Ni 43-101 Technical Report

Total Page:16

File Type:pdf, Size:1020Kb

Ni 43-101 Technical Report NI 43-101 TECHNICAL REPORT on the Laguna Guayatayoc and Laguna Vilama Lithium, Potassium, Boron Projects Jujuy Province, Argentina Prepared for: A.I.S. Resources Limited 2300-1177 West Hastings Street Vancouver BC V6E2K3 Canada This Report was Prepared by the following Qualified Persons: Dr Carlos RM Sorentino PhD, MEnvSc, DipRadTech, BE(Chem), MAIMVA(CMV), MACS, MSHS, FAusIMM(CP) Phillip Thomas BSc MBusM MAIG MAIVA (CMV) AIG Member:3010 Effective Date: 30 March 2017 Table of Contents 1. Summary ............................................................................................................................ 8 1.1. Introduction .................................................................................................................. 8 1.2. Mining Law in Jujuy Province ....................................................................................... 9 1.3. Acquisition of Property from the Vendor ....................................................................... 9 1.4. Regional Location .......................................................................................................10 1.5. Geology ...................................................................................................................... 11 1.6. Economic Potential .....................................................................................................12 1.7. Laguna Vilama “Mina Gianinni”. Regional Location and Geology ................................12 2. Reliance on other experts ..................................................................................................13 3. Property Description and Location .....................................................................................14 3.1. Mina Guayatayoc and Guayatayoc III .............................................................................14 3.2. Nature and Extent of Issuers Title to Properties ..............................................................15 3.3. Payments .......................................................................................................................16 3.4. Vilama – Mina Gianinna .................................................................................................16 4. Guayatayoc: Accessibility, Climate, Vegetation, Local Resources, Infrastructure and Physiography ............................................................................................................................18 4.1. Road Accessibility ..........................................................................................................18 4.2. Precipitation, Relative Humidity, Atmospheric Pressure, Temperature. ...........................19 4.3. Vegetation ......................................................................................................................19 4.4. Local Resources .............................................................................................................22 4.5. Infrastructure ..................................................................................................................22 4.6. Physiography..................................................................................................................22 5. Laguna Vilama: Accessibility, Climate, Local Resources, Infrastructure and Physiography 24 5.1. Accessibility ....................................................................................................................24 5.2. Nearby Cities and Towns ................................................................................................25 5.3. Climate ...........................................................................................................................26 5.4. Infrastructure ..................................................................................................................27 5.5. Physiography..................................................................................................................27 6. History: Guayatayoc ...........................................................................................................27 6.1. Pre AIS Resources .........................................................................................................27 6.2. AIS Resources ...............................................................................................................29 1 | Page 7. History Laguna Vilama – Mina Gianinna ............................................................................30 8. Geological Setting and Mineralization ................................................................................30 8.1. Regional Geology ...........................................................................................................30 8.1.1. Steinmetz 2013 Study .................................................................................................30 8.2. Deposit Types .................................................................................................................33 8.2.1. Guayatayoc Basin .......................................................................................................33 8.3. Exploration .....................................................................................................................35 8.4. Origin of Solutes .............................................................................................................37 8.5. Seismic Work .................................................................................................................39 8.5.1. Seismic reflection line 1189 .........................................................................................43 8.5.2. Seismic reflection line TX90-87 ...................................................................................43 8.6. Drilling ............................................................................................................................45 9. Sample Preparation, Analyses and Security .......................................................................45 9.1. Location of the Sample Pits ............................................................................................45 9.2. Analysis and Security .....................................................................................................45 9.3. Method ...........................................................................................................................46 9.4. Samples Analysis Results ..............................................................................................46 9.5. Method ...........................................................................................................................47 9.6. Location of the Sample Pits ............................................................................................48 9.7. Commentary ...................................................................................................................50 9.8. Results ...........................................................................................................................50 9.9. Data Verification .............................................................................................................51 9.9.1. Sample Preparation ....................................................................................................51 9.9.2. Sample Analyses ........................................................................................................51 9.9.3. Survey Data ................................................................................................................51 10. Mineral Processing and Metallurgical Testing .................................................................51 11. Mineral Resource Estimates ...........................................................................................52 12. Adjacent Properties ........................................................................................................52 13. Other Relevant Data and Information .............................................................................53 14. Interpretation and Conclusions .......................................................................................53 15. Recommendations .........................................................................................................53 15.1. Objectives ...................................................................................................................54 15.2. Scope of work required for Inferred Resource evaluation – Phase One ......................54 15.2.1. Basin evaluation ......................................................................................................54 15.2.2. Detailed Seismic work .............................................................................................54 15.2.3. Methodology for Inferred Resource .........................................................................54 2 | Page 15.3. Budget ........................................................................................................................55 16. References .....................................................................................................................56 3 | Page TABLE OF FIGURES Figure 1 Location Map abridged version by Geól. Gabriel Gustavo Blasco from his report Estudio de impacto ambiental etapa de exploración Expediente Nº 082-L-1998 December, 2016 ..........................................................................................................................................
