years, and which I feel are of rele- systems and their interactions with model vance to the interface between "drug" substrates, industrial chemicals or environ- metabolism and environmental health science mental pollutants. Research on "steroid or as disciplines having identity problems that fatty acid metabolizing systems" will tend to are not dissimilar. These research projects I focus on the role of these enzymes in regu- wish to concentrate on are: (a) extrahepatic lating homonal functions and body homeo- toxication-detoxication systems; (b) age- stasis. Studies on "vitamin and non-steroid dependent changes in toxication-detoxication hormone metabolisms" will often concern systems in lung vs. liver, and (c) species- itself with nutritional balances, intermediary strain-individual differences in "induction" of metabolism and similar systems. The point hepatic toxication-detoxication systems by being that words do make a difference, the pollutants benzpyrene and DDT. labels do matter, and we ignore this human If the reader wishes a general review of weakness with some costs attached. One can "drug metabolism," or even specifically drug 56 Environmental Health Perspectives metabolism and its role in environmental tifying low levels of component or enzyme health, he should read elsewhere. Several activity especially in the presence of high very good reviews of the subject of "drug blanks due to things like blood - the liver metabolism" and selected aspects of the has high levels of most toxication- systems in liver, especially those requiring detoxication systems and contaminants or cytochrome P450 have appeared quite inhibitors of assays can often be removed recently. Some of these reviews are in book easily or at least lowered by perfusion, form; others are in journals or monographs. washing, etc.; (d) stability of systems - prob- Many conferences are being held on the lems in preparing components or enzyme subject and the conference proceedings often systems for assay before they are lost by appear very shortly thereafter. I cannot cytolysis or autolysis, problems in storage of begin to list all such "reviews" that have systems (freezing), problems in long-time been published even in the last 3 or 4 years. incubation especially with low enzyme activi- Inevitably, I would leave a key reference ties - the liver decomposes slowly, stores well, out, and probably that of a good friend. and is stable for most incubation or assay Having thus dusted off a few old griev- periods especially since content or enzyme ances and given you some idea of what I activity is so high; (e) quantity of tissue will say and will not even attempt to do, I available vs. quantity of tissue needed for can now turn to my subject with a some- assay, statistics, etc. - high activity and plenty what less guilty conscience. of homogeneous tissue makes liver almost ideal in experiments calling for repetitive sampling or biopsy, estimation of individual Extrahepatic Toxication-Detoxication Systems variability, purification of the enzyme The major research efforts in the field of systems, etc. "drug-metabolizing enzymes" have been con- Early studies in "drug metabolism" did cerned with systems in the liver. It is true occasionally include comparisons of liver that the liver of most animal species studied with other tissues, at least in the common is especially rich in enzyme systems that laboratory animals. From such studies it was metabolize chemicals of all kinds. It is also learned that most organs of excretion or true that most workers have been aware that exchange were likely to have at least some other body tissues had the ability to metab- capacity to metabolize chemicals. However, olize chemicals,
Recommended publications
  • Four Patients with Amanita Phalloides Poisoning CASE SERIE
    CASE SERIE 353 Four patients with Amanita Phalloides poisoning S. Vanooteghem1, J. Arts2, S. Decock2, P. Pieraerts3, W. Meersseman4, C. Verslype1, Ph. Van Hootegem2 (1) Department of hepatology, UZ Leuven ; (2) Department of gastroenterology, AZ St-Lucas, Brugge ; (3) General Practitioner, Zedelgem ; (4) Department of internal medicine, UZ Leuven. Abstract because they developed stage 2 hepatic encephalopathy. With maximal supportive therapy, all patients gradually Mushroom poisoning by Amanita phalloides is a rare but poten- improved from day 3 and recovered without the need for tially fatal disease. The initial symptoms of nausea, vomiting, ab- dominal pain and diarrhea, which are typical for the intoxication, liver transplantation. They were discharged from the can be interpreted as a common gastro-enteritis. The intoxication hospital between 6 to 10 days after admission. can progress to acute liver and renal failure and eventually death. Recognizing the clinical syndrome is extremely important. In this case report, 4 patients with amatoxin intoxication who showed the Discussion typical clinical syndrome are described. The current therapy of amatoxin intoxication is based on small case series, and no ran- Among mushroom intoxications, amatoxin intoxica- domised controlled trials are available. The therapy of amatoxin intoxication consists of supportive care and medical therapy with tion accounts for 90% of all fatalities. Amatoxin poison- silibinin and N-acetylcysteine. Patients who develop acute liver fail- ing is caused by mushroom species belonging to the gen- ure should be considered for liver transplantation. (Acta gastro- era Amanita, Galerina and Lepiota. Amanita phalloides, enterol. belg., 2014, 77, 353-356). commonly known as the “death cap”, causes the majority Key words : amanita phalloides, mushroom poisoning, acute liver of fatal cases.
