MHR • Calculus and Vectors 12 Solutions 679 Chapter 7 Cartesian

Total Page:16

File Type:pdf, Size:1020Kb

MHR • Calculus and Vectors 12 Solutions 679 Chapter 7 Cartesian Chapter 7 Cartesian Vectors Chapter 7 Prerequisite Skills Chapter 7 Prerequisite Skills Question 1 Page 358 Chapter 7 Prerequisite Skills Question 2 Page 358 Chapter 7 Prerequisite Skills Question 3 Page 358 a) 18° MHR • Calculus and Vectors 12 Solutions 679 b) 282° c) 0° d) 270° e) 240° f) 150° MHR • Calculus and Vectors 12 Solutions 680 g) 90° h) 70° i) 285° j) 220° k) 170° MHR • Calculus and Vectors 12 Solutions 681 l) 260° Chapter 7 Prerequisite Skills Question 4 Page 358 a) (3! 5)2 + (1! 6)2 = 4 + 25 = 29 The distance is 29 units. b) (6 ! (!4))2 + (7 ! 3)2 = 102 + 42 = 116 = 2 29 The distance is 2 29 units. c) (!5! (!1))2 + (8 ! 0)2 = (!4)2 + 82 = 80 = 4 5 The distance is 4 5 units. d) (!3! 5)2 + (!9 ! (!2))2 = (!8)2 + (!7)2 = 113 The distance is 113 units. MHR • Calculus and Vectors 12 Solutions 682 Chapter 7 Prerequisite Skills Question 5 Page 358 Answers may vary. For example: Let a = 4, x = 3, y = 7, and z = 5. a) Verify: x + y = y + x. L.S. = x + y = 3 + 7 = 10 R.S. = y + x = 7 + 3 = 10 Therefore, L.S. = R.S. In words, when adding two numbers, the order of the operation does not matter. b) Verify: x × y = y × x. L.S. = x × y = 3 × 7 = 21 R.S. = y × x = 7 × 3 = 21 Therefore, L.S. = R.S. In words, when multiplying two numbers, the order of the operation does not matter. c) Verify: (x + y) + z = x + (y + z). L.S. = (x + y) + z = (3 + 7) + 5 = 10 + 5 = 15 R.S. = x + (y + z) = 7 + (3 + 5) = 7 + 8 = 15 Therefore, L.S. = R.S. In words, when adding three numbers at a time, the grouping of the operations does not matter. MHR • Calculus and Vectors 12 Solutions 683 d) Verify: (x × y) × z = x × (y × z). L.S. = (x × y) × z = (3 × 7) × 5 = 21 × 5 = 105 R.S. = x × (y × z) = 7 × (3 × 5) = 7 × 15 = 105 Therefore, L.S. = R.S. In words, when multiplying three numbers at a time, the grouping of the operations does not matter. e) Verify: a(x + y) = ax + ay. L.S. = a(x + y) = 4(3 + 7) = 4(10) = 40 R.S. = ax + ay = 4(3) + 4(7) = 12 + 28 = 40 Therefore, L.S. = R.S. In words, when multiplying a binomial by a factor, you can multiply each of the terms in the binomial separately and then add the partial products together. f) Verify: x – y ≠ y – x. L.S. = x – y = 3 – 7 = –4 R.S. = y – x = 7 – 3 = 4 Therefore, L.S. ≠ R.S. In words, when subtracting two numbers, the order of the operation does matter. When the order of operation is reversed the answer is of the opposite sign. Chapter 7 Prerequisite Skills Question 6 Page 358 a) 5x + 3y = 11 2x + y = 4 –5x – 3y = –11 –1 6x + 3y = 12 3 x = 1 –1 + 3 MHR • Calculus and Vectors 12 Solutions 684 Substitute x = 1 into equation . 