Recommended publications
  • Flamingo Newsletter 17, 2009
    ABOUT THE GROUP The Flamingo Specialist Group (FSG) is a global network of flamingo specialists (both scientists and non-scientists) concerned with the study, monitoring, management and conservation of the world’s six flamingo species populations. Its role is to actively promote flamingo research, conservation and education worldwide by encouraging information exchange and cooperation among these specialists, and with other relevant organisations, particularly the IUCN Species Survival Commission (SSC), the Ramsar Convention on Wetlands, the Convention on Conservation of Migratory Species (CMS), the African-Eurasian Migratory Waterbird Agreement (AEWA), and BirdLife International. The group is coordinated from the Wildfowl & Wetlands Trust, Slimbridge, UK, as part of the IUCN-SSC/Wetlands International Waterbird Network. FSG members include experts in both in-situ (wild) and ex-situ (captive) flamingo conservation, as well as in fields ranging from research surveys to breeding biology, infectious diseases, toxicology, movement tracking and data management. There are currently 286 members representing 206 organisations around the world, from India to Chile, and from France to South Africa. Further information about the FSG, its membership, the membership list serve, or this bulletin can be obtained from Brooks Childress at the address below. Chair Dr. Brooks Childress Wildfowl & Wetlands Trust Slimbridge Glos. GL2 7BT, UK Tel: +44 (0)1453 860437 Fax: +44 (0)1453 860437 [email protected] Eastern Hemisphere Chair Western Hemisphere Chair Dr. Arnaud Béchet Dr. Felicity Arengo Station biologique, Tour du Valat American Museum of Natural History Le Sambuc Central Park West at 79th Street 13200 Arles, France New York, NY 10024 USA Tel : +33 (0) 4 90 97 20 13 Tel: +1 212 313-7076 Fax : +33 (0) 4 90 97 20 19 Fax: +1 212 769-5292 [email protected] [email protected] Citation: Childress, B., Arengo, F.
    [Show full text]
  • Lithium Extraction in Argentina: a Case Study on the Social and Environmental Impacts
    Lithium extraction in Argentina: a case study on the social and environmental impacts Pía Marchegiani, Jasmin Höglund Hellgren and Leandro Gómez. Executive summary The global demand for lithium has grown significantly over recent years and is expected to grow further due to its use in batteries for different products. Lithium is used in smaller electronic devices such as mobile phones and laptops but also for larger batteries found in electric vehicles and mobility vehicles. This growing demand has generated a series of policy responses in different countries in the southern cone triangle (Argentina, Bolivia and Chile), which together hold around 80 per cent of the world’s lithium salt brine reserves in their salt flats in the Puna area. Although Argentina has been extracting lithium since 1997, for a long time there was only one lithium-producing project in the country. In recent years, Argentina has experienced increased interest in lithium mining activities. In 2016, it was the most dynamic lithium producing country in the world, increasing production from 11 per cent to 16 per cent of the global market (Telam, 2017). There are now around 46 different projects of lithium extraction at different stages. However, little consideration has been given to the local impacts of lithium extraction considering human rights and the social and environmental sustainability of the projects. With this in mind, the current study seeks to contribute to an increased understanding of the potential and actual impacts of lithium extraction on local communities, providing insights from local perspectives to be considered in the wider discussion of sustainability, green technology and climate change.