    [Show full text]
  • Clinical Biochemistry of Hepatotoxicity
    linica f C l To o x l ic a o n r l o u g Singh, J Clinic Toxicol 2011, S:4 o y J Journal of Clinical Toxicology DOI: 10.4172/2161-0495.S4-001 ISSN: 2161-0495 ReviewResearch Article Article OpenOpen Access Access Clinical Biochemistry of Hepatotoxicity Anita Singh1, Tej K Bhat2 and Om P Sharma2* 1CSK Himachal Pradesh, Krishi Vishva Vidyalaya, Palampur (HP) 176 062, India 2Biochemistry Laboratory, Indian Veterinary Research Institute, Regional Station, Palampur (HP) 176 061, India Abstract Liver plays a central role in the metabolism and excretion of xenobiotics which makes it highly susceptible to their adverse and toxic effects. Liver injury caused by various toxic chemicals or their reactive metabolites [hepatotoxicants) is known as hepatotoxicity. The present review describes the biotransformation of hepatotoxicants and various models used to study hepatotoxicity. It provides an overview of pathological and biochemical mechanism involved during hepatotoxicity together with alteration of clinical biochemistry during liver injury. The review has been supported by a list of important hepatotoxicants as well as common hepatoprotective herbs. Keywords: Hepatotoxicity; Hepatotoxicant; In Vivo models; In Vitro production of bile thus leading to the body’s inability to flush out the models; Pathology; Alanine aminotransferase; Alkaline phosphatase; chemicals through waste. Smooth endoplasmic reticulum of the liver is Bilirubin; Hepatoprotective the principal ‘metabolic clearing house’ for both endogenous chemicals like cholesterol, steroid hormones, fatty acids and proteins, and Introduction exogenous substances like drugs and alcohol. The central role played by liver in the clearance and transformation of chemicals exposes it to Hepatotoxicity refers to liver dysfunction or liver damage that is toxic injury [4].
    [Show full text]
  • The Effect of Bacillus Larvicidal Toxins on Mammals
    The effect of Bacillus larvicidal toxins On mammals By Nadia Adam Mohammed Ahmed B.Sc. of Veterinary Sciences University of Bahr-Elgazal ٢٠٠٠ Thesis submitted for the partial fulfillment of the requirements For the degree of Master of Science (M.Sc.) in microbiology Supervisor Professor: Mohammed Sulieman El-sanosi Department of microbiology Faculty of Veterinary Medicine University of Khartoum ٢٠٠٦ May To My lovely parents, My husband (M/Elmurtada) and my children (Reem&Rwan) To My brothers and sisters, And To Those who suffer from malaria, I dedicate this work. Nadia I would like to express my sincere thanks to my supervisor Prof. Elsanosi for his valuable supervision and encouragement. I also like to extend my thanks to Prof.Ahamed.A.Gameel for his great help in histopathological investigation of this study. Thanks also extend to all staff and technicians of the Department of Microbiology for their valuable advices and assistance. Iam also greatfull to my colleague and all my friends Special thanks to my family for their patience and continuous encouragement during this work. Abstract Mosquito control is the key for hopeful and sustainable eradication of different socio-economic as well as fatal viral, bacterial and parasitological diseases in the tropical and subtropical countries. In addition the safety of any pesticide should be assured before application. In the present study the susceptibility of arabiensis mosquito larvae to the toxin of two endo-spores forming bacilli strain was examined. Both Bacilli spp B. ٪١٠٠ thuringiensis and B. sphaericus were found to be highly toxic and fatal with was found to be tolerant to the (٤_Instar) ٤_mortality rate.
