Indian Remote Sensing Missions

Total Page:16

File Type:pdf, Size:1020Kb

Indian Remote Sensing Missions ACKNOWLEDGEMENT This book, “Indian Remote Sensing Missions and Payloads - A Glance” is an attempt to provide in one place the information about all Indian Remote Sensing and scientific missions from Aryabhata to RISAT-1 including some of the satellites that are in the realization phase. This document is compiled by IRS Program Management Engineers from the data available at various sources viz., configuration data books, and other archives. These missions are culmination of the efforts put by all scientists, Engineers, and supporting staff across various centres of ISRO. All their works are duly acknowledged Indian Remote Sensing Missions & Payloads A Glance IRS Programme Management Office Prepared By P. Murugan P.V.Ganesh PRKV Raghavamma Reviewed By C.A.Prabhakar D.L.Shirolikar Approved By Dr.M. Annadurai Program Director, IRS & SSS ISRO Satellite Centre Indian Space Research Organisation Bangalore – 560 017 Table of Contents Sl.No Chapter Name Page No Introduction 1 1 Aryabhata 1.1 2 Bhaskara 1 , 2 2.1 3. Rohini Satellites 3.1 4 IRS 1A & 1B 4.1 5 IRS-1E 5.1 6 IRS-P2 6.1 7 IRS-P3 7.1 8 IRS 1C & 1D 8.1 9 IRS-P4 (Oceansat-1) 9.1 10 Technology Experiment Satellite (TES) 10.1 11 IRS-P6 (ResourceSat-1) 11.1 12 IRS-P5 (Cartosat-1) 12.1 13 Cartosat 2,2A,2B 13.1 14 IMS-1(TWSAT) 14.1 15 Chandrayaan-1 15.1 16 Oceansat-2 16.1 17 Resourcesat-2 17.1 18 Youthsat 18.1 19 Megha-Tropiques 19.1 20 RISAT-1 20.1 Glossary References INTRODUCTION The Indian Space Research Organisation (ISRO) planned a long term Satellite Remote Sensing programme in seventies, and started related activities like conducting field & aerial surveys, design of various types of sensors for aircraft surveys and development of number of application/utilization approaches. These were followed by planning, designing, fabrication of experimental remote sensing missions viz., Aryabhata, Bhaskara 1 & II etc. These missions gave experience in developing futuristic remote sensing satellites, setting up of ground-based data reception and processing systems, experience in over-all mission management etc. The launch of IRS-1A satellite on 17th March, 1988 into the orbit is the start of operational remote sensing era of IRS programme. The IRS Satellites are providing imagery data for many projects of national importance and applications. Some of the remote sensing applications being catered are provided below Agriculture and soils Point and non-point sources of Phase level information of soils pollution Improved multiple crop Environmental impact assessment discrimination Geology and Exploration Crop monitoring &condition Rock type mapping assessment Tectonic geo- structure mapping Crop canopy water stress Mining pollution analysis Crop yield estimates Off/on shore seeps analysis Crop management Coal fire analysis Cropping system analysis Mining subsidence analysis Damage assessment Landslide vulnerability / risk Surveillance of pests and diseases Geo-energy Forestry Water cycle study Inventory and updating Ocean application Forest landscape analysis Phytoplankton observation Forest infra-structure mapping Chlorophyll content, Forest encroachment Yellow substance State of forests Suspended sediments Wildlife habitat analysis Sea surface winds, Bio-diversity Sea roughness monitoring Fire damage Sea surface temperature Implementation of forest policies Identifying the potential fishing Environment zones, Hydrologic units Coastal zone management, Land unit maps Ship routing, Soil contamination maps Operations of offshore oil rigs Quarries and waste identification Desertification analysis Oil spills Indian Remote Sensing Missions & Payloads – A glance 1 Meteorology Cartography Water vapour in an atmospheric Updating topo-maps column, Augmenting Databases Cloud formation Image maps as base maps Low pressure zone identification Watershed management Cyclone movement speed & Terrain evaluation City models direction Road and infrastructure maps Weather predictions, Site suitability assessment Infrastructure and Utilities Cadastral map generation Road networks Defence 3D-city models Strategic target monitoring Infrastructure maps Mission planning Siting of hydro-power locations Training Site suitability Treaty verification Rural and urban infrastructure Demining Structural and hydrological Lunar & Stellar Observation