Successful Endeavour in Space

Total Page:16

File Type:pdf, Size:1020Kb

Successful Endeavour in Space Successful Endeavour in Space Dr K Sivan Tlae nr:diam spaee programme irmplenaemted hy ISRO has enabled the pursuit of vario,us fromtier areas oil spaee researah hesicles faeitrirta,timg tlae eountny's overail 'devefiopment and technologi.cal advaneememt. Today, ISRO sprawls across tFre eoiuntry wi',tla huge laun,ctr sitations, traeking eenters, R&D faeitrirties amd maanufaeturimg arad clata proeessing units, ail engaged in traighly sophist,ieatedl amd aornplex feenrnologieal aartivi,ties. he Indian space programme rocket on November 21. 1963 from It was at this time Dr Vikram has come a long way in the Thumba, then a fishing hamlet near Sarabhai, the architect of the Indian 57 years since its inception. Thiruvananthapuram, the capital of space programme, set up a Space From a fledgling Sounding Kerala. Later, Thumba became an Science and Techlology Centre at Rocket Launch Facility established intemational sounding rocket larurching Thumba for the development of in the early 1960s in Thumba near facility and such rockets were launched technologies necessary for space Trivandrum, it has mafured into a for upper atmospheric, geomagnetic research. In 1969, the Indian Space giant world-class space power. Today, and space research by many countries. Research Organisation, better known ISRO sprawls across the country with huge launch stations, tracking centers, R&D facilities and manufacturing and data processing units, all engaged in highly sophisticated and complex technological activities. Notwithstanding its presence as one of the strong space faring nations today, the Indian space progralnme began in a modest way in 1962 with the formation of the Indian National Committee on Space Research (INCOSPAR), barely five years after the launch of the Earth's first artificial satellite Sputnik-I, that heralded the space age. This farsighted critical decision and the later perseverant philosophy of the people who steered the programme, facilitated India to master space technology. The formal beginning of the Indian space programmg can be traced to the launch of a Nike-Apache sounding The author is the Secretary, Deparlment of Space and Chairman, ISRO. Email: [email protected] YOJANA January i.':.::j=:= its by ubiquitous acronym ISRO, was operational satellite launched in 1983, formed. Today, with a total work force demonstrated its ability to bring about of over 18,000, ISRO's establishments a rapid and major revolution in India's are functioning in many parts of the telecommunications, television broad- country with each concentrating on casting and weather forecasting fields. a specific area. The country's public Today, communication satellites as well as private sector industries are an integral parl of our economic are playing a crucial role in our infrastructure. space programme. Besides, academic An indication of India's ability institutions have also contributed to to design, build and maintain a the lndian space endeavour. complex remote sensing satellite was The 70s were the learning phase demonstrated in 1988 when IRS-lA, during which many experimental the first operational satellite built in satellites were built, including India's India started imaging the earth from first satellite Aryabhata, which was orbit. The images sent by that satellite launched on April 19, 1975 from a circling the Earth from its 900 km launch centre in the former Soviet Additionally, APPLE, India's high polar orbit were utilised in such Union. Aryabhata laid firm foundation first experimental communication diverse fields like agriculture, ground for the later immensely successful satellite, though launched by the water prospecting, mineral sulvey, Indian satellite programme. Bhaskara European Ariane rocket, reached its forestry etc. I and 2, the two experimental earth final geosynchronous orbital home in During the 1990s, ISRO observation satellites, provided the June 1981 with the help of a rocket began building INSAT-2 series of rich experience and the confidence motor developed in India. Aryabhata, multipurpose satellites indigenously. to build complex