    [Show full text]
  • Research Article Presentations Related to Acute
    Hindawi Emergency Medicine International Volume 2019, Article ID 3130843, 7 pages https://doi.org/10.1155/2019/3130843 Research Article Presentations Related to Acute Paracetamol Intoxication in an Urban Emergency Department in Switzerland Natalia Piotrowska,1 Jolanta Klukowska-Ro¨tzler ,1 Beat Lehmann ,1 Gert Krummrey,1 Manuel Haschke,2,3 Aristomenis K. Exadaktylos,1 and Evangelia Liakoni 2,3 1Department of Emergency Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland 2Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland 3Institute of Pharmacology, University of Bern, Bern, Switzerland Correspondence should be addressed to Evangelia Liakoni; [email protected] Received 25 March 2019; Accepted 22 November 2019; Published 6 December 2019 Academic Editor: $eodore J. Gaeta Copyright © 2019 Natalia Piotrowska et al. $is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aim. To investigate the characteristics of Emergency Department (ED) presentations due to acute paracetamol intoxication. Methods. Retrospective observational study of patients presenting to the ED of Bern University Hospital between May 1, 2012, and October 31, 2018, due to a paracetamol overdose (defined as intake of >4 g/24 h). Cases were identified using the full-text search of the electronic patient database and were grouped into intentional (suicidal/parasuicidal) and unintentional in- toxications (e.g., patient unaware of maximal daily dose). Results. During the study period, 181 cases were included and 143 (79%) of those were intentional.
    [Show full text]
  • Ethanol and Tobacco Abuse in Pregnancy: Anaesthetic Considerations
    REVIEW ARTICLE Ethanol and tobacco abuse in pregnancy: Anaesthetic considerations K M Kuczkowski M.D, Assistant Clinical Professor of Anesthesiology and Reproductive Medicine, Co-Director of Obstetric Anesthesia, Departments of Anesthesiology and Reproductive Medicine, University of California, San Diego , USA Introduction The illicit drug abuse in pregnancy has received significant attention over the past two decades.1 However, far too little attention has been given to the consequences of the use of social drugs such as ethanol and tobacco, which are by far the most commonly abused substances during pregnancy. While the deleterious effects of cocaine or amphetamines on the mother and the fetus are more pronounced and easier to detect, the addiction to ethanol and tobacco is usually subtle and more difficult to diagnose.1, 2-4 As a result recreational use of alcohol and tobacco may continue undetected in pregnancy, significantly effecting pregnancy outcome and obstetric and anaesthetic management of these patients. This article reviews the consequences of ethanol and tobacco use in pregnancy and offers recommendation for anaesthetic management of these potentially complicated pregnancies. General considerations rette smoking.2, 17 The American College of Obstetricians and Substance abuse is defined as “self-administration of various drugs Gynaecologists (ACOG) has made multiple recommendations regard- that deviates from medically or socially accepted use, which if pro- ing management of patients with drug abuse during pregnancy. longed can lead to the development of physical and psychological Women who acknowledge use of illicit substance during pregnancy dependence”.5 This chemical dependency is characterized by peri- should be counseled and offered necessary treatment.
