Plastome Structure and Phylogenetic Relationships of Styracaceae (Ericales) Xiu‑Lian Cai1, Jacob B

Total Page:16

File Type:pdf, Size:1020Kb

Plastome Structure and Phylogenetic Relationships of Styracaceae (Ericales) Xiu‑Lian Cai1, Jacob B Cai et al. BMC Ecol Evo (2021) 21:103 BMC Ecology and Evolution https://doi.org/10.1186/s12862-021-01827-4 RESEARCH ARTICLE Open Access Plastome structure and phylogenetic relationships of Styracaceae (Ericales) Xiu‑Lian Cai1, Jacob B. Landis2,3, Hong‑Xin Wang1, Jian‑Hua Wang1, Zhi‑Xin Zhu1 and Hua‑Feng Wang1* Abstract Background: The Styracaceae are a woody, dicotyledonous family containing 12 genera and an estimated 160 spe‑ cies. Recent studies have shown that Styrax and Sinojackia are monophyletic, Alniphyllum and Bruinsmia cluster into a clade with an approximately 20‑kb inversion in the Large Single‑Copy (LSC) region. Halesia and Pterostyrax are not supported as monophyletic, while Melliodendron and Changiostyrax always form sister clades. Perkinsiodendron and Changiostyrax are newly established genera of Styracaceae. However, the phylogenetic relationship of Styracaceae at the generic level needs further research. Results: We collected 28 complete plastomes of Styracaceae, including 12 sequences newly reported here and 16 publicly available sequences, comprising 11 of the 12 genera of Styracaceae. All species possessed the typical quadri‑ partite structure of angiosperm plastomes, with sequence diferences being minor, except for a large 20‑kb (14 genes) inversion found in Alniphyllum and Bruinsmia. Seven coding sequences (rps4, rpl23, accD, rpoC1, psaA, rpoA and ndhH) were identifed to possess positively selected sites. Phylogenetic reconstructions based on seven data sets (i.e., LSC, SSC, IR, Coding, Non‑coding, combination of LSC SSC and concatenation of LSC SSC one IR) produced similar topologies. In our analyses, all genera were strongly+ supported as monophyletic. Styrax+ was+ sister to the remaining genera. Alniphyllum and Bruinsmia form a clade. Halesia diptera does not cluster with Perkinsiodendron, while Perkinsio- dendron and Rehderodendron form a clade. Changiostyrax is sister to a clade of Pterostyrax and Sinojackia. Conclusion: Overall, our results demonstrate the power of plastid phylogenomics in improving estimates of phylo‑ genetic relationships among genera. This study also provides insight into plastome evolution across Styracaceae. Keywords: Styracaceae, Plastome, Genome structure, Phylogeny, Positive selection Background actinomorphic fowers with varying degrees of synsepaly Te Styracaceae DC. & Spreng (Ericales) comprise and sympetaly [2]. Te fruit of Styracaceae is a drupe an angiosperm clade of 12 genera and over 160 spe- or capsule, with persistent calyx, surrounding or united cies, mainly distributed in regions of Asia, as well as with the fruit. Te Styracaceae have been included in a tropical and temperate America, and the Mediterra- number of morphological studies, analyzing leaf anat- nean [1]. Te family consists of shrubs or trees, usually omy [3], wood anatomy [4], pollen morphology [5] and having stellate pubescent or epidermal scales, simple foral morphology and anatomy [2], but distinguishing leaves, with raceme, cyme or panicle inforescence, and between genera in the family primarily involves varia- tion in fruit morphological characters (e.g. hypanthium at maturity). On one hand the ovary is inferior with a *Correspondence: [email protected] persistent hypanthium combined with the fruit at matu- 1 Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, rity [(i.e., Changiostyrax C.T. Chen (one species), Halesia China J. Ellis ex L (two species), Melliodendron Hand.-Mazz Full list of author information is available at the end of the article (one species), Parastyrax Siebold & Zucc. (two species), © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Cai et al. BMC Ecol Evo (2021) 21:103 Page 2 of 16 Perkinsiodendron P. W. Fritsch (one species), Pterostyrax was polyphyletic with Styrax and Clethra Gronov. ex W.W. Sm.