inventory Understand the way planets Municipal GIS created Utility corridor mapping Transportation network Stellar movement, Rural road connectivity Celestial body feature study Tracking changes in road Studying radiations coming from Telecom facilities stars Recreation Facilities Different elements available on Tourism Violations stellar objects Damage assessment Above said applications can be categorized in the following way as part of National Natural Resources planning as well as in other areas. Multiple crop production estimates, o Area estimate, crop health estimate Land and Water Resources optimization, Urban planning and management, o Infrastructural plan Coastal zone studies and regulation o Fishing, chlorophyll, phytoplankton etc. Mapping and inventory of forests, wastelands, land use, Lunar & stellar observation missions The aim of this document is to collect the Indian Remote Sensing payload details available at various sources and consolidate to bring them in a single document. This document provides brief, condensed information of various IRS Indian Remote Sensing Missions & Payloads – A glance 2 Missions and payloads. This document will serve the new entrant engineers to understand the evolution of Remote sensing Programme in India. Information provided in this document is collected from various sources like configuration data books, internet sources, Journals and books. The list of references is provided in annexure-1. IRS missions can be classified based on their applications as follows. Land and Water Resource Observation Series Ocean and Atmospheric Observation Series Cartographic Satellite Series Microwave Remote Sensing Series Environmental monitoring series Space Science Series Micro and Nano Satellite Series Land and Water Resource Observation Series These satellites cater to the requirements of following applications: Agriculture, forestry, land use, land cover, soil, geology, terrain, water resources, disaster management like flood, forest fire, drought, land slide, etc. Satellites launched for these applications are IRS-1A, IRS-1B, IRS-1C, IRS- 1D, IRS-P6 (Resourcesat-1), Resourcesat-2, and IMS-1A. Resourcesat-2 satellite with improved performance having three payloads namely, LISS-IV with 5.8m Resolution and 70 km swath in 3 bands, LISS-III with 23.5m Resolution and 140 km swath and AWIFS with 56m Resolution and 740 km swath was launched on 20thApril 2011 and successfully operationalized and is providing data for above said applications. Presently the following IRS Satellites are operational and providing data for above applications IMS-1A Resoucesat-2 Ocean and Atmospheric Observation Series Under Ocean and Atmospheric Observation Series, satellites were launched to meet the needs of potential fishing zone (PFZ) forecasting, sea state forecasting, coastal zone studies and to provide inputs for weather forecasting and for climatic studies: Satellites launched for this application are Oceansat-1, Oceansat-II, and Megha Tropiques Oceansat-2: satellite with Ocean Colour Monitor (OCM) payload with 360m spatial resolution and 1420 km swath and Ku-Band pencil beam scatterometer and Indian Remote Sensing Missions & Payloads – A glance 3 Radio Occultation for Sounding of Atmospheric (ROSA) was launched on 23rd September 2009 was successfully operationalized for providing data for the above applications. Megha-Tropiques: Under Ocean and Atmospheric Observation series to study the convective systems that influence the tropical weather and climate. The Megha-Tropiques mission was launched on 12th October 2011. The Megha- Tropiques spacecraft carries 4 payloads namely: MADRAS (A Microwave Imager to study the precipitation and cloud properties). SAPHIR (A Microwave Sounder for the retrieval of water vapour vertical profiles). SCARAB (A Radiometer for the measurement of outgoing radiative fluxes at the top of the atmosphere) and ROSA (Radio Occultation for Sounding of Atmosphere) to provide vertical profiling of temperature. The Megha-Tropiques mission will provide sampling of water and energy budget of the Tropical Convective Systems in the inter-tropical band. Cartographic Satellite Series In order to meet the large scale and thematic maps for urban & rural infrastructure development & management and to provide National Digital Elevation Model (DEM) for cadastral overlay these satellites were launched. They cater cartographic applications, coastal