    [Show full text]
  • The Nervous System – Target Organ Into the Twenty-First Century
    The Nervous System – Target Organ into the Twenty-First Century R. Douglas Hamm MD, CCFP, FRCPC (Occ Med), FCBOM President, Canadian Board of Occupational Medicine CONTENTS 1. WHY NEURONS MAKE GOOD TARGETS FOR OCCUPATIONAL TOXICANTS 2. FROM CLASSICAL PLUMBISM TO BEHAVIORAL TOXICOLOGY 3. TOXICOKINETICS, COMPARTMENTS, AND PBPK MODELS 4. THE DIVERSE TOXICODYNAMICS OF THE NERVOUS SYSTEM 1. Peripheral Neurons (neuronopathy, axonopathy, myelinopathy) 2. Synaptic Neurotransmission (cholinergic pathways) 3. Special Senses (visual, auditory, olfactory) 4. Movement Disorders (parkinsonism, ataxia, tremor) 5. Neuroaffective and Neurocognitive Effects 5. NOTEWORTHY OCCUPATIONAL NEUROTOXICANTS 1. “Heavy metals” (Pb, Hg, Tl) and other elements (Mn, As, Al, Sb, Te) 2. Organic Solvents (toluene, xylene, styrene, C2HCl3, C2Cl4, CH3CCl3, CS2) 3. Gases (HCN, CO, H2S, ethylene oxide) 4. Pesticides (organophosphates, carbamates, organochlorines, pyrethroids, neonicotinoids) 6. CLINICAL NEUROTOXICOLOGY 1. Identification of Occupational Neurotoxic Disorders 2. Biomarkers of Exposure and Effect 3. Clinical Investigations of Neurotoxicity 1. WHY NEURONS MAKE GOOD 2. FROM CLASSICAL PLUMBISM TO TARGETS FOR OCCUPATIONAL BEHAVIORAL TOXICOLOGY TOXICANTS Hippocrates (c. 460-370 BC) has been cited as Neuroanatomical structures have large surface the first ancient author to describe a case of areas and receptor populations, e.g., the occupational neurotoxicity but this has been surface area of the brain’s 100 billion neurons shown to be erroneous (Osler, 1907; Waldron, totals hundreds of square metres. 1973, 1978; Skrabanek, 1986; Vance, 2007). The earliest report appears to be that of Neurons have high rates of metabolism, e.g., Nicander of Colophon (2nd cent. BC) who the brain at 2% body mass consumes 20% of observed that in “psimuthion” i.e.
    [Show full text]
  • Results of Liver Transplantation in Patients with Acute Liver Failure Due to Amanita Phalloides and Paracetamol (Acetaminophen) Intoxication
    Original paper Results of liver transplantation in patients with acute liver failure due to Amanita phalloides and paracetamol (acetaminophen) intoxication Maciej Krasnodębski, Michał Grąt, Wacław Hołówko, Łukasz Masior, Karolina M. Wronka, Karolina Grąt, Jan Stypułkowski, Waldemar Patkowski, Marek Krawczyk Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, Warsaw, Poland Gastroenterology Rev 2016; 11 (2): 90–95 DOI: 10.5114/pg.2015.52031 Key words: acute liver failure, Amanita phalloides poisoning, paracetamol poisoning, liver transplantation. Address for correspondence: Maciej Krasnodębski MD, Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 1 A Banacha St, 02-097 Warsaw, Poland, phone: +48 22 599 25 45, fax: +48 22 599 15 45, e-mail: [email protected] Abstract Introduction: Amanita phalloides and paracetamol intoxications are responsible for the majority of acute liver failures. Aim: To assess survival outcomes and to analyse risk factors affecting survival in the studied group. Material and methods: Of 1369 liver transplantations performed in the Department of General, Transplant, and Liver Sur- gery, Medical University of Warsaw before December 2013, 20 (1.46%) patients with Amanita phalloides (n = 13, 0.95%) and paracetamol (n = 7, 0.51%) intoxication were selected for this retrospective study. Overall and graft survival at 5 years were set as primary outcome measures. Results: Five-year overall survival after liver transplantation in the studied group was 53.57% and 53.85% in patients with paracetamol and Amanita phalloides poisoning, respectively (p = 0.816). Five-year graft survival was 26.79% for patients with paracetamol and 38.46% with Amanita phalloides intoxication (p = 0.737).