(four species), Rehderodendron Hu (one spe- L. (Clethraceae) clustered in a clade, while Halesia, cies), and Sinojackia Hu (seven species)]. On the other Rehderodendron, and Sinojackia formed a clade that hand, the ovary is superior and a persistent hypanthium was sister to Diapensia L. and Galax Rafn. (Diapensi- forms only at the base of the fruit at maturity [Alniphyl- aceae). However, the interpretation of polyphyly does lum Matsum (three species), Bruinsmia Boerl. & Koord not always hold true. Olmstead et al. [24] inferred the (two species), and Styrax L (130 species)]. Moreover, the phylogeny of Asteridae based on the chloroplast gene ovary of Huodendron Rehder (four species) is semisu- ndhF, showing a strongly supported sister relationship perior with a persistent hypanthium extending from the between Styrax and Halesia. Albach et al. [25] came to base to about two-thirds of the fruit length [1, 2], a fea- the same conclusion based on the DNA gene sequences ture considered to be transitional. atpB, ndhF, rbcL and 18S [24] within the Asterids. In Te systematic position of Styracaceae and the gen- addition, the phylogeny of Styracaceae based on mor- era within have been unstable since the establishment phology plus three DNA sequences (chloroplast trnL of the family by Dumoritor in 1829 [6]. Early research- intron/trnL-trnF spacer and rbcL with the nuclear ers thought Styracaceae was positioned in the order Ebe- ribosomal DNA region ITS) recovered a monophyletic nales, along with the well-known Sapotaceae, Ebenaceae, relationship of Styracaceae [1]. Pterostyrax and Hale- and Symplocaceae, and the small family Lissocarpaceae sia were not supported as monophyletic, since Styrax [7–10]. However, Cronquist [10] showed that these fami- and Huodendron formed a clade that was sister to a lies have some original characteristics and some new clade of Alniphyllum and Bruinsmia, and a sister rela- evolutionary characters, which may have arisen via par- tionship was found between Halesia macgregorii and allel evolution. Based on embryological and anatomi- Rehderodendron macrocarpum [1]. Based on ITS, the cal studies, Herbert [11] suggested that Styracaceae and plastid psbA-trnH intergenic spacer, and microsatellite Teaceae may have originated from a common ances- data, Yao et al. [26] recovered Sinojackia as monophyl- tor, since the two share many common characteristics. etic and reported a similar topology as Fritsch et al. [1] According to molecular systematic studies, Styracaceae with weak support for six genera within Styracaceae. has been recognized as part of the order Ericales sensu Yan et al. [27] conducted phylogenetic analyses of Sty- lato [12]. racaceae based on 19 chloroplast genomes. Te results Within the family, phylogenetic resolution generally showed that Styrax was monophyletic, while Alniphyl- remains poor. At most 17 genera have been included lum and Bruinsmia clustered in a clade with an approx- in Styracaceae, with Symplocos L, Diclidanthera Mart, imate 20-kb inversion in the Large Single-Copy (LSC) Afrostyrax Perk et Gil, Foveolaria Ruiz et pav., Pamphilia region. Species of Pterostyrax were not supported as Mart. ex A. DC, Huapierre et De Wil, and Lissocarpa monophyletic, with Halesia carolina L and Pterostyrax Benth placed in the Styracaceae by various authors [13]. hispidus Siebold & Zucc forming a clade. Symplocos, Diclidanthera, and Lissocarpa were excluded Te chloroplast genomes of most angiosperms are from Styracaceae by Perkins [14]. Symplocos was treated maternally inherited. Te rate of evolution of genes in as an independent family (Symplocaceae Desf) [15]. the chloroplast is relatively slow overall, but diferences Diclidanthera was placed in Polygalaceae [7, 15], and Lis- have been observed across diferent regions of the plas- socarpa was placed in Ebenaceae [16]. Afrostyrax was tome, which can be applied to phylogenetic studies of once included in the genus Styrax [17], but was later various taxonomic scales. Signatures of selection (purify- reclassifed into Huaceae [7, 15, 18]. According to taxo- ing or positive/adaptive) have been observed in diferent nomic revisions, Pamphilia was classifed into Styrax regions of the plastome, including protein coding regions [19], while Fritsch [20] combined Foveolaria into Styrax involved in photosynthesis [28–30]. Several aspects have by implementing morphological phylogenetic analyses. led to the extensive use of plastomes for phylogenetic In addition, two new genera have been established: (1) inference such as a conserved structure, small efective Chen [21] segregated Sinojackia dolichocarpa
Recommended publications
  • Conservation Assessment for the Bigleaf Snowbell (Styrax Grandifolius Ait.)