2(1) + y = 4 y = 2 Therefore, (x, y) = (1, 2). b) 2x + 6y = 14 x – 4y = –14 2x + 6y = 14 –2x + 8y = 28 –2 14y = 42 – 2 y = 3 Substitute y = 3 into equation . x ! 4(3) = !14 x = !2 Therefore, (x, y) = (–2, 3). c) 3x – 5y = –5 –6x + 2y = 2 6x – 10y = –10 2 –6x + 2y = 2 –8y = –8 2 + y = 1 Substitute y = 1 into equation . !6x + 2(1) = 2 !6x = 0 x = 0 Therefore, (x, y) = (0, 1). d) –1.5x + 3.2y = 10 0.5x + 0.4y = 4 –1.5x + 3.2y = 10 1.5x + 1.2y = 12 3 4.4y = 22 + 3 y = 5 Substitute y = 5 into equation . 0.5x + 0.4(5) = 4 0.5x = 2 x = 4 Therefore, (x, y) = (4, 5). MHR • Calculus and Vectors 12 Solutions 685 Chapter 7 Prerequisite Skills Question 7 Page 358 B is the correct response. It is not equivalent. 1 A The equation can be multiplied by to get this result. 3 B If you rearrange the equation into slope y-intercept form, the result is 9x ! 6y =18 !6y = !9x +18 !9 18 y = x + !6 !6 3 y = x ! 3 2 This is not the same as B. 1 C The equation can be multiplied by ! and rearranged to get this result. 3 1 D The equation can be multiplied by to get this result. 9 9x ! 6y =18 9 6 18 x ! y = 9 9 9 2 x ! y = 2 3 Chapter 7 Prerequisite Skills Question 8 Page 359 Use the special triangles. 1 3 1 a) b) c) d) 2 2 2 e) f) 0 g) 1 h) 0 i) cos 120º = –cos 60º j) sin 300º = –sin 60º k) 1 l) –1 1 3 = ! = ! 2 2 MHR • Calculus and Vectors 12 Solutions 686 Chapter 7 Prerequisite Skills Question 9 Page 359 a) 0.3 b) 0.7 c) −0.6 d) −0.9 e) 0.8 f) 0.8 Chapter 7 Prerequisite Skills Question 10 Page 359 a) Use the Pythagorean theorem x2 + 52 = 132 x2 169 25 = ! x2 = 144 x = 12 Therefore, x = 12 cm. b) Use the Pythagorean theorem. y2 = 4.52 + 8.92 y2 = 20.25+ 79.21 y2 = 99.46 y ! 9.97 y 10.0 ! Therefore, y ! 10.0 cm. Chapter 7 Prerequisite Skills Question 11 Page 359 h a) sin38o = 5 h = 5sin38° b) 32 + 42 = 52 The missing side of the base triangle has a length of 4 units. 