operational remote the two Bhaskaras, as well as APPLE At the same time, systematic usage sensing satellites. Today, India is a were launched free of cost, which of imagery from our remote sensing world leader in the satellite-based refl ects India's successfu I international satellites for tasks like crop yield remote sensing area. space cooperation policy. In the recent estimation, ground water and past, India has not only flown foreign mineral prospecting, forest survey, scientifi c instruments on-board Indian urban sprawl monitoring and spacecraft but has also launched them. wasteland classiflcation and fisheries APPLE Satellite development, began. Besides taking a leap into the Today, India has a fleet of domain of satellites, ISRO conducted advanced remote sensing satellites two significant experiments in the 70's equipped with high resolution and - SITE and STEP - to obtain hands- multispectral cameras dedicated to on experience on the utilisation of the themes of cartography, resource satellites for television broadcasting survey and ocean and atmospheric and telecommunications. And, it was applications. Apart from these polar in this decade that ISRO developed orbit-based observation satellites, its first Satellite Launch Vehicle SLV- weather watching satellites INSAT-3D 3, which had its successful launch on and NSAI-3DR- circling the earth in July 18, 1980 thrusting India into the the 36,000 km high geosynchronous select league of six countries with the orbit, are providing valuable inputs to capability to launch satellites on their weather forecasting. Apart from these own. satellites, the Indian National Satellite The 1980s were the times for (INSAT) system today is one of the experimentation for the launch vehicle largest domestic communication technologies when it endeavoured satellite systems in Asia-Pacific to demonstrate the country's ability region. The INSAT system with over to develop ASLV a more capable 300 transponders in the C-band, launch vehicle compared to SLV-3. Extended C-band, Ku-band, Ka/Ku During the same period, INSAI: band and S-band provides services 1B, India's first multipurpose to telecommunications, television ff,*t ons. Cryogenic technology involves storage of liquid hydrogen and liquid oxygen at very low temperatures. Materials used to operate at these very low temperafures, chilling processes, interplay of engine parameters make the development of cryogenic stage a very challenging and complex task. With the successful qualification of the indigenously developed Cryogenic Upper Stage (CUS) in the GSLV-D5 flight on January 5, 2014, ISRO demonstrated its mastery of cryogenic rocket propulsion. From January 2014, the vehicle has achieved six consecutive successes. GSLV Mk III, India's fifth generation satellite launch vehicle has two solid strap-ons, a core liquid booster and a cryogenic upper stage. The vehicle is designed to cany 4 ton class of satellites into Geosynchronous broadcasting, radio networking, launching large satellites, had its first Transfer Orbit (GTO) or about 10 tons satellite newsgathering, societal successlul flight in 1994. to Low Earth Orbit (LEO). LVM3-X/ applications, weather forecasting, Polar Satellite Launch Vehicle CARE Mission, the first experimental disaster and Search and waming (PSLV) is the third generation launch suborbital flight of GSLV Mk III Rescue operations. High throughput vehicle of India. It is the first Indian December 18,2014 and injected the satellites such as GSAT-ll, GSAT- launch vehicle to be equipped with Crew Module Atmospheric Re-entry 29 ard GSAT-l9 are supporting the liquid stages. With 49 successful flights experiment (CARE) in December "Digital India" campaign by boosting retuin over the years, PSLV has emerged as 2014. CARE module began its the broadband connectivity to the rural joumey the reliable and versatile workhorse and a little later, re-entered the and inaccessible Gram Panchayats in launch vehicle of India. In fact, it earth's atmosphere. It was successfully the country. The transponders on these Bengal has launched 328 foreign satellites recovered over Bay of satellites will bridge the digital divide about 20 minutes after its launch. as