features mapping, coral reef mapping and for mineral studies also The features of these satellites are : TES with <1 m resolution PAN, Cartosat-1 with 2.5m Resolution PAN and 30km swath with along track stereo imaging capability, Cartosat-2,2A,2B with 0.8m Resolution PAN with 9.6 km swath In order to meet the increased demand for large scale mapping and other cartographic applications for cadastral level and for urban and rural infrastructure development & management Cartosat-2A and Cartosat-2B with 0.8m Resolution PAN with 9.6 km swath were launched for above applications. Technology Experimental satellite (TES) Cartosat-1 (since May 2005) Cartosat-2 (since January 2007) Cartosat-2A (April 2008) Cartosat-2B (since July 2010) Microwave Remote Sensing Satellite Series Indian Remote Sensing
Recommended publications
  • Indian Satellite Navigation Programme
    UUssee ooff EEqquuaattoorriiaall oorrbbiitt ffoorr IInnddiiaann SSaatteelllliittee NNaavviiggaattiioonn PPrrooggrraammmmee Presentation by D. Radhakrishnan ISRO HQ, India COSPAR & IAF Workshop, 44th Session of S&T, 13th February 2007 INDIAN SPACE PROGRAMME - Achievements TODAY, 2007 Applications driven programme Self reliance in building & launching satellites ONE AMONG E November 21, 1963 L C I 22 THE H LV Missions E SIX V H NATIONS C N PSLV GSLV U 10 4 A A L GSAT-3 4466 P ++ 66 SS//CC MMiissssiioonnss 20.9.04 P L E INSAT-3A GSAT-2 I C T 10.04.03 08.05.03 I KALPANA-1 A L T L INSAT-2E INSAT- 4A 12.09.02 I E 03.04.99 22.12.05 O T N A INSAT-3E S S CARTOSAT-2 ARYABHATA 28.09.03 INSAT-3B INSAT-3C 10.01.07 19.04.75 22.03.00 24.01.02 IRS-P5 IRS-1C 05.05.05 28.12.95 IRS-P3 IRS-P6 21.03.96 TES IRS-P4 17.10.03 IRS-1D 26.05.99 22.10.01 29.09.97 GGGAAAGGGAAANNN IIIRRRNNNSSSSSS Indian Regional Navigational Space Based Augmentation System Satellite System GGlloobbaall NNaavviiggaattiioonn SSaatteelllliittee SSyysstteemm ((GGNNSSSS)) Core Constellations S S P P G GPS – USA G GLONASS – Russia S S S S A A GALIELO - European Union N N O O L L G Augmentation Systems G • Ground Based Augmentation System (GBAS) o o e e l l i i l l a • Aircraft Based Augmentation Systems (ABAS) a G G • Space Based Augmentation System (SBAS) GGAAGGAANN ((GGPPSS AAnndd GGEEOO AAuuggmmeenntteedd SSaatteelllliittee NNaavviiggaattiioonn)) Objective Satellite Based Augmentation System To provide for -- • Satellite-based Communication, Navigation, Surveillance • Air Traffic Management
    [Show full text]
  • An Analytical Search for Efficient Microcontroller-On Board Computer for Veltech-Nanosat
    International Journal of Advanced Science and Technology Vol. 29, No. 6s, (2020), pp. 232-236 An Analytical Search for Efficient Microcontroller-On Board Computer for Veltech-NanoSat 1Prabhu Kumar Surarapu, 2Tumuluri Sree Sravya, 3D.Ruthra Prabha 1Assistant professor, 2,3UG student Department of ECE Veltech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai Abstract On Board Computer (OBC) isthe heart of the satellites and particularly, It is the main subsystem in the Nano satellite.OBC is responsible for communication, data storage and functional control between all subsystems in the satellite. Right Choice of micro controller is very important task since complete monitoring of the subsystems depends on the OBC. The probability of the success of the satellite mission depends on the reliability of microcontroller and components. In this paper we have listed down, compared and analysed the microcontrollers that were used earlier in nanosatellites and pico satellites like PRATHAM, JUGNU, SATYABAMASAT, ICUBESAT,STUDSAT and SWAYAM. Key words--- On Board Computer (OBC), Microcontroller, VeltechNanoSat, Nano satellite I. INTRODUCTION Veltech-NanoSat, the first satellite initiative of Veltech group of institutions, Chennai, Tamilnadu,India, is in the process of development at Veltech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology under guidance of Indian Space Research Organisation (ISRO) . This project was initiated with the purpose enabling the students and faculty who are involved with design, analysis and testing. The important mission of this nano satellite is to monitor the agricultural fields, land sliding, forest fire, flow and quantity of water. Like other satellites Veltech-NanoSat has also various subsystems which include Payload, Power, Communication, Attitude control, Structure, Mechanisms, Thermal and On Board Computer (OBC).