    [Show full text]
  • ABSTRACTS ACTAS IAGOD 2019 31Ene.Pmd
    SALTA, ARGENTINA 28-31 AUGUST 2018 15th Quadrennial International Association on the Genesis of Ore Deposits Symposium SPONSORS PLATINUM SPONSORS GOLD SPONSORS SILVER SPONSORS BRONZE SPONSORS COPPER SPONSORS Co-sponsored by SALTA, ARGENTINA 28-31 AUGUST 2018 15th Quadrennial International Association on the Genesis of Ore Deposits Symposium SYMPOSIUM PROCEEDINGS SCIENTIFIC COMMITTEE CHAIR Lira Raúl – (University of Córdoba – CONICET, Argentina) MEMBERS Bineli-Betsi Thierry – (Botswana International University of Science and Technology) Chang Zhaoshan – (Colorado School of Mines, USA) Cherkasov Sergey – (Vernadsky State Geological Museum of Russian Academy of Sciences) Cook Nigel – (University of Adelaide, Australia) Gozalvez Martín – (Geological and Mining Survey of Argentina) Guido Diego – (CONICET/Austral Gold S.A, Argentina) Lentz David – (University of New Brunswick, Economic Geology Chair) López Luis – (National Atomic Energy Commission, Argentina) Mao Jingwen – (Chinese Academy of Geological Sciences/Hebei GEO University, China) Meinert Larry – (Consultant) Pons Josefina – (IIPG – University of Río Negro – University of Comahue – CONICET, Argentina) Rubinstein Nora – (IGEBa–University of Buenos Aires – CONICET) Sanematsu Kenzo – (Geological Survey of Japan, AIST) Schutesky Della Giustina Maria Emilia – (University of Brasília, Brasil) Tornos Fernando – (Spanish National Research Council – CSIC) Watanabe Yasushi – (Faculty of International Resource Sciences, Akita University, Japan) EDITED BY Daniel Rastelli, Dolores Álvarez, Noelia
    [Show full text]
  • Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample
    geosciences Article Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample Andrey A. Belov 1,*, Vladimir S. Cheptsov 1,2 , Elena A. Vorobyova 1,2, Natalia A. Manucharova 1 and Zakhar S. Ezhelev 1 1 Soil Science Faculty, Lomonosov Moscow State University, Moscow 119991, Russia; [email protected] (V.S.C.); [email protected] (E.A.V.); [email protected] (N.A.M.); [email protected] (Z.S.E.) 2 Space Research Institute, Russian Academy of Sciences, Moscow 119991, Russia * Correspondence: [email protected]; Tel.: +7-917-584-44-07 Received: 28 February 2019; Accepted: 8 April 2019; Published: 10 April 2019 Abstract: The arid Mojave Desert is one of the most significant terrestrial analogue objects for astrobiological research due to its genesis, mineralogy, and climate. However, the knowledge of culturable bacterial communities found in this extreme ecotope’s soil is yet insufficient. Therefore, our research has been aimed to fulfil this lack of knowledge and improve the understanding of functioning of edaphic bacterial communities of the Central Mojave Desert soil. We characterized aerobic heterotrophic soil bacterial communities of the central region of the Mojave Desert. A high total number of prokaryotic cells and a high proportion of culturable forms in the soil studied were observed. Prevalence of Actinobacteria, Proteobacteria, and Firmicutes was discovered. The dominance of pigmented strains in culturable communities and high proportion of thermotolerant and pH-tolerant bacteria were detected. Resistance to a number of salts, including the ones found in Martian regolith, as well as antibiotic resistance, were also estimated.
    [Show full text]
  • Ôø Å Òù× Ö Ôø
    ÔØ ÅÒÙ×Ö ÔØ Geology of the Vilama caldera: a new interpretation of a large-scale explosive event in the Central Andean plateau during the Upper Miocene M.M. Soler, P.J Caffe, B.L. Coira, A.T. Onoe, S. Mahlburg Kay PII: S0377-0273(07)00084-4 DOI: doi: 10.1016/j.jvolgeores.2007.04.002 Reference: VOLGEO 3668 To appear in: Journal of Volcanology and Geothermal Research Received date: 27 April 2006 Revised date: 14 November 2006 Accepted date: 11 April 2007 Please cite this article as: Soler, M.M., Caffe, P.J., Coira, B.L., Onoe, A.T., Kay, S. Mahlburg, Geology of the Vilama caldera: a new interpretation of a large-scale explosive event in the Central Andean plateau during the Upper Miocene, Journal of Volcanology and Geothermal Research (2007), doi: 10.1016/j.jvolgeores.2007.04.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Geology of the Vilama caldera: a new interpretation of a large-scale explosive event in 2 the Central Andean plateau during the Upper Miocene. 3 4 M.M. Solera, P.J Caffea,* , B.L. Coiraa, A.T. Onoeb, S.