on November 7, 2020 and has of users including those in Jammu & Subsequently, after successful carved out a niche in the commercial two Kashmir and North Eastern regions of developmental flights and with the satellite launch arena. On February 15, India. successful inj ection of Chandrayaan-2 2017, PSLV created a world record in to Earlh Parking Orbit in July 2019, Perfecting the launch vehicie by successfully placing 104 satellites GSLV Mk III successfully entered technology is an immensely difficult in orbit during a single launch. Wel1, a into its operational phase. and challenging task. Thus, only as numbers go, it was undoubtedly a few countries possess it. Till now, record, but the real significance of it Besides these, India's Reusable launch ISRO has developed flve is the immense confidence reposed Launch Vehicle Technology Demons- (SLV-3, PSLY vehicles ASLY by foreign countries, including the trator (RLV TD) was successfully GSLV and GSLV Mk III which is USA, in the capability of ISRO. This flight tested in May 2016 ar'd several also known as LVM3) and mastered success was the result of meticulous critical technologies were successfully the technology of rockets that use planning and flawless execution of the validated. The first experimental
Recommended publications
  • Indian Satellite Navigation Programme
    UUssee ooff EEqquuaattoorriiaall oorrbbiitt ffoorr IInnddiiaann SSaatteelllliittee NNaavviiggaattiioonn PPrrooggrraammmmee Presentation by D. Radhakrishnan ISRO HQ, India COSPAR & IAF Workshop, 44th Session of S&T, 13th February 2007 INDIAN SPACE PROGRAMME - Achievements TODAY, 2007 Applications driven programme Self reliance in building & launching satellites ONE AMONG E November 21, 1963 L C I 22 THE H LV Missions E SIX V H NATIONS C N PSLV GSLV U 10 4 A A L GSAT-3 4466 P ++ 66 SS//CC MMiissssiioonnss 20.9.04 P L E INSAT-3A GSAT-2 I C T 10.04.03 08.05.03 I KALPANA-1 A L T L INSAT-2E INSAT- 4A 12.09.02 I E 03.04.99 22.12.05 O T N A INSAT-3E S S CARTOSAT-2 ARYABHATA 28.09.03 INSAT-3B INSAT-3C 10.01.07 19.04.75 22.03.00 24.01.02 IRS-P5 IRS-1C 05.05.05 28.12.95 IRS-P3 IRS-P6 21.03.96 TES IRS-P4 17.10.03 IRS-1D 26.05.99 22.10.01 29.09.97 GGGAAAGGGAAANNN IIIRRRNNNSSSSSS Indian Regional Navigational Space Based Augmentation System Satellite System GGlloobbaall NNaavviiggaattiioonn SSaatteelllliittee SSyysstteemm ((GGNNSSSS)) Core Constellations S S P P G GPS – USA G GLONASS – Russia S S S S A A GALIELO - European Union N N O O L L G Augmentation Systems G • Ground Based Augmentation System (GBAS) o o e e l l i i l l a • Aircraft Based Augmentation Systems (ABAS) a G G • Space Based Augmentation System (SBAS) GGAAGGAANN ((GGPPSS AAnndd GGEEOO AAuuggmmeenntteedd SSaatteelllliittee NNaavviiggaattiioonn)) Objective Satellite Based Augmentation System To provide for -- • Satellite-based Communication, Navigation, Surveillance • Air Traffic Management
    [Show full text]
  • India and China Space Programs: from Genesis of Space Technologies to Major Space Programs and What That Means for the Internati
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati Gaurav Bhola University of Central Florida Part of the Political Science Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Bhola, Gaurav, "India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati" (2009). Electronic Theses and Dissertations, 2004-2019. 4109. https://stars.library.ucf.edu/etd/4109 INDIA AND CHINA SPACE PROGRAMS: FROM GENESIS OF SPACE TECHNOLOGIES TO MAJOR SPACE PROGRAMS AND WHAT THAT MEANS FOR THE INTERNATIONAL COMMUNITY by GAURAV BHOLA B.S. University of Central Florida, 1998 A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Arts in the Department of Political Science in the College of Arts and Humanities at the University of Central Florida Orlando, Florida Summer Term 2009 Major Professor: Roger Handberg © 2009 Gaurav Bhola ii ABSTRACT The Indian and Chinese space programs have evolved into technologically advanced vehicles of national prestige and international competition for developed nations. The programs continue to evolve with impetus that India and China will have the same space capabilities as the United States with in the coming years.