    [Show full text]
  • Oih Government of India Department of Space Rajya
    OIH GOVERNMENT OF INDIA DEPARTMENT OF SPACE RAJYA SABHA UNSTARRED QUESTION NO. 874 TO BE ANSWERED ON THURSDAY, APRIL 30, 2015 SATELLITE LAUNCHED BY ISRO 874. SHRI RAMDAS ATHAWALE: Will the PRIME MINISTER be pleased to state: (a) the details of the satellites successfully launched so far by ISRO along with those satellites ISRO failed to launch; (b) whether there is any proposal to launch more satellites in near future, if so, the details thereof; and (c) whether Government proposes to enter the global market for images and statistics? ANSWER MINISTER OF STATE IN THE MINISTRY OF PERSONNEL, PG & PENSIONS AND IN THE PRIME MINISTER’S OFFICE (DR. JITENDRA SINGH): (a) As on April 2015, Indian Space Research Organisation (ISRO) has launched 74 satellites. Out of these, 7 satellites failed to reach the orbit due to launch failure and 3 satellites failed in orbit. In addition, ISRO has successfully launched 40 foreign satellites from 19 countries and 4 micro & nano satellites built by students of Indian Universities using Polar Satellite Launch Vehicle (PSLV). The details are enclosed in Annexure-1 (b) Yes, Sir. 6 more satellites are planned to be launched during 2015-16. These are two Communication satellites GSAT-6 & GSAT-15; three Navigation satellites IRNSS-1E, IRNSS-1F & IRNSS-1G; and one Space science satellite ASTROSAT. In addition, it is also planned to launch 13 more satellites from four countries using Polar Satellite Launch Vehicle. The details are enclosed in Annexure-2. …2/- -2- (c) Antrix Corporation Ltd., the commercial arm of Department of Space is already marketing remote sensing data (images) from Indian Remote Sensing satellites in the global market through establishment of International Ground Stations and reseller network.
    [Show full text]
  • 25 Years of Indian Remote Sensing Satellite (IRS)
    2525 YearsYears ofof IndianIndian RemoteRemote SensingSensing SatelliteSatellite (IRS)(IRS) SeriesSeries Vinay K Dadhwal Director National Remote Sensing Centre (NRSC), ISRO Hyderabad, INDIA 50 th Session of Scientific & Technical Subcommittee of COPUOS, 11-22 Feb., 2013, Vienna The Beginning • 1962 : Indian National Committee on Space Research (INCOSPAR), at PRL, Ahmedabad • 1963 : First Sounding Rocket launch from Thumba (Nov 21, 1963) • 1967 : Experimental Satellite Communication Earth Station (ESCES) established at Ahmedabad • 1969 : Indian Space Research Organisation (ISRO) established (15 August) PrePre IRSIRS --1A1A SatellitesSatellites • ARYABHATTA, first Indian satellite launched in April 1975 • Ten satellites before IRS-1A (7 for EO; 2 Met) • 5 Procured & 5 SLV / ASLV launch SAMIR : 3 band MW Radiometer SROSS : Stretched Rohini Series Satellite IndianIndian RemoteRemote SensingSensing SatelliteSatellite (IRS)(IRS) –– 1A1A • First Operational EO Application satellite, built in India, launch USSR • Carried 4-band multispectral camera (3 nos), 72m & 36m resolution Satellite Launch: March 17, 1988 Baikanur Cosmodrome Kazakhstan SinceSince IRSIRS --1A1A • Established of operational EO activities for – EO data acquisition, processing & archival – Applications & institutionalization – Public services in resource & disaster management – PSLV Launch Program to support EO missions – International partnership, cooperation & global data sets EarlyEarly IRSIRS MultispectralMultispectral SensorsSensors • 1st Generation : IRS-1A, IRS-1B •
    [Show full text]
  • India and China Space Programs: from Genesis of Space Technologies to Major Space Programs and What That Means for the Internati
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati Gaurav Bhola University of Central Florida Part of the Political Science Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Bhola, Gaurav, "India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati" (2009). Electronic Theses and Dissertations, 2004-2019. 4109. https://stars.library.ucf.edu/etd/4109 INDIA AND CHINA SPACE PROGRAMS: FROM GENESIS OF SPACE TECHNOLOGIES TO MAJOR SPACE PROGRAMS AND WHAT THAT MEANS FOR THE INTERNATIONAL COMMUNITY by GAURAV BHOLA B.S. University of Central Florida, 1998 A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Arts in the Department of Political Science in the College of Arts and Humanities at the University of Central Florida Orlando, Florida Summer Term 2009 Major Professor: Roger Handberg © 2009 Gaurav Bhola ii ABSTRACT The Indian and Chinese space programs have evolved into technologically advanced vehicles of national prestige and international competition for developed nations. The programs continue to evolve with impetus that India and China will have the same space capabilities as the United States with in the coming years.