4 sin30! = h 4 h = ! sin30 Chapter 7 Prerequisite Skills Question 12 Page 359 2 a) (a1 + b1 ) = (a1 + b1 )(a1 + b1 ) 2 2 = a1 + a1b1 + a1b1 + b1 = a 2 + 2a b + b 2 1 1 1 1 MHR • Calculus and Vectors 12 Solutions 687 2 2 b) (a1 + b1 )(a1 ! b1 ) = a1 ! a1b1 + a1b1 ! b1 2 2 = a1 ! b1 2 2 2 2 2 2 2 2 2 2 2 2 c) (a1 + a2 )(b1 + b2 ) = a1 b1 + a1 b2 + a2 b1 + a2 b2 3 d) (a1b1 + a2b2 + a3b3 ) = [(a1b1 + a2b2 + a3b3 )(a1b1 + a2b2 + a3b3 )](a1b1 + a2b2 + a3b3 ) 2 2 2 2 2 2 = [a1 b1 + a1b1a2b2 + a1b1a3b3 + a2b2a1b1 + a2 b2 + a2b2a3b3 + a3b3a1b1 + a3b3a2b2 + a3 b3 ](a1b1 + a2b2 + a3b3 ) 3 3 2 2 2 2 2 2 2 2 2 2 2 2 = a1 b1 + a1 a2b1 b2 + a1 a3b1 b3 + a1 a2b1 b2 + a1a2 b1b2 + a1a2a3b1b2b3 + a1 a3b1 b3 + a1a2a3b1b2b3 + a1a3 b1b3 2 2 2 2 2 2 3 3 2 2 2 2 2 2 + a1 a2b1 b2 + a1a2 b1b2 + a1a2a3b1b2b3 + a1a2 b1b2 + a2 b2 + a2 a3b2 b3 + a1a2a3b1b2b3 + a2 a3b2 b3 + a2a3 b2b3 2 2 2 2 2 2 2 2 2 2 2 2 3 3 + a1 a3b1 b3 + a1a2a3b1b2b3 + a1a3 b1b3 + a1a2a3b1b2b3 + a2 a3b2 b3 + a2a3 b2b3 + a1a3 b1b3 + a2a3 b2b3 + a3 b3 = a 3b 3 + a 3b 3 + a 3b 3 + 3a 2a b 2b + 3a a 2b b 2 + 3a 2a b 2b + 3a a 2b b 2 + 3a 2a b 2b + 3a a 2b b 2 + 6a a a b b b 1 1 2 2 3 3 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 3 2 3 2 3 2 3 2 3 1 2 3 1 2 3 Chapter 7 Prerequisite Skills Question 13 Page 359 1 a) A = 0(2) ! 0(0) + 0(2) ! 2(2) + 2(1) ! 3(2) + 3(!1) ! 3(1) + 3(0) ! 0(0) 2 1 = !14 2 = 7 The area is 7 square units. 1 b) A = 1(!2) ! 3(1) + 3(!4) ! 0(!2) + 0(0) ! (!5)(!4) + (!5)(4) ! (!3)(0) + (!3)(1) !1(4) 2 1 = !64 2 = 32 The area is 32 square units. 1 c) A = 4(!7) ! 5(!10) + 5(2) ! 3(!7) + 3(5) ! 0(2) + 0(3) ! (!2)(5) + (!2)(!10) ! 4(3) 2 1 = 86 2 = 43 The area is 43 square units. MHR • Calculus and Vectors 12 Solutions 688 Chapter 7 Prerequisite Skills Question 13 Page 359 Yes. There are similar formulas for triangles and hexagons. In fact, there are similar formulas for any polygon that does not intersect itself. For a triangle with vertices (x1,y1), (x2,y2), and (x3,y3), the area is 1 A = x y ! x y + x y ! x y + x y ! x y 2 1 2 2 1 2 3 3 2 3 1 1 3 Answers may vary. For example, Consider a triangle with vertices (1, 1), (2, 7), and (–3, –4), the area is 1 A = 1(7) ! 2(1) + 2(!4) ! (!3)(7) + (!3)(1) !1(!4) 2 1 = 19 2 = 9.5 The area is 9.5 square units. For a hexagon with vertices (x1,y1), (x2,y2), (x3,y3), (x4,y4), (x5,y5), and (x6,y6), the area is 1 A = x y ! x y + x y ! x y + x y ! x y + x y ! x y + x y ! x y + x y ! x y 2 1 2 2 1 2 3 3 2 3 4 4 3 4 5 5 4 5 6 6 5 6 1 1 6 For a hexagon with vertices (0, 0), (3, 2), (2, 4), (0, 5), (–2, 4), and (–3, 2), the area is 1 A = 0(2) ! 3(0) + 3(4) ! 2(2) + 2(5) ! 0(4) + 0(4) ! (–2)(5) + (–2)(2) ! (!3)(4) + (!3)(0) ! 0(2) 2 1 = 36 2 = 18 The area is 18 square units.