    Conservation Assessment for the Bigleaf Snowbell (Styrax grandifolius Ait.) Steven R. Hill, Ph.D. Division of Biodiversity and Ecological Entomology Biotic Surveys and Monitoring Section 1816 South Oak Street Champaign, Illinois 61820 Prepared for the U.S.D.A. Forest Service, Eastern Region (Region 9), Shawnee and Hoosier National Forests INHS Technical Report 2007 (65) Date of Issue: 17 December 2007 Cover photo: Styrax grandifolius Ait., from the website: In Bloom – A Monthly Record of Plants in Alabama; Landscape Horticulture at Auburn University, Auburn, Alabama. http://www.ag.auburn.edu/hort/landscape/inbloomapril99.html This Conservation Assessment was prepared to compile the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service - Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. 2 Conservation Assessment for the Bigleaf Snowbell (Styrax grandifolius Ait.) Table of Contents
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Halesia Spp. Family: Styracaceae Silverbell
    Halesia spp. Family: Styracaceae Silverbell The genus Halesia is composed of about 4 species native to: the United States [3] and China [1]. The word halesia is named after Stephen Hales (1677-1761), British clergyman and author of Vegetable Staticks (1722). Halesia carolina-Bell-tree, Bell Olivetree, Bellwood, Box-elder, Carolina Silverbell, Catbell, Florida Silverbell, Four-winged Halesia, Little Silverbell, No-name-tree, Opossum, Opossumwood, Mountain Silverbell, Rattle-box, Silverbell-tree, Silver-tree, Snowdrop-tree, Tisswood, Wild Olivetree Halesia diptera-Cowlicks, Silverbell-tree, Snowdrop-tree, Southern Silverbell-tree, Two Wing Silverbell Halesia parviflora-Florida Silverbell, Little Silverbell. Distribution Southeastern United States and China. The Tree Silverbells are shrubs or trees with scaly reddish brown bark. The leaves and small branches are covered with stellate (star shaped) hairs. The showy white flowers are produced in small, pendulous clusters. They produce dry, winged fruits (samara). Silverbells can reach a height of 100 feet, although they normally grow to 40 feet. The bark is thin, separating into slightly ridged, reddish brown scales. The Wood General The wood of Silverbell is brown, strong, dense and close grained. It has a wide white sapwood and a pale brown heartwood. The luster is medium and it has no odor or taste. The texture is fine and uniform, with a straight grain. Mechanical Properties (2-inch standard) Compression Specific MOE MOR Parallel Perpendicular WMLa Hardness Shear gravity GPa MPa MPa MPa kJ/m3 N MPa Green .42 8.0 11.8 19.5 3.0 60.7 2090 6.4 Dry .48 9.1 59.3 35.4 4.7 47.6 2624 8.1 aWML = Work to maximum load.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Pages 121-166
    Cost Analysis Figure 21. Estimated Unit Costs for Installation and Maintenance Procedures (2004) Costs are based on average conditions calculated from research plot applications. Costs can vary considerably depending on specific site conditions. These examples are intended for comparison purposes and should not be used as bid prices. Note: Estimated costs do not include bark mulch applied as a continuous bed. If that is the desired treatment, an additional mulch materials and application cost would apply. Estimated costs do not include plant or installation warranties. Enhancing Delaware Highways Cost Analysis 122 Figure 21. Estimated Costs for Installation and Maintenance, for comparison (2004) Drilling holes prior to planting quart containers. Note: Estimated costs do not include bark mulch applied as a continuous bed. If that is the desired treatment, an additional mulch materials and application cost would apply. Estimated costs do not include plant or installation warranties. Enhancing Delaware Highways Cost Analysis 124 Appendix A: Checklists–Inventory of Site Conditions 2. Roadway Limitations Checklist Check the roadside zone(s) included in the location to be landscaped: J Back slope or cut slope J Swale or ditch zone 1. Climate and Growth Conditions Checklist J Approach or shoulder zone J Edge or border zone J Front or fill slope Check the appropriate clear zone requirement: Check the appropriate cold hardiness zone: J Standard 30 feet J Other ( feet) J Zone 6 or J Zone 7 Presence of guard rail and/or barrier curb: Guard rail