    [Show full text]
  • Glimpses of Indian Space Programme
    Presentation at the M. V. DHEKANE, International Symposium Associate Director (R&D) in Tokyo, on Vikram Sarabhai Space Centre, Stable use of Outer Space Indian Space Research Organisation 1 during March 3-4, 2016 Trivandrum, India “There are some who question the relevance of space activities in a developing nation. To us, there is no ambiguity of purpose. We are convinced that if we are to play a meaningful role in the comity of nations we should be second to none in the applications of advanced technologies to the real problems of man and Society.” Dr. Vikram A Sarabhai 2 The First Indian Rockets…. Rohini-75 (RH-75) The First rocket made by India and launched from Thumba 20-Nov-1967 Nike-Apache The First sounding rocket launched from Thumba 21-Nov-1963 3 Sounding Rockets 4 ISRO Launch vehicles SLV-3 to GSLV MkIII • GTO Mission • Cryogenics • Maraging Steel, Large Booster • Strap-on Technology • Liquid Propulsion • Closed loop Guidance • Gimbal Control, Flex Nozzle • Onboard RTD • Multiple Satellites injection • Bulbous Heat Shield • Vertical Integration • Solid propulsion • Inertial Systems • Open loop guidance • Orbital Mission GSLV Mk III • Heavy Cryogenics GSLV • Large solid & liquid (2000) Boosters 10000 4500 SLV-3 ASLV PSLV (1994) (1980) (1988) 3000 LEO PAYLOADS (KG) GSLV Mk III Launch Vehicle SLV ASLV PSLV GSLV (Under development) Lift-off weight 17 40 295 450 635 (Tonnes) Payload (kg) 40 (LEO) 150 (LEO) 1600 (SSO) 2000 (GTO) 4000 (GTO) 5 Indian Space programme VISION: Harness space technology for national development, while pursuing
    [Show full text]
  • Annual Report 2017 - 2018 Annual Report 2017 - 2018 Citizens’ Charter of Department of Space
    GSAT-17 Satellites Images icro M sat ries Satellit Se e -2 at s to r a C 0 SAT-1 4 G 9 -C V L S P III-D1 -Mk LV GS INS -1 C Asia Satell uth ite o (G S S A T - 09 9 LV-F ) GS ries Sat Se ellit t-2 e sa to 8 r -C3 a LV C PS Annual Report 2017 - 2018 Annual Report 2017 - 2018 Citizens’ Charter of Department Of Space Department Of Space (DOS) has the primary responsibility of promoting the development of space science, technology and applications towards achieving self-reliance and facilitating in all round development of the nation. With this basic objective, DOS has evolved the following programmes: • Indian National Satellite (INSAT) programme for telecommunication, television broadcasting, meteorology, developmental education, societal applications such as telemedicine, tele-education, tele-advisories and similar such services • Indian Remote Sensing (IRS) satellite programme for the management of natural resources and various developmental projects across the country using space based imagery • Indigenous capability for the design and development of satellite and associated technologies for communications, navigation, remote sensing and space sciences • Design and development of launch vehicles for access to space and orbiting INSAT / GSAT, IRS and IRNSS satellites and space science missions • Research and development in space sciences and technologies as well as application programmes for national development The Department Of Space is committed to: • Carrying out research and development in satellite and launch vehicle technology with a goal to achieve total self reliance • Provide national space infrastructure for telecommunications and broadcasting needs of the country • Provide satellite services required for weather forecasting, monitoring, etc.