    [Show full text]
  • Indian Remote Sensing Missions
    ACKNOWLEDGEMENT This book, “Indian Remote Sensing Missions and Payloads - A Glance” is an attempt to provide in one place the information about all Indian Remote Sensing and scientific missions from Aryabhata to RISAT-1 including some of the satellites that are in the realization phase. This document is compiled by IRS Program Management Engineers from the data available at various sources viz., configuration data books, and other archives. These missions are culmination of the efforts put by all scientists, Engineers, and supporting staff across various centres of ISRO. All their works are duly acknowledged Indian Remote Sensing Missions & Payloads A Glance IRS Programme Management Office Prepared By P. Murugan P.V.Ganesh PRKV Raghavamma Reviewed By C.A.Prabhakar D.L.Shirolikar Approved By Dr.M. Annadurai Program Director, IRS & SSS ISRO Satellite Centre Indian Space Research Organisation Bangalore – 560 017 Table of Contents Sl.No Chapter Name Page No Introduction 1 1 Aryabhata 1.1 2 Bhaskara 1 , 2 2.1 3. Rohini Satellites 3.1 4 IRS 1A & 1B 4.1 5 IRS-1E 5.1 6 IRS-P2 6.1 7 IRS-P3 7.1 8 IRS 1C & 1D 8.1 9 IRS-P4 (Oceansat-1) 9.1 10 Technology Experiment Satellite (TES) 10.1 11 IRS-P6 (ResourceSat-1) 11.1 12 IRS-P5 (Cartosat-1) 12.1 13 Cartosat 2,2A,2B 13.1 14 IMS-1(TWSAT) 14.1 15 Chandrayaan-1 15.1 16 Oceansat-2 16.1 17 Resourcesat-2 17.1 18 Youthsat 18.1 19 Megha-Tropiques 19.1 20 RISAT-1 20.1 Glossary References INTRODUCTION The Indian Space Research Organisation (ISRO) planned a long term Satellite Remote Sensing programme in seventies, and started related activities like conducting field & aerial surveys, design of various types of sensors for aircraft surveys and development of number of application/utilization approaches.
    [Show full text]
  • MEA Jan 19, 2019 India's Next Big Dream! Send an Indianinto Space
    MEA Jan 19, 2019 India’s next Big Dream! Send an Indianinto Space on Indian Technology. New Delhi, India, January 19, 2019 By: Pallava Bagla India has a new dream, a deep conviction to launch an Indian into space, from Indian soil on an Indian rocket by 2022 which is before the seventy-fifth birthday for India’s independence. Work has started in right earnest at the Indian Space Research Organisation (ISRO) which is expected to deliver this Herculean task in less than 1.4 billion dollars, possibly the cheapest human space flight ever to be undertaken in the world. This confidence and promise comes riding on the repeated successes that the Indian space agency has tasted in the past. Speaking from the ramparts of the Red Fort in Delhi, on August 15, 2018 Prime Minister Narendra Modi a known space buff said `we have a dream; our scientists have a dream. We have resolved that by 2022, when India celebrates 75 years of Independence or maybe even before that, certainly some of our young boys and girls will unfurl the tricolour in space. With Mangalyaan our scientists have proved their capabilities. I feel proud to announce that very soon as a part of our manned-space mission; we shall be sending an Indian into space. This will be done through the pursuit of our esteemed scientists, and we will proudly find ourselves as the fourth such nation to have launched a successful man space mission.’ When India succeeds it will be the fourth country after Russia, United States of America and China that have independent capabilities to launch humans into space.
    [Show full text]
  • The Aryabhata Project
    THE ARYABHATA PROJECT Edited by U. R, RAO, K. KASTURIRANGAN - ! - .’ j: ||)| if ijj} ' ' fpfjf- INDIAN ACADEMY OF SCIENCES Bangalore 660 006 Digitized by the Internet Archive in 2018 with funding from Public.Resource.Org https://archive.org/details/aryabhataprojectOOunse THE ARYABHATA PROJECT Edited by U. R. RAO, K. KASTURIRANGAN ISRO Satellite Centre, Bangalore INDIAN ACADEMY OF SCIENCES Bangalore 560 006 © 1979 by the Indian Academy of Sciences Reprinted from the Proceedings of the Indian Academy of Sciences, Section C: Engineering Sciences, Volume 1, pp. 117-343, 1978 Edited by U R Rao, K Kasturirangan and printed for the Indian Academy of Sciences by Macmillan India Press, Madras 600 002, India Foreword Space exploration and space travel have been the dream of mankind since early ages. When the first sputnik was launched into space in 1957 by USSR, the entire world was dramatically ushered into the space age. With the remarkable develop¬ ments that have taken place in space sciences and technology during the last two decades, some of mankind’s wildest dreams and visions—such as men walking on the moon, close-up pictures of Venus, Mars and Jupiter, in-situ exploration of planets, space docking near earth, space shuttle transportation—have all come true. The space era has opened up new windows into the skies, enabling scientists to obtain a view of the universe in X-rays and in ultraviolet, infrared and gamma rays, which had been inaccessible earlier. Developments in space technology now offer unique plat¬ forms to carry out remote sensing of our natural resources and unearth new ones in agriculture, forestry, mineralogy, hydrology, oceanography, geography and even cartography.