    [Show full text]
  • (Ebenaceae) by Evaluating Short Sequence Region of Plastid Rbcl Gene
    POJ 7(2):102-107 (2014) ISSN:1836-3644 Nucleotide based validation of the endangered plant Diospyros mespiliformis (Ebenaceae) by evaluating short sequence region of plastid rbcL gene Abdullah Alaklabi1, Ibrahim A. Arif 2,3, Sameera O. Bafeel4, Ahmad H. Alfarhan2,3, Anis Ahamed2,3, Jacob Thomas2 and Mohammad A. Bakir2,3* 1Department of Biology, College of Arts and Science, Al-Baha University (BU), Baljurashi, Saudi Arabia 2Department of Botany and Microbiology, College of Science, King Saud University (KSU), Riyadh, Saudi Arabia 3Saudi Biological Society and Prince Sultan Research Chair for Environment and Wildlife, King Saud University 4Department of Biology, King Abdulaziz University (KAU), Jeddah, Saudi Arabia *Corresponding author. Email: [email protected] Abstract Diospyros mespiliformis (Hochst. ex A.DC.; Ebenaceae) is a large deciduous medicinal plant. This plant species is currently listed as endangered in Saudi Arabia. Molecular identification of this plant species based on short sequence regions (571 and 664 bp) of plastid rbcL (ribulose-1, 5-biphosphate carboxylase) gene was investigated in this study. The endangered plant specimens were collected from Al-Baha, Saudi Arabia (GPS coordinate: 19.8543987, 41.3059349). Phylogenetic tree inferred from the rbcL gene sequences showed that this species is very closely related with D. brandisiana. Close relationship was also observed among D. bejaudii, D. Philippinensis and D. releyi (≥99.7% sequence homology). The partial rbcL gene sequence region (571 bp) that was amplified by rbcL primer-pair rbcLaF-rbcLaR failed to discriminate D. mespiliformis from the closely related plant species, D. brandisiana. In contrast, primer-pair rbcL1F-rbcL724R yielded longer amplicon, discriminated the species from D.
    [Show full text]
  • Plant L I V E Grow
    VERMONT TREE SELECTION GUIDE PLANT LIVE GROW Vermont Urban & Community Forestry Program part of the Vermont Department of Forests, Parks & Recreation in partnership with the University of Vermont Extension Table of Contents INTRODUCTION 1 SITE CONDITIONS 3 SPECIAL CONSIDERATIONS 6 TREE SELECTION WORKSHEET 8 KEY TO TREE SPECIES LIST 9 KEY TO SCIENTIFIC NAMES 10 RESOURCES FOR MORE INFORMATION 11 TREE SPECIES LIST 12 The guide was funded in part by the USDA Forest Service, State and Private Forestry. Recognition is given to all the people who offered assistance to this project, especially Pamelia Smith, professor, and Elizabeth Clark, graduate, of Vermont Technical College who helped develop the tree list, to David Schneider, Warren Spinner, and Jeff Young for their review, and to Sensible World for the design. VERMONT TREE SELECTION GUIDE Introduction Are you getting ready to plant a tree or maybe several Consider the following four questions before establishing trees? Whether you are planning to plant on your own trees for long-term growth and health: lawn, in a community park, along a street, or in a tree pit, careful tree selection is essential to the tree’s long- • What is the purpose and use of the term success. We have all heard time and time again to planting? plant ‘the right tree in the right place’. Our latest Tree • What are the site conditions above and Selection Guide for Vermont was developed just for this below ground? purpose - to help you match trees to sites to achieve • What type of maintenance will be lasting shade. required? • What is the best tree species for long- To use this guide, you should first consider four term success? questions that will help you critically evaluate the planting purpose, the site, future needs and desires.