Recommended publications
  • Feasibility Study for Teaching Geometry and Other Topics Using Three-Dimensional Printers
    Feasibility Study For Teaching Geometry and Other Topics Using Three-Dimensional Printers Elizabeth Ann Slavkovsky A Thesis in the Field of Mathematics for Teaching for the Degree of Master of Liberal Arts in Extension Studies Harvard University October 2012 Abstract Since 2003, 3D printer technology has shown explosive growth, and has become significantly less expensive and more available. 3D printers at a hobbyist level are available for as little as $550, putting them in reach of individuals and schools. In addition, there are many “pay by the part” 3D printing services available to anyone who can design in three dimensions. 3D graphics programs are also widely available; where 10 years ago few could afford the technology to design in three dimensions, now anyone with a computer can download Google SketchUp or Blender for free. Many jobs now require more 3D skills, including medical, mining, video game design, and countless other fields. Because of this, the 3D printer has found its way into the classroom, particularly for STEM (science, technology, engineering, and math) programs in all grade levels. However, most of these programs focus mainly on the design and engineering possibilities for students. This thesis project was to explore the difficulty and benefits of the technology in the mathematics classroom. For this thesis project we researched the technology available and purchased a hobby-level 3D printer to see how well it might work for someone without extensive technology background. We sent designed parts away. In addition, we tried out Google SketchUp, Blender, Mathematica, and other programs for designing parts. We came up with several lessons and demos around the printer design.
    [Show full text]
  • Intersecting Cylinders: from Archimedes and Zu Chongzhi to Steinmetz and Beyond Project Report∗
    Intersecting Cylinders: From Archimedes and Zu Chongzhi to Steinmetz and Beyond Project Report∗ Lingyi Kong, Luvsandondov Lkhamsuren, Abigail Turner, Aananya Uppal, A.J. Hildebrand (Faculty Mentor) University of Illinois at Urbana-Champaign April 25, 2013 1 Background Our work was motivated by the following problem, which can be found in many calculus texts as a challenging example of computing volumes by multiple integrals. Intersecting Cylinders Problem. What is the volume of the region of intersection of two or three pairwise perpendicular cylinders of unit radius (\Steinmetz solids")? Figure 1: The classical 2-cylinder and 3-cylinder Steinmetz solids. ∗This project is part of an ongoing research project \Adventures with n-dimensional integrals", carried out at the Illinois Geometry Lab, www.math.illinois.edu/igl. An expanded version of this report is expected to be prepared for possible publication. 1 The above solids are named after Charles Proteus Steinmetz (1865{1923), a brilliant electrical engineer and mathematician who is said to solved the two-cylinder version of this problem in two minutes at a dinner party. The two-cylinder version of the problem was first studied more than two thousand years by Archimedes and the Chinese mathematician Zu Chongzhi, who proved that the volume of a two- cylinder Steinmetz solid is 16=3. The three-cylinder version was first considered in the 1970s by Moore [3], a physicist who was motivated by applications in crystallography. Usingp calculus methods, Moore showed that the volume of a three-cylinder Steinmetz solid is 16 − 8 2. The problem has been popularized by Martin Gardner in his Scientific American column [1], and the two-dimensional Steinmetz solid is featured on the cover of one of Gardner's books [2].