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 2 May–June 2019 CONTENTS FOCUS ..................................................................................................................... 1 European industrial leadership at stake ............................................................................ 1 SPACE POLICY AND PROGRAMMES .................................................................................... 2 EUROPE ................................................................................................................. 2 9th EU-ESA Space Council .......................................................................................... 2 Europe’s Martian ambitions take shape ......................................................................... 2 ESA’s advancements on Planetary Defence Systems ........................................................... 2 ESA prepares for rescuing Humans on Moon .................................................................... 3 ESA’s private partnerships ......................................................................................... 3 ESA’s international cooperation with Japan .................................................................... 3 New EU Parliament, new EU European Space Policy? ......................................................... 3 France reflects on its competitiveness and defence posture in space ...................................... 3 Germany joins consortium to support a European reusable rocket.........................................
    [Show full text]
  • India's Early Satellites – Spin-Stabilized and Bias Momentum
    India’s Early Satellites – Spin-Stabilized and Bias Momentum ISRO Aryabhata – for Space Science (Launch date 19 April 1975) Aryabhata was India's first satellite It was launched by the Soviet Union from Kapustin Yar Mission type Astrophysics Satellite of Earth Aryabhata was built by the ISRO Launch date 19 April 1975 engineers to conduct Carrier rocket Cosmos-3M experiments related to X-ray astronomy, solar physics, and Mass 360.0 kg Power 46 W from solar panels aeronomy. Orbital elements Regime LEO The satellite reentered the Inclination 50.7º Orbital period 96 minutes Earth's atmosphere on 11 Apoapsis 619 km February 1992. Periapsis 563 km *National Space Science Data Center, NASA Goddard Space Flight Center Bhaskara (Earth Observation) Satellites (launched in 1979-1981)* Bhaskara-I and II Satellites were built by the ISRO, and they were India's first low orbit Earth Observation Satellite.They collected data on telemetry, oceanography, hydrology. Bhaskara-I, weighing 444 kg at launch, was launched on June 7, 1979 from Kapustin Yar aboard the Intercosmos launch vehicle. It was placed in an orbital Perigee of 394 km and Apogee of 399 km at an inclination of 50.7°. The satellite consisted of- Two television cameras operating in visible (0.6 micrometre) and near-infrared (0.8 micrometre) and collected data related to hydrology, forestry and geology. Satellite microwave radiometer (SAMIR) operating at 19 GHz and 22 GHz for study of ocean-state, water vapor, liquid water content in the atmosphere, etc. The satellite provided ocean and land surface data. Housekeeping telemetry was received until re-entry on 17 February 1989.