    [Show full text]
  • Florida Installation Guide
    Hedgerow Planting (422) for Pollinators Florida Installation Guide February 2015 The Xerces Society for Invertebrate Conservation Brown-belted bumble bee (Bombus griseocollis) heading to highbush blueberry (Vaccinium corymbosum). (Photograph by www.xerces.org Nancy Lee Adamson, The Xerces Society.) Acknowledgements This material is based upon work supported by the Natural Resources Conservation Service, U.S. Department of Agriculture, under number 69-3A75-12-253. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the U.S. Department of Agriculture. Financial support to the Xerces Society for the development of this guide was provided by the Audrey & J.J. Martindale Foundation, Aveda, Cascadian Farm, Ceres Trust, CS Fund, Disney Worldwide Conservation Fund, The Dudley Foundation, The Elizabeth Ordway Dunn Foundation, Endangered Species Chocolate, General Mills, SeaWorld & Busch Gardens Conservation Fund, Turner Foundation, Inc., The White Pine Fund, Whole Foods Market and its vendors, Whole Systems Foundation, the Natural Resources Conservation Service (NRCS), and Xerces Society members. The authors would like to thank Bob Glennon, Ernst Conservation Seed Company, Gil Nelson, Mark Garland (USDA–NRCS), Drs. Cory Stanley-Stahr, Jamie Ellis, and Jaret Daniels (University of Florida–Gainesville), Straughn Farms, and the USDA–NRCS Brooksville Plant Materials Center. Authors This guide was written in November 2012 by Mace Vaughan, Eric Lee-Mäder, Jessa Kay Cruz, Jolie Goldenetz-Dollar, and Brianna Borders of the Xerces Society for Invertebrate Conservation. Please contact Mace Vaughan ([email protected]) to improve this publication. Revised edition Updated in November 2014 by Dr.
    [Show full text]
  • ​ the Trees of Seattle University
    ​ The Trees of Seattle University 1 Table of Contents Introduction . 3 Kubota’s Legacy . 4-17 Ciscoe’s Legacy . 18-27 Exceptional Trees . 28-34 References . 35 2 Introduction I have lived on Seattle U campus for four years and have grown to deeply admire and respect the many wonderful trees and plants on campus in my time here. I was invited to intern with Grounds to create this biography through the mentorship of Janice Murphy and Shannon Britton; it was gratifying and exciting to be able to use the knowledge I’ve gained in my time here to help add to the depth of the beautiful garden that is the Seattle University campus. I hope that this biography serves as a resource for anyone looking to become more acquainted with the flora on campus, and that my photography portrays the trees in a way that does them justice. The Trees of Seattle University campus map was designed and illustrated by A​ lyssa Lau​, a Seattle University graduate in the class of 2018. Alyssa created the map to use her graphic design skills to promote education about the biodiversity on campus. Alyssa also created all of the tree drawings on the map, she did them by hand with colored pencil to capture the organic nature of the trees. Fujitaro Kubota​ was a legendary Japanese landscaper who emigrated to the United States in 1907 and worked on the Seattle U campus in the late 1950s and ‘60s. His family business, the Kubota Gardening Company, is still operating today and the garden headquarters can be visited in Renton, WA.
    [Show full text]
  • Phylogenetic Relationships in the Order Ericales S.L.: Analyses of Molecular Data from Five Genes from the Plastid and Mitochondrial Genomes1
    American Journal of Botany 89(4): 677±687. 2002. PHYLOGENETIC RELATIONSHIPS IN THE ORDER ERICALES S.L.: ANALYSES OF MOLECULAR DATA FROM FIVE GENES FROM THE PLASTID AND MITOCHONDRIAL GENOMES1 ARNE A. ANDERBERG,2,5 CATARINA RYDIN,3 AND MARI KAÈ LLERSJOÈ 4 2Department of Phanerogamic Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden; 3Department of Systematic Botany, University of Stockholm, SE-106 91 Stockholm, Sweden; and 4Laboratory for Molecular Systematics, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden Phylogenetic interrelationships in the enlarged order Ericales were investigated by jackknife analysis of a combination of DNA sequences from the plastid genes rbcL, ndhF, atpB, and the mitochondrial genes atp1 and matR. Several well-supported groups were identi®ed, but neither a combination of all gene sequences nor any one alone fully resolved the relationships between all major clades in Ericales. All investigated families except Theaceae were found to be monophyletic. Four families, Marcgraviaceae, Balsaminaceae, Pellicieraceae, and Tetrameristaceae form a monophyletic group that is the sister of the remaining families. On the next higher level, Fouquieriaceae and Polemoniaceae form a clade that is sister to the majority of families that form a group with eight supported clades between which the interrelationships are unresolved: Theaceae-Ternstroemioideae with Ficalhoa, Sladenia, and Pentaphylacaceae; Theaceae-Theoideae; Ebenaceae and Lissocarpaceae; Symplocaceae; Maesaceae, Theophrastaceae, Primulaceae, and Myrsinaceae; Styr- acaceae and Diapensiaceae; Lecythidaceae and Sapotaceae; Actinidiaceae, Roridulaceae, Sarraceniaceae, Clethraceae, Cyrillaceae, and Ericaceae. Key words: atpB; atp1; cladistics; DNA; Ericales; jackknife; matR; ndhF; phylogeny; rbcL. Understanding of phylogenetic relationships among angio- was available for them at the time, viz.