    [Show full text]
  • Research and Practice of Integrating Ideological and Political Education Into Calculus Teaching
    US-China Foreign Language, August 2021, Vol. 19, No. 8, 208-216 doi:10.17265/1539-8080/2021.08.002 D DAVID PUBLISHING Research and Practice of Integrating Ideological and Political Education Into Calculus Teaching HAO Shunli Beijing International Studies University, Beijing, China This paper first analyses the reasons for the low effectiveness of ideological and political education in the current calculus teaching, and then puts forward the contents, methods, and approaches of integrating ideological and political education into calculus teaching on this basis, and finally finds out the points for needing attention in the integrating ideological and political education into calculus teaching. Keywords: ideological and political education, calculus teaching, contents of ideological and political theories teaching in all courses, methods of ideological and political theories teaching in all courses, approaches of ideological and political theories teaching in all courses Introduction Ideological and political theories teaching in all courses is a new idea. It is a comprehensive education idea that constructs the pattern of “San Quan” Education, integrates non-ideological and political theory courses and ideological and political theory courses together to form a synergistic effect, and takes strengthening morality and cultivating young persons as the fundamental task of education. It integrates the elements of ideological and political education (including theoretical knowledge, value idea, spiritual pursuit, and so on of ideological and political education) into the non-ideological and political theory courses, and it has a subtle influence on students’ ideology and behaviour. Ideological and political theories teaching in all courses is a new method. It is a method to reflect Marx’s guiding position and practice the socialist core values in the process of implementing the fundamental task of strengthening morality and cultivating young persons.
    [Show full text]
  • MATH 2300 - Homework 4 Instructions: This Homework Is Due on Friday, June 29Th
    MATH 2300 - Homework 4 Instructions: This homework is due on Friday, June 29th. You may work with other students, however each person is responsible for writing their own solutions. Please write the names of any students who helped you. x2 y2 1. Consider the circle x2 + y2 = b2 sitting inside the ellipse + = 1, a2 b2 b b a (a) Find the area between the circle and the ellipse (in green) by using the methods of section 7.4 (see Example 8, p. 356-357): in the first quadrant, the area is given by the q p 2 b2x2 2 2 integral of the difference of the functions y = b − a2 and y = b − x , so just multiply this result by 4 to get the total area. (b) Find the area between the circle and the ellipse (in green) by using the method of (horizontal) slicing (section 8.1). You may work in either top or bottom half and multiply the result by 2 if you wish, or in the first quadrant and multiply the result by 4. (c) Find the area between the circle and the ellipse (in green) by using polar coordinates (section 8.3). [Hint: Work in the first quadrant and multiply the result by 4. Plug 2 2 x = r cos θ and y = r sinθ into the equation x + y = 1 and solve for r to get r as a a2 b2 p arctan( α+1 tan θ) function of θ, r = f(θ). You may use the fact that R 1 dθ = p + C. 1+αsinθ α+1 Note: When evaluating this between 0 and π=2, you have to evaluate it between 0 and c, taking the limit as c ! π=2, because tan(π=2) is not defined.] x2 y2 2.
    [Show full text]
  • View This Volume's Front and Back Matter
    Titles in This Series Volume 8 Kare n Hunger Parshall and David £. Rowe The emergenc e o f th e America n mathematica l researc h community , 1876-1900: J . J. Sylvester, Felix Klein, and E. H. Moore 1994 7 Hen k J. M. Bos Lectures in the history of mathematic s 1993 6 Smilk a Zdravkovska and Peter L. Duren, Editors Golden years of Moscow mathematic s 1993 5 Georg e W. Mackey The scop e an d histor y o f commutativ e an d noncommutativ e harmoni c analysis 1992 4 Charle s W. McArthur Operations analysis in the U.S. Army Eighth Air Force in World War II 1990 3 Pete r L. Duren, editor, et al. A century of mathematics in America, part III 1989 2 Pete r L. Duren, editor, et al. A century of mathematics in America, part II 1989 1 Pete r L. Duren, editor, et al. A century of mathematics in America, part I 1988 This page intentionally left blank https://doi.org/10.1090/hmath/008 History of Mathematics Volume 8 The Emergence o f the American Mathematical Research Community, 1876-1900: J . J. Sylvester, Felix Klein, and E. H. Moor e Karen Hunger Parshall David E. Rowe American Mathematical Societ y London Mathematical Societ y 1991 Mathematics Subject Classification. Primary 01A55 , 01A72, 01A73; Secondary 01A60 , 01A74, 01A80. Photographs o n th e cove r ar e (clockwis e fro m right ) th e Gottinge n Mathematisch e Ges - selschafft, Feli x Klein, J. J. Sylvester, and E. H. Moore.