    [Show full text]
  • GENOMIC INSIGHTS of an ANDEAN MULTI-RESISTANT SOIL ACTINOBACTERIUM of BIOTECHNOLOGICAL INTEREST Daniel Alonso-Reyes1
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423370; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 GENOMIC INSIGHTS OF AN ANDEAN MULTI-RESISTANT SOIL 2 ACTINOBACTERIUM OF BIOTECHNOLOGICAL INTEREST 3 4 Daniel Alonso-Reyes1; Fátima Silvina Galván1, Luciano Raúl Portero1; Natalia Noelia 5 Alvarado1; María Eugenia Farías2; Martín P. Vazquez3; Virginia Helena Albarracín1,4* 6 1Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de 7 Microscopía Electrónica (CIME), Facultad de Agronomía y Zootecnia, UNT y 8 CONICET, Tucumán, Argentina 9 2Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta 10 Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, 11 Tucumán, Argentina. 12 3HERITAS-CONICET, Ocampo 210 bis, Predio CCT, Rosario, 2000, Santa Fe. 13 4Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de 14 Tucumán, Tucumán, Argentina. 15 Running headline: ANDEAN MULTI-RESISTANT SOIL ACTINOBACTERIUM 16 Keywords: NESTERENKONIA, SOIL, PUNA, GENOMICS, EXTREMOPHILES, 17 BIOTECHNOLOGY 18 19 *Corresponding author: 20 Virginia Helena Albarracín, Centro Integral de Microscopía Electrónica (CIME, 21 CONICET, UNT) Camino de Sirga s/n. FAZ, Finca El Manantial, Yerba Buena (4107). 22 Tucumán, Argentina. E-mail: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423370; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • DESCARGAR Revista En
    ISSN 0717-0580 I Año / Year 15 2do semestre / 2nd semester 2010 www.latinomineria.com 69 69 Bilingual Edition 2010 2nd semester 2nd / / 2do semestre Latinominería - EscenarioEscenario minerominero ArgentinaArgentina aspiraaspira aa estarestar entreentre loslos grandesgrandes Minería del carbón Atractiva cartera de inversiones Cerrejón, Minera Buenaventura el gigante atenta a nuevas colombiano oportunidades contenidos Argentina aspira América Latina a estar entre los grandes de la minería Con una atractiva cartera de proyectos y gran abundancia de recursos geológicos, y la minería la minería en Argentina presenta un atractivo potencial de crecimiento. Sin embargo, también enfrenta importantes trabas. América Latina tiene un rol preponderante en la actividad minera mundial, protagonis- 08 mo que se sustenta –en primer lugar– en la gran riqueza geológica de sus países, en Peruana Buenaventura: calidad, cantidad y diversidad de recursos mineros. Es así como Chile es el principal “Estamos mirando productor mundial de cobre y nitratos; Perú ocupa el primer puesto en plata y se ha oportunidades” consolidado como el segundo en cobre y zinc, además es el sexto productor de oro; Una importante cartera de inversiones México es el otro gran protagonista en plata; en tanto que Brasil es uno de los gigantes está desarrollando la peruana Compañía de Minas Buenaventura; la exploración y mundiales en hierro. obtención de nuevos recursos mineros Esta variedad de recursos ha hecho que la región concentre buena parte de la inversión tiene un rol clave. 39 internacional en exploración minera. De los US$7.320 millones que se destinaron a este ítem en 2009, América Latina acaparó el 26% de dicho monto; Perú, México, Chile y Cerrejón, el gigante Brasil se ubicaron entre los diez principales destinos.
    [Show full text]
  • Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: a Review
    resources Review Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review Laurence Kavanagh * , Jerome Keohane, Guiomar Garcia Cabellos, Andrew Lloyd and John Cleary EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny, Road, Co., R93-V960 Carlow, Ireland; [email protected] (J.K.); [email protected] (G.G.C.); [email protected] (A.L.); [email protected] (J.C.) * Correspondence: [email protected] Received: 28 July 2018; Accepted: 11 September 2018; Published: 17 September 2018 Abstract: Lithium is a key component in green energy storage technologies and is rapidly becoming a metal of crucial importance to the European Union. The different industrial uses of lithium are discussed in this review along with a compilation of the locations of the main geological sources of lithium. An emphasis is placed on lithium’s use in lithium ion batteries and their use in the electric vehicle industry. The electric vehicle market is driving new demand for lithium resources. The expected scale-up in this sector will put pressure on current lithium supplies. The European Union has a burgeoning demand for lithium and is the second largest consumer of lithium resources. Currently, only 1–2% of worldwide lithium is produced in the European Union (Portugal). There are several lithium mineralisations scattered across Europe, the majority of which are currently undergoing mining feasibility studies. The increasing cost of lithium is driving a new global mining boom and should see many of Europe’s mineralisation’s becoming economic. The information given in this paper is a source of contextual information that can be used to support the European Union’s drive towards a low carbon economy and to develop the field of research.