    [Show full text]
  • PT-365-Science-And-Tech-2020.Pdf
    SCIENCE AND TECHNOLOGY Table of Contents 1. BIOTECHNOLOGY ___________________ 3 3.11. RFID ___________________________ 29 1.1. DNA Technology (Use & Application) 3.12. Miscellaneous ___________________ 29 Regulation Bill ________________________ 3 4. DEFENCE TECHNOLOGY _____________ 32 1.2. National Guidelines for Gene Therapy __ 3 4.1. Missiles _________________________ 32 1.3. MANAV: Human Atlas Initiative _______ 5 4.2. Submarine and Ships _______________ 33 1.4. Genome India Project _______________ 6 4.3. Aircrafts and Helicopters ____________ 34 1.5. GM Crops _________________________ 6 4.4. Other weapons system _____________ 35 1.5.1. Golden Rice ________________________ 7 4.5. Space Weaponisation ______________ 36 2. SPACE TECHNOLOGY ________________ 8 4.6. Drone Regulation __________________ 37 2.1. ISRO _____________________________ 8 2.1.1. Gaganyaan _________________________ 8 4.7. Other important news ______________ 38 2.1.2. Chandrayaan 2 _____________________ 9 2.1.3. Geotail ___________________________ 10 5. HEALTH _________________________ 39 2.1.4. NaVIC ____________________________ 11 5.1. Viral diseases _____________________ 39 2.1.5. GSAT-30 __________________________ 12 5.1.1. Polio _____________________________ 39 2.1.6. GEMINI __________________________ 12 5.1.2. New HIV Subtype Found by Genetic 2.1.7. Indian Data Relay Satellite System (IDRSS) Sequencing _____________________________ 40 ______________________________________ 13 5.1.3. Other viral Diseases _________________ 40 2.1.8. Cartosat-3 ________________________ 13 2.1.9. RISAT-2BR1 _______________________ 14 5.2. Bacterial Diseases _________________ 40 2.1.10. Newspace India ___________________ 14 5.2.1. Tuberculosis _______________________ 40 2.1.11. Other ISRO Missions _______________ 14 5.2.1.1. Global Fund for AIDS, TB and Malaria42 5.2.2.
    [Show full text]
  • Unmanned Satellites on Postage Stamps 42. Aryabhata, Bhaskara, Rohini, and Badr Series Satellites by Don Hillger - SU 5200 and Garry Toth (Coauthor)
    Unmanned Satellites on Postage Stamps 42. Aryabhata, Bhaskara, Rohini, and Badr Series Satellites by Don Hillger - SU 5200 and Garry Toth (Coauthor) This is the forty-second in a series of quasi-spherical polyhedron, about 1.6 articles about unmanned satellites on m in diameter. postage stamps. In this article we cover Since the body of the spacecraft scientific satellites from Southern Asia: is similar for both Aryabhata and the Aryabhata, Bhaskara, and Rohini Bhaskara, it is assumed that the satellites from India, and the Badr antennas can be used to distinguish satellite from Pakistan. between the two. For Aryabhata, the TheAryabhata satellite was India’s antennas appear to be attached to the first satellite, launched 19 April 1975. widest part of the spacecraft body. For It was completely designed and Bhaskara, the antennas appear to be manufactured in India but launched by attached to the angled part of the body. Russia. The spacecraft, named after the The first Rohini was the first Indian- famous Indian astronomer Aryabhata built satellite that was also launched (476-550), was a scientific satellite by them, on 18 July 1980. Three used to measure cosmic X-rays, solar Rohinis were launched through 1983. neutrons, gamma rays, ionospheric Although some sources identify electrons, and UV rays. With 26 sides, it as a spherical satellite, 0.6 m in the spacecraft was quasi-spherical. diameter, the lone postal item from It appears on several stamps or other India featuring Rohini shows it as a postal items from India and Russia. polyhedron, similar to Aryabhata and Dominica is the only other country Bhaskara, but with one flattened end.