    [Show full text]
  • Transdermal Methyl Alcohol Intoxication: a Case Report
    Acta Derm Venereol 2015; 95: 740–741 SHORT COMMUNICATION Transdermal Methyl Alcohol Intoxication: A Case Report Burcu Hizarci, Cem Erdoğan, Pelin Karaaslan, Aytekin Unlukaplan and Huseyin Oz Department of Anesthesiology and Reanimation, Medipol University Medical Faculty, Istanbul, Turkey. E-mail: [email protected] Accepted Jan 8, 2015; Epub ahead of print Jan 9, 2015 Methyl alcohol (methanol) is a colourless, odourless visual disorder gradually improved during the period and bitter substance found in solvents, paint removers, he was observed in the intensive care unit. His cranial varnish es, antifreezes, cologne and grain alcohol (1). imagings revealed no abnormality. Bicarbonate infu- Methanol is a central nervous system depressant that is sion was discontinued after 24 h as metabolic acidosis potentially toxic after its ingestion, inhalation or transder- had normalised. After 72 h of monitoring, the patient mal exposure (1–4). Most of the patients have headache, was discharged after stabilisation. nausea, vomiting, weakness and vision loss during this period. As a result of high intake, the patient presents DISCUSSION with stupor, coma and even death. Although methanol in- toxication is most frequently reported due to oral intake, After oral intake methanol is converted to formalde- cases of inhalation and transdermal methanol intoxication hyde in the liver and oxidised to formic acid. Formic are reported as well (5). In this paper we report a rare acid is toxic for central nervous system and as a result, case of transdermal methanol intoxication. We suggest histological hypoxia, which is caused by axonal cell that transdermal toxication should be considered and death occurs (6). Percutaneous exposure of methanol questioned whilst taking the medical history of a patient.
    [Show full text]
  • Drug Metabolism: Phase I
    NEPHAR 305 Pharmaceutical Chemistry I Drug Metabolism: Phase I Assist.Prof.Dr. Banu Keşanlı Drug Metabolism ¾ Drug’s biochemical modification or degradation, usually through specialized enzymatic systems ¾ Xenobiotic: a chemical which is found in an organism but which is not normally produced or expected to be present in it ¾ Drug metabolism often converts lipophilic chemical compounds into more readily excreted polar products ¾ Duration and intensity of the pharmacological action of drugs is important ¾ Drug metabolism can result in toxication if the metabolite of a compound is more toxic than the parent drug or chemical ¾ or detoxication (process of preventing toxic entities from entering the body in the first place) by the activation or deactivation of the chemical A prodrug is a pharmacological substance (drug) that is administered in an inactive (or significantly less active) form. Once administered, the prodrug is metabolised in vivo into an active metabolite. Importance of Drug Metabolism Basic premise: Lipophilic Drugs Hydrophilic Metabolites (Not excreted) (Excreted) Water soluble increased renal excretion and Decreased tubular re-absorption of lipophilics Importance of Drug Metabolism Metbolism Termination of Drug - Bioinactivation - Detoxification - Elimination Metabolism Bioactivation - Active Metabolites - Prodrugs - Toxification Phase I or Functionalization Reactions Oxidative Reactions • Oxidation of aromatic moieties • Oxidation of olefins • Oxidation at benzylic, allylic carbon, carbon atoms α to carbonyl and imines •
    [Show full text]
  • Toxicity of Formaldehyde in Experimental Animals -Concentrations of the Chemical in the Elution from Dishes of Formaldehyde Resin in Some Vegetables
    Keio J. Med. 24: 19-37, 1975 TOXICITY OF FORMALDEHYDE IN EXPERIMENTAL ANIMALS -CONCENTRATIONS OF THE CHEMICAL IN THE ELUTION FROM DISHES OF FORMALDEHYDE RESIN IN SOME VEGETABLES KENZABURO TSUCHIYA, YOSHIO HAYASHI, MITSUKO ONODERA and TAKAO HASEGAWA Department of Public Health and Preventive Medicine, School of Medicine, Keio University (Received for publication Oct. 16, 1974) ABSTRACT The study composes of the following experiments: 1) The first experiment was carried out in order to calculate the lethal dose (LD50) of formaldehyde and of formalin solution. 2) The second one was to examine the quantitative method and to measure the concentration of formaldehyde in solution eluted from plastic bowls made of formaldehyde resin. 3) In the final experiment formaldehyde in some foods was measured. Princinal results obtained were as follows: 1) LD50 of formaldehyde by oral administration was determined to be 500-800 my/ke for rats. 2) The maximum allowable concentration of the chemical for chronic poison ing was estimated to exist at the level of around 25 to 30 mg/day/50 kg for man. 3) However, it was conceivable that various kinds of food would contain formaldehyde as high as almost 20 ppm. More elaborate studies are required on this point. 4) It was confirmed that formaldehyde is eluted from plastic dishes and bowls made from a monomer of formaldehyde from the non-detectable con centration at 40•Ž up to 20 ppm at 90•Ž, and up to almost 400 ppm in solu tion of 4% acetic acid of 90•Ž, showing only 10 ppm at 40•‹ to 50•Ž, after leaving the solutions in the bowls for 15 minutes.