    [Show full text]
  • It Slices, It Dices
    URL: http://opinionator.blogs.nytimes.com/2010/04/18/it-slices-it-dices/ April 18, 2010, 5:00 pm It Slices, It Dices By STEVEN STROGATZ Mathematical signs and symbols are often cryptic, but the best of them offer visual clues to their own meaning. The symbols for zero, one and infinity aptly resemble an empty hole, a single mark and an endless loop: 0, 1, ∞. And the equals sign, =, is formed by two parallel lines because, in the words of its originator, Welsh mathematician Robert Recorde in 1557, “no two things can be more equal.” In calculus the most recognizable icon is the integral sign: Its graceful lines are evocative of a musical clef or a violin’s f-hole — a fitting coincidence, given that some of the most enchanting harmonies in mathematics are expressed by integrals. But the real reason that Leibniz chose this symbol is much less poetic. It’s simply a long-necked S, for “summation.” As for what’s being summed, that depends on context. In astronomy, the gravitational pull of the sun on the earth is described by an integral. It represents the collective effect of all the miniscule forces generated by each solar atom at their varying distances from the earth. In oncology, the growing mass of a solid tumor can be modeled by an integral. So can the cumulative amount of drug administered during the course of a chemotherapy regimen. Historically, integrals arose first in geometry, in connection with the problem of finding the areas of curved shapes. As we saw two weeks ago, the area of a circle can be viewed as the sum of many thin pie slices.
    [Show full text]
  • Supporting Information to Imaging Catalytic Hotspots on Single Plasmonic Nanostructures Via Correlated Super-Resolution and Electron Microscopy
    Supporting Information to Imaging Catalytic Hotspots on Single Plasmonic Nanostructures via Correlated Super-Resolution and Electron Microscopy Ningmu Zou, Guanqun Chen, Xianwen Mao, Hao Shen, Eric Choudhary, Xiaochun Zhou, and Peng Chen* Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853 Table of Content S1. Catalysts preparation and characterization ....................................................................................................... 2 S1.1. Synthesis of Au nanorods ................................................................................................................................................... 2 S1.2. Synthesis of linked Au-Au nanorod-nanorod and Au-Ag nanorod-nanoparticle nanostructures ........................................ 2 S1.3. Encapsulation of linked nanostructures with mesoporous silica and subsequent UV-ozone treatment ............................... 3 S1.4. SEM imaging and nanostructure gap size measurement ..................................................................................................... 4 S1.5. EDX elemental analysis ...................................................................................................................................................... 5 S1.6. Biotin-streptavidin linkage increases the yield of linked nanostructures by ~7 times ......................................................... 6 S1.7. Ascorbic acid treatment can reduce surface Ag2O formed during UV-ozone treatment ....................................................
    [Show full text]
  • Duke University Dissertation Template
    GaAsBi Synthesis: From Band Structure Modification to Nanostructure Formation by Kristen N. Collar Department of Physics Duke University Date:______________________ Approved: ___________________________ Harold Baranger, Chair ___________________________ April Brown, Advisor/ Co-Chair ___________________________ Ronen Plesser ___________________________ Maiken Mikkelsen ___________________________ Patrick Charbonneau Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2017 i v ABSTRACT GaAsBi Synthesis: From Band Structure Modification to Nanostructure Formation by Kristen N. Collar Department of Physics Duke University Date:_______________________ Approved: ___________________________ Harold Baranger, Chair ___________________________ April Brown, Advisor/Co-Chair ___________________________ Maiken Mikkelsen ___________________________ Ronen Plesser ___________________________ Patrick Charbonneau An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2017 i v Copyright by Kristen N. Collar 2017 Abstract Research and development of bismides have proven bismides to be a promising field for material science with important applications in optoelectronics. However, the development of a complete description of the electrical and material properties of bismide ternaries is not comprehensive or straightforward. One of the main benefits of this ternary system is the opportunity for bandgap tuning, which opens doors to new applications. Tuning the bandgap is achieved by varying the composition; this allows access to a wider energy spectrum with applications in long wavelength emitters and detectors. In addition to bandgap tuning, Bi provides an opportunity to decrease lasing threshold currents, to decrease the temperature sensitivity and to decrease a major loss mechanism of today’s telecom lasers.