    [Show full text]
  • Volume 20, Issue 1, January 2017
    CSSTEAP Newsletter JANUARY, 2017 l VOLUME 20 l ISSUE 1 Centre for Space Science & Technology Education in Asia & the Pacific (CSSTEAP) (Affiliated to the United Nations) on a mission of capacity building, the initiative of the United nations, for Asia and the Pacific Region in Space Science and Technologym through Excellence in Education, Training and Research. CSSTEAP Governing Board Chairman Shri A.S. Kiran Kumar India Members Mr. Hari Odari Nepal Dr. Hong Yong IL DPR Korea H.E. (Mrs.) Ma. Teresita C. Daza Philippines Dr. Thomas Djamaluddin Indonesia Mr. Ok-Kyu Lee Republic of Korea Mr. Ali Sadeghi Naeini Iran Mr. S. Panawennage Sri Lanka H.E. Mr. Bulat Sergazievich Sarsenbayev Executive Director, GISTDA Kazakhstan Thailand Prof. Abdykalykov A. Abdykalykovich Dr. Kamol M. Muminov Kyrgyzstan Uzbekistan H.E. Ybhg Datuk Naimun Ashakli Mohammad Observers Malaysia Dr. (Ms.) Simonetta Di Pippo UN-OOSA, Austria Dr. Batbold Enkhtuvshin Mongolia Prof. Dr. Ir. A. (Tom) Veldkamp ITC (The Netherlands) Dr. Kyi Thwin Myanmar Secretary Dr. A Senthil Kumar Mr. Kartar Singh Bhalla Director CSSTEAP Nauru Participants of 21st CSSTEAP Governing Board In this issue.. P08 P43 20th Post Graduate Course on Remote Performance Report of CSSTEAP Sensing & Geographic Information System P44 P10 Recent launches 21st Post Graduate Course on Remote Sensing & Geographic Information System (RS&GIS) P45 Indian Regional Navigation P12 Satellite System (IRNSS) 10th Post Graduate Diploma Course in Satellite Communications (SATCOM-10) and First Post Graduate Diploma Course
    [Show full text]
  • Access to Space Through Isro Launch Vehicles
    Volume -2, Issue-4, October 2012 ACCESS TO SPACE THROUGH ISRO subsystems of a complex launch vehicle but also the maturity attained in conceiving, designing and realizing LAUNCH VEHICLES other vital elements viz., control, guidance, navigation Introduction : and staging systems. The nation’s capability to plan, integrate and carry out a satellite launch mission which is Climbing out of the Earth’s gravity well and transcending truly a multi-disciplinary technological challenge was the dense atmospheric shield is the most energy intensive proved on July 18, 1980 when India successfully orbited crucial first step in the journey into space and the Launch Rohini-1 satellite on SLV-3 E02 flight. Vehicles are the primary viable means of accomplishing this task. India acquired the capability to orbit a satellite While the sub-orbital sounding rockets which just carry in 1980, when SLV-3 the indigenously developed all the payload instruments upto a height of 100 to 200 solid launcher deployed the 40 kg Rohini satellite around kilometers have very few sub-systems apart from the earth. Tremendous progress has been made in this area propulsive device, a Satellite Launcher which has to in the last three decades and today, India is one among import a velocity of around 8 km/sec and precisely the leading space-faring nations with assured access to deliver the payload into a pre targeted injection vector in space through the work-horse operational launcher space has far more complex systems all of which have to PSLV, the Polar Satellite Launch Vehicle. function flawlessly for a successful orbital mission.
    [Show full text]
  • The Aryabhata Project
    THE ARYABHATA PROJECT Edited by U. R, RAO, K. KASTURIRANGAN - ! - .’ j: ||)| if ijj} ' ' fpfjf- INDIAN ACADEMY OF SCIENCES Bangalore 660 006 Digitized by the Internet Archive in 2018 with funding from Public.Resource.Org https://archive.org/details/aryabhataprojectOOunse THE ARYABHATA PROJECT Edited by U. R. RAO, K. KASTURIRANGAN ISRO Satellite Centre, Bangalore INDIAN ACADEMY OF SCIENCES Bangalore 560 006 © 1979 by the Indian Academy of Sciences Reprinted from the Proceedings of the Indian Academy of Sciences, Section C: Engineering Sciences, Volume 1, pp. 117-343, 1978 Edited by U R Rao, K Kasturirangan and printed for the Indian Academy of Sciences by Macmillan India Press, Madras 600 002, India Foreword Space exploration and space travel have been the dream of mankind since early ages. When the first sputnik was launched into space in 1957 by USSR, the entire world was dramatically ushered into the space age. With the remarkable develop¬ ments that have taken place in space sciences and technology during the last two decades, some of mankind’s wildest dreams and visions—such as men walking on the moon, close-up pictures of Venus, Mars and Jupiter, in-situ exploration of planets, space docking near earth, space shuttle transportation—have all come true. The space era has opened up new windows into the skies, enabling scientists to obtain a view of the universe in X-rays and in ultraviolet, infrared and gamma rays, which had been inaccessible earlier. Developments in space technology now offer unique plat¬ forms to carry out remote sensing of our natural resources and unearth new ones in agriculture, forestry, mineralogy, hydrology, oceanography, geography and even cartography.