    [Show full text]
  • INDIA JANUARY 2018 – June 2020
    SPACE RESEARCH IN INDIA JANUARY 2018 – June 2020 Presented to 43rd COSPAR Scientific Assembly, Sydney, Australia | Jan 28–Feb 4, 2021 SPACE RESEARCH IN INDIA January 2018 – June 2020 A Report of the Indian National Committee for Space Research (INCOSPAR) Indian National Science Academy (INSA) Indian Space Research Organization (ISRO) For the 43rd COSPAR Scientific Assembly 28 January – 4 Febuary 2021 Sydney, Australia INDIAN SPACE RESEARCH ORGANISATION BENGALURU 2 Compiled and Edited by Mohammad Hasan Space Science Program Office ISRO HQ, Bengalure Enquiries to: Space Science Programme Office ISRO Headquarters Antariksh Bhavan, New BEL Road Bengaluru 560 231. Karnataka, India E-mail: [email protected] Cover Page Images: Upper: Colour composite picture of face-on spiral galaxy M 74 - from UVIT onboard AstroSat. Here blue colour represent image in far ultraviolet and green colour represent image in near ultraviolet.The spiral arms show the young stars that are copious emitters of ultraviolet light. Lower: Sarabhai crater as imaged by Terrain Mapping Camera-2 (TMC-2)onboard Chandrayaan-2 Orbiter.TMC-2 provides images (0.4μm to 0.85μm) at 5m spatial resolution 3 INDEX 4 FOREWORD PREFACE With great pleasure I introduce the report on Space Research in India, prepared for the 43rd COSPAR Scientific Assembly, 28 January – 4 February 2021, Sydney, Australia, by the Indian National Committee for Space Research (INCOSPAR), Indian National Science Academy (INSA), and Indian Space Research Organization (ISRO). The report gives an overview of the important accomplishments, achievements and research activities conducted in India in several areas of near- Earth space, Sun, Planetary science, and Astrophysics for the duration of two and half years (Jan 2018 – June 2020).
    [Show full text]
  • Indian Remote Sensing Satellites (IRS)
    Topic: Indian Remote Sensing Satellites (IRS) Course: Remote Sensing and GIS (CC-11) M.A. Geography (Sem.-3) By Dr. Md. Nazim Professor, Department of Geography Patna College, Patna University Lecture-5 Concept: India's remote sensing program was developed with the idea of applying space technologies for the benefit of human kind and the development of the country. The program involved the development of three principal capabilities. The first was to design, build and launch satellites to a sun synchronous orbit. The second was to establish and operate ground stations for spacecraft control, data transfer along with data processing and archival. The third was to use the data obtained for various applications on the ground. India demonstrated the ability of remote sensing for societal application by detecting coconut root-wilt disease from a helicopter mounted multispectral camera in 1970. This was followed by flying two experimental satellites, Bhaskara-1 in 1979 and Bhaskara-2 in 1981. These satellites carried optical and microwave payloads. India's remote sensing programme under the Indian Space Research Organization (ISRO) started off in 1988 with the IRS-1A, the first of the series of indigenous state-of-art operating remote sensing satellites, which was successfully launched into a polar sun-synchronous orbit on March 17, 1988 from the Soviet Cosmodrome at Baikonur. It has sensors like LISS-I which had a spatial resolution of 72.5 meters with a swath of 148 km on ground. LISS-II had two separate imaging sensors, LISS-II A and LISS-II B, with spatial resolution of 36.25 meters each and mounted on the spacecraft in such a way to provide a composite swath of 146.98 km on ground.
    [Show full text]
  • Indian Food in Space: DRDO's Menu for Gaganyaan Astronauts
    Tue, 07 Jan 2020 Indian food in space: DRDO's menu for Gaganyaan astronauts Gaganyaan astronauts will feast on Indian food, reconstituted for space conditions By Rekha Dixit Idli or upma for breakfast. A choice between chicken biryani or vegetarian pulao, with a side of dal and mixed vegetables for lunch. How about a chicken korma and chappati for dinner? Sooji halwa is a good dessert option, and you could nibble on an energy bar when you feel peckish. Sorry, this is a non-smoking, non-alcohol flight, but you could help yourself to coffee or tea, or a choice of fruit juices. All this, and more, could be available in space through ISRO's Gaganyaan programme. Gaganyaan is India's first human space flight. Scheduled to take off before 2022, it will offer a gourmet spread of Indian food for its pioneering astronauts courtesy the Defence Research Development Organisation (DRDO), which has been tasked with organising the victuals for the week- long flight. While DRDO is busy designing menus, its Mysore-based Defence Food Research Laboratory (DFRL) works on adapting a range of packaged food items that it makes for soldiers deployed on harsh missions. A list of over two dozen items that includes cuisines from across India is being worked on. "We hope to get an initial set of food items ready to be taken off on the first of the three flights,'' said D. Semwal, DFRL director. Mission Gaganyaan includes a set of three flights; the first two will be unmanned ones, and only the third will have a human crew, of two or three astronauts.
    [Show full text]