    [Show full text]
  • Jean-Baptiste Hiriart-Urruty Volume 1 (For Undergraduates)
    Springer Undergraduate Mathematics Series Jean-Baptiste Hiriart-Urruty Mathematical Tapas Volume 1 (for Undergraduates) Springer Undergraduate Mathematics Series Advisory Board M.A.J. Chaplain, University of St. Andrews, St. Andrews, Scotland, UK A. MacIntyre, Queen Mary University of London, London, England, UK S. Scott, King’s College London, London, England, UK N. Snashall, University of Leicester, England, UK E. Süli, University of Oxford, Oxford, England, UK M.R. Tehranchi, University of Cambridge, Cambridge, England, UK J.F. Toland, University of Cambridge, Cambridge, England, UK The Springer Undergraduate Mathematics Series (SUMS) is a series designed for undergraduates in mathematics and the sciences worldwide. From core founda- tional material to final year topics, SUMS books take a fresh and modern approach. Textual explanations are supported by a wealth of examples, problems and fully-worked solutions, with particular attention paid to universal areas of difficulty. These practical and concise texts are designed for a one- or two-semester course but the self-study approach makes them ideal for independent use. More information about this series at http://www.springer.com/series/3423 Jean-Baptiste Hiriart-Urruty Mathematical Tapas Volume 1 (for Undergraduates) 123 Jean-Baptiste Hiriart-Urruty Institut de mathématiques Université Paul Sabatier Toulouse Cedex 9 France ISSN 1615-2085 ISSN 2197-4144 (electronic) Springer Undergraduate Mathematics Series ISBN 978-3-319-42185-8 ISBN 978-3-319-42186-5 (eBook) DOI 10.1007/978-3-319-42186-5 Library of Congress Control Number: 2016945771 Mathematics Subject Classification (2010): 00A07, 26Axx, 26Bxx, 26Dxx, 15-XX, 52Axx, 90Cxx © Springer International Publishing Switzerland 2016 This work is subject to copyright.
    [Show full text]
  • Course Notes for Calculus IV
    Course Notes for Calculus IV Remkes Kooistra The King's University February 21, 2019 Contents 1 Introduction 1 2 Integration 2 2.1 The Indefinite Integral . 2 2.2 The Definite Integral . 3 2.3 Iterated Integrals . 6 2.4 Integration over Arbitrary Sets . 9 2.5 Change of Variables . 17 2.6 Polar Coordinates . 24 2.7 Cylindrical and Spherical Coordinates . 27 2.8 Applications of Multiple Integration . 31 3 Vector Calculus 47 3.1 Vector Fields . 47 3.2 Integral Curves . 49 3.3 Vector Operations on Vector Fields . 52 3.4 Conservative Vector Fields . 56 3.5 Line Integrals of Vector Fields . 57 3.6 Parametric Surfaces . 63 3.7 Surface Integrals . 64 3.8 Flux Integrals . 66 3.9 The Major Results . 69 3.10 Vector Calculus and Maxwell's Equations . 76 1 4 Differential Forms and Differential Geometry 81 4.1 Manifolds and Coordinate Functions . 81 4.2 Functions on Manifolds . 83 4.3 Differential Forms . 83 4.4 Pullbacks . 88 4.5 Integration of Differential Forms . 89 4.6 Stokes' Theorem . 91 2 License This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. Chapter 1 Introduction Calculus III was primarily devoted to extending the derivative to multivariable scalar functions. This course starts with the parallel program of extending the integral to multivariable scalar functions. Unlike the derivative, the definition of the multivariable (definite) integral is relativley similar to the single variable case. The challenge of integration is in the geometry of the subsets of Rn involved in the integration.