    [Show full text]
  • Impact of Methanol Intoxication on the Human Electrocardiogram
    Cardiology Journal 2014, Vol. 21, No. 2, pp. 170–175 DOI: 10.5603/CJ.a2013.0053 Copyright © 2014 Via Medica ORIGINAL ARTICLE ISSN 1897–5593 Impact of methanol intoxication on the human electrocardiogram Zardasht Jaff1, William F. McIntyre1, Payam Yazdan-Ashoori2, Adrian Baranchuk1 1Division of Cardiology, Queen’s University, Kingston, Ontario, Canada 2McMaster University, Internal Medicine, Hamilton, Ontario, Canada Abstract Background: Methanol is a common commercial compound that can lead to significant morbidity and mortality with high levels of exposure. The purpose of this study was to describe electrocardiographic (ECG) changes associated with methanol intoxication. Methods: A retrospective chart review was conducted with data from Kingston General Ho- spital collected between 2006 and 2011. Patient data, including demographics, medications, and laboratory data were recorded. Twelve-lead ECGs were obtained and changes were noted in relation to timing and extent of methanol intoxication. Results: Nine patients with a mean age of 45 years were analyzed. All patients ingested methanol orally and presented to hospital between < 1 to 25 h after ingestion. The mean plas- ma methanol concentration on admission was 49.8 mmol/L. A lower pH and higher plasma methanol concentration were associated with multiple ECG changes. On admission, ECG changes included sinus tachycardia (44%), PR prolongation (11%), QTc prolongation (22%) and non-specific T-wave changes (66%). One patient developed a type-1 Brugada ECG pattern. During their course in hospital, 7 patients required dialysis, 3 required mechanical ventilation, 3 developed visual impairment, and 1 died. All ECG changes normalized while in hospital. Conclusions: Methanol intoxication can lead to several ECG changes with sinus tachycardia and non-specific T-wave changes being the most common.
    [Show full text]
  • Research Article Presentations Related to Acute Paracetamol Intoxication in an Urban Emergency Department in Switzerland
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) Hindawi Emergency Medicine International Volume 2019, Article ID 3130843, 7 pages https://doi.org/10.1155/2019/3130843 Research Article Presentations Related to Acute Paracetamol Intoxication in an Urban Emergency Department in Switzerland Natalia Piotrowska,1 Jolanta Klukowska-Ro¨tzler ,1 Beat Lehmann ,1 Gert Krummrey,1 Manuel Haschke,2,3 Aristomenis K. Exadaktylos,1 and Evangelia Liakoni 2,3 1Department of Emergency Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland 2Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland 3Institute of Pharmacology, University of Bern, Bern, Switzerland Correspondence should be addressed to Evangelia Liakoni; [email protected] Received 25 March 2019; Accepted 22 November 2019; Published 6 December 2019 Academic Editor: $eodore J. Gaeta Copyright © 2019 Natalia Piotrowska et al. $is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aim. To investigate the characteristics of Emergency Department (ED) presentations due to acute paracetamol intoxication. Methods. Retrospective observational study of patients presenting to the ED of Bern University Hospital between May 1, 2012, and October 31, 2018, due to a paracetamol overdose (defined as intake of >4 g/24 h). Cases were identified using the full-text search of the electronic patient database and were grouped into intentional (suicidal/parasuicidal) and unintentional in- toxications (e.g., patient unaware of maximal daily dose).
    [Show full text]