RESEARCH ARTICLE Role of the transcriptional regulator SP140 in resistance to bacterial infections via repression of type I interferons Daisy X Ji1†, Kristen C Witt1†, Dmitri I Kotov1,2, Shally R Margolis1, Alexander Louie1, Victoria Cheve´ e1, Katherine J Chen1,2, Moritz M Gaidt1, Harmandeep S Dhaliwal3, Angus Y Lee3, Stephen L Nishimura4, Dario S Zamboni5, Igor Kramnik6, Daniel A Portnoy1,7,8, K Heran Darwin9, Russell E Vance1,2,3* 1Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States; 2Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States; 3Cancer Research Laboratory, University of California, Berkeley, Berkeley, United States; 4Department of Pathology, University of California, San Francisco, San Francisco, United States; 5Department of Cell Biology, Ribeira˜ o Preto Medical School, University of Sa˜ o Paulo, Sa˜ o Paulo, Brazil; 6The National Emerging Infectious Diseases Laboratory, Department of Medicine (Pulmonary Center), and Department of Microbiology, Boston University School of Medicine, Boston, United States; 7Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States; 8Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States; 9Department of Microbiology, New York University Grossman School of Medicine, New York, United States *For correspondence:
[email protected] Abstract Type I interferons (IFNs) are essential for anti-viral immunity, but often impair †These authors contributed protective immune responses during bacterial infections. An important question is how type I IFNs equally to this work are strongly induced during viral infections, and yet are appropriately restrained during bacterial infections.