    [Show full text]
  • Sri Chaitanya IIT Academy, India
    GRAND TEST-6 Sri Chaitanya IIT Academy, India A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant ICON CENTRAL OFFICE, MADHAPUR-HYD Sec: Sr.IPLCO/IC/ISB/LIIT Dt: 24-04-16 Time: 09:00 AM to 12:00 Noon Max.Marks: 222 Name of the Student: ___________________ I.D. NO: PAPER-I 24-04-16_ Sr.IPLCO/IC/ISB/LIIT_GTA-6_Weekend Syllabus Mathematics : Total Syllabus Physics : Total Syllabus Chemistry : Total Syllabus Sri Chaitanya IIT Academy 24-04-16_ Sr.IPLCO/IC/ISB/LIIT _JEE-ADV_(New Model-3_P1)_GTA-6_Q’Paper JEE-ADVANCED-New Model -3–P1 Time: 09.00 AM to 12.00 Noon IMPORTANT INSTRUCTIONS Max Marks: 222 PHYSICS: +Ve - Ve No.of Total Section Question Type Marks Marks Qs marks Sec – I(Q.N : 1 – 10) Questions with Single Correct Choice 4 -2 10 40 Questions with Comprehension Type Integer Sec – II(Q.N : 11 – 16) (3 Comprehensions – 2 +2+2 = 6Q) 3 -1 6 18 Sec – III(Q.N : 17 – 20) Matrix Matching Type 4 -2 4 16 Total 20 74 MATHEMATICS: +Ve - Ve No.of Total Section Question Type Marks Marks Qs marks Sec – I(Q.N : 21 – 30) Questions with Single Correct Choice 4 -2 10 40 Questions with Comprehension Type Integer Sec – II(Q.N : 31 – 36) (3 Comprehensions – 2 +2+2 = 6Q) 3 -1 6 18 Sec – III(Q.N : 37 – 40) Matrix Matching Type 4 -2 4 16 Total 20 74 CHEMISTRY: +Ve - Ve No.of Total Section Question Type Marks Marks Qs marks Sec – I(Q.N : 41 – 50) Questions with Single Correct Choice 4 -2 10 40 Questions with Comprehension Type Integer Sec – II(Q.N : 51 – 56) (3 Comprehensions – 2 +2+2 = 6Q) 3 -1 6 18 Sec – III(Q.N : 57 – 60) Matrix Matching Type 4 -2 4 16 Total 20 74 Sec: Sr.IPLCO/IC/ISB/LIIT space for rough work Page 2 Sri Chaitanya IIT Academy 24-04-16_ Sr.IPLCO/IC/ISB/LIIT _JEE-ADV_(New Model-3_P1)_GTA-6_Q’Paper PHYSICS Max Marks : 74 Section-1 (Only one Option correct Type) This section contains 10 Multiple Choice questions.
    [Show full text]
  • Proquest Dissertations
    The large-scale structure of the universe in one dimension Item Type text; Dissertation-Reproduction (electronic) Authors Zhan, Hu Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 05/10/2021 21:38:43 Link to Item http://hdl.handle.net/10150/290096 THE LARGE-SCALE STRUCTURE OF THE UNIVERSE IN ONE DIMENSION by Hu Zhan Copyright © Hu Zhan 2004 A Dissertation Submitted to the Faculty of the DEPARTMENT OF PHYSICS In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2 0 0 4 UMI Number: 3132278 Copyright 2004 by Zhan, Hu All rights reserved. INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform 3132278 Copyright 2004 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O.
    [Show full text]