    [Show full text]
  • India's Early Satellites – Spin-Stabilized and Bias Momentum
    India’s Early Satellites – Spin-Stabilized and Bias Momentum ISRO Aryabhata – for Space Science (Launch date 19 April 1975) Aryabhata was India's first satellite It was launched by the Soviet Union from Kapustin Yar Mission type Astrophysics Satellite of Earth Aryabhata was built by the ISRO Launch date 19 April 1975 engineers to conduct Carrier rocket Cosmos-3M experiments related to X-ray astronomy, solar physics, and Mass 360.0 kg Power 46 W from solar panels aeronomy. Orbital elements Regime LEO The satellite reentered the Inclination 50.7º Orbital period 96 minutes Earth's atmosphere on 11 Apoapsis 619 km February 1992. Periapsis 563 km *National Space Science Data Center, NASA Goddard Space Flight Center Bhaskara (Earth Observation) Satellites (launched in 1979-1981)* Bhaskara-I and II Satellites were built by the ISRO, and they were India's first low orbit Earth Observation Satellite.They collected data on telemetry, oceanography, hydrology. Bhaskara-I, weighing 444 kg at launch, was launched on June 7, 1979 from Kapustin Yar aboard the Intercosmos launch vehicle. It was placed in an orbital Perigee of 394 km and Apogee of 399 km at an inclination of 50.7°. The satellite consisted of- Two television cameras operating in visible (0.6 micrometre) and near-infrared (0.8 micrometre) and collected data related to hydrology, forestry and geology. Satellite microwave radiometer (SAMIR) operating at 19 GHz and 22 GHz for study of ocean-state, water vapor, liquid water content in the atmosphere, etc. The satellite provided ocean and land surface data. Housekeeping telemetry was received until re-entry on 17 February 1989.
    [Show full text]
  • PT-365-Science-And-Tech-2020.Pdf
    SCIENCE AND TECHNOLOGY Table of Contents 1. BIOTECHNOLOGY ___________________ 3 3.11. RFID ___________________________ 29 1.1. DNA Technology (Use & Application) 3.12. Miscellaneous ___________________ 29 Regulation Bill ________________________ 3 4. DEFENCE TECHNOLOGY _____________ 32 1.2. National Guidelines for Gene Therapy __ 3 4.1. Missiles _________________________ 32 1.3. MANAV: Human Atlas Initiative _______ 5 4.2. Submarine and Ships _______________ 33 1.4. Genome India Project _______________ 6 4.3. Aircrafts and Helicopters ____________ 34 1.5. GM Crops _________________________ 6 4.4. Other weapons system _____________ 35 1.5.1. Golden Rice ________________________ 7 4.5. Space Weaponisation ______________ 36 2. SPACE TECHNOLOGY ________________ 8 4.6. Drone Regulation __________________ 37 2.1. ISRO _____________________________ 8 2.1.1. Gaganyaan _________________________ 8 4.7. Other important news ______________ 38 2.1.2. Chandrayaan 2 _____________________ 9 2.1.3. Geotail ___________________________ 10 5. HEALTH _________________________ 39 2.1.4. NaVIC ____________________________ 11 5.1. Viral diseases _____________________ 39 2.1.5. GSAT-30 __________________________ 12 5.1.1. Polio _____________________________ 39 2.1.6. GEMINI __________________________ 12 5.1.2. New HIV Subtype Found by Genetic 2.1.7. Indian Data Relay Satellite System (IDRSS) Sequencing _____________________________ 40 ______________________________________ 13 5.1.3. Other viral Diseases _________________ 40 2.1.8. Cartosat-3 ________________________ 13 2.1.9. RISAT-2BR1 _______________________ 14 5.2. Bacterial Diseases _________________ 40 2.1.10. Newspace India ___________________ 14 5.2.1. Tuberculosis _______________________ 40 2.1.11. Other ISRO Missions _______________ 14 5.2.1.1. Global Fund for AIDS, TB and Malaria42 5.2.2.
    [Show full text]