    [Show full text]
  • Literaturverzeichnis
    Literaturverzeichnis Abaimov, A.P., 2010: Geographical Distribution and Ackerly, D.D., 2009: Evolution, origin and age of Genetics of Siberian Larch Species. In Osawa, A., line ages in the Californian and Mediterranean flo- Zyryanova, O.A., Matsuura, Y., Kajimoto, T. & ras. Journal of Biogeography 36, 1221–1233. Wein, R.W. (eds.), Permafrost Ecosystems. Sibe- Acocks, J.P.H., 1988: Veld Types of South Africa. 3rd rian Larch Forests. Ecological Studies 209, 41–58. Edition. Botanical Research Institute, Pretoria, Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. 146 pp. (eds.), 2006: Lamto. Structure, Functioning, and Adam, P., 1990: Saltmarsh Ecology. Cambridge Uni- Dynamics of a Savanna Ecosystem. Ecological Stu- versity Press. Cambridge, 461 pp. dies 179, 415 pp. Adam, P., 1994: Australian Rainforests. Oxford Bio- Abbott, R.J. & Brochmann, C., 2003: History and geography Series No. 6 (Oxford University Press), evolution of the arctic flora: in the footsteps of Eric 308 pp. Hultén. Molecular Ecology 12, 299–313. Adam, P., 1994: Saltmarsh and mangrove. In Groves, Abbott, R.J. & Comes, H.P., 2004: Evolution in the R.H. (ed.), Australian Vegetation. 2nd Edition. Arctic: a phylogeographic analysis of the circu- Cambridge University Press, Melbourne, pp. marctic plant Saxifraga oppositifolia (Purple Saxi- 395–435. frage). New Phytologist 161, 211–224. Adame, M.F., Neil, D., Wright, S.F. & Lovelock, C.E., Abbott, R.J., Chapman, H.M., Crawford, R.M.M. & 2010: Sedimentation within and among mangrove Forbes, D.G., 1995: Molecular diversity and deri- forests along a gradient of geomorphological set- vations of populations of Silene acaulis and Saxi- tings.
    [Show full text]
  • Kadoorie Farm and Botanic Garden, 2004. Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001
    Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 Kadoorie Farm and Botanic Garden in collaboration with Zhongshan University Zhaoqing Forestry Bureau February 2004 South China Forest Biodiversity Survey Report Series: No. 37 (Online Simplified Version) Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 Editors Bosco P.L. Chan, Ng Sai-Chit, Michael W.N. Lau and John R. Fellowes Contributors Kadoorie Farm and Botanic Garden: Michael W.N. Lau (ML) Bosco P.L. Chan (BC) John R. Fellowes (JRF) Lee Kwok Shing (LKS) Ng Sai-Chit (NSC) Roger Kendrick (RCK) Zhongshan University: Chang Hong (CH) Voluntary specialists: Graham T. Reels (GTR) Keith D.P. Wilson (KW) Background The present report details the findings of a trip to Northwest Guangdong by members of Kadoorie Farm and Botanic Garden (KFBG) in Hong Kong and their colleagues, as part of KFBG's South China Biodiversity Conservation Programme (renamed the China Programme in 2003). The overall aim of the programme is to minimise the loss of forest biodiversity in the region, and the emphasis in the first three years is on gathering up-to-date information on the distribution and status of fauna and flora. Citation Kadoorie Farm and Botanic Garden, 2004. Report of Rapid Biodiversity Assessments at Dachouding and Sanyue Nature Reserves, Northwest Guangdong, China, April 2001 . South China Forest Biodiversity Survey Report Series (Online Simplified Version): No. 37. KFBG, Hong Kong SAR, ii + 33 pp. Copyright Kadoorie Farm and Botanic Garden Corporation Lam Kam Road, Tai Po, N.T., Hong Kong February 2004 - i - Contents Objectives …………………………………………………………………………………….
    [Show full text]