    [Show full text]
  • “Mineral Extraction in a Plurinational State: Commodification and Resource Governance in the Uyuni Salt Flat in Bolivia”
    “Mineral Extraction in a Plurinational State: Commodification and Resource Governance in the Uyuni salt flat in Bolivia” Maria Daniela Sánchez-López 2017 A thesis submitted for the degree of Doctor of Philosophy to the University of East Anglia School of International Development This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution ABSTRACT The Uyuni salt flat (Salar de Uyuni) is located in the Bolivian high Andean plateau, is considered to be the largest salt flat on earth and a natural wonder. Concentrated in its brines, is the largest lithium deposit in the world, along with important reserves of potassium, magnesium and ulexite, collectively known as ‘evaporite resources’. Over the past 40 years, this landscape has been commodified and radically transformed in a continuous process of mining capitalist expansion. What is unfolding in the case of the Uyuni salt flat, however, is not just an economically- driven process of capitalist expansion, but also a transformation of the landscape linked to the value and symbolic meanings attached to the salt flat in an ongoing process of the neoliberalisation of nature. This thesis seeks to examine how social relations in terms of the material, discursive and cultural dynamics of evaporite mining shape and are shaped by governance frameworks. Based on a qualitative exploration, the research has three main objectives: i) to examine how and under what conditions the Uyuni salt flat has been commodified over the past 40 years (both under a neoliberal and post-neoliberal regime); ii) to analyse how lithium has exacerbated the territorial disputes and resource conflicts at local, departmental and national levels; and iii) to evaluate how and why territory and territoriality emerge as key elements within the process of commodification.
    [Show full text]
  • Argentina Lithium & Energy Corp
    [Type text] Argentina Lithium & Energy Corp. (TSX-V: LIT, OTCQB: PNXLF) April 27, 2018 Prospective Lithium Player in Argentina Price (as of April 26, 2018): CAD $0.23 Argentina Lithium & Energy Corp. (TSX-V: LIT, OTCQB: PNXLF) (“Argentina Lithium” Beta: N/A or ‘the Company’) is a Canadian junior mineral exploration company. It is a member Price/Book: 3.65x company of ‘Grosso Group Management Ltd Corporation’, a private management Debt/Equity Ratio: N/A company headed by Mr. Joseph Grosso which boasts significant prospect development success. The Company has three lithium projects, Arizaro, Incahuasi and Antofalla, in Listed Exchange: TSX-V, OTCQB Argentina. All of these projects lie within the “Lithium Triangle”, which hosts about 70% of known global lithium reserves in South America. The Company is endeavoring to become a significant supplier of lithium and capitalize on the demand from the battery sector. Argentina Lithium is currently in the early stages of exploration and plans to invest in new mineral interests. Investment Rationale The Grosso Group has extensive experience in Argentina’s mining sector The Gross group has 25 years of experience in the mining industry in Argentina. The Grosso group has been undertaking exploration activities since the Argentine Source: Yahoo finance government allowed Foreign Direct Investment (FDI) in 1993. Through its continued operations in the nation, the group has developed a vast network of contacts with government and industry officials. The Grosso Group has formed partnerships with Recent News major mining companies such as, Viceroy (now Yamana Gold), Barrick Gold, Newmont 13-Mar-2018: Argentina Lithium commenced drilling at and Teck.
    [Show full text]
  • Governance of Strategic Minerals in Latin America: the Case of Lithium
    GOVERNANCE OF STRATEGIC MINERALS IN LATIN AMERICA: THE CASE OF LITHIUM Remco Perotti Manlio F. Coviello Project document Governance of strategic minerals in Latin America: the case of Lithium Remco Perotti, Manlio F. Coviello Economic Commission for Latin America and the Caribbean (ECLAC) This document has been prepared by Remco Perotti, Consultant of the Economic Commission for Latin America and the Caribbean (ECLAC) and Manlio F. Coviello, Chief of the Natural Resources and Energy Unit of ECLAC, within the framework of the cooperation programme between ECLAC and the Spanish Agency for International Development Cooperation (AECID). The views expressed in this document, which has been reproduced without formal editing, are those of the authors and do not necessarily reflect the views of the Organization. LC/W.669 Copyright © United Nations, September 2015. All rights reserved Printed at United Nations, Santiago, Chile S.15-00861 CEPAL Governance of strategic minerals in Latin America… Contents Introduction ...................................................................................................................................... 5 I. The lithium industry .................................................................................................................. 7 A. Objective and structure of the report ................................................................................ 8 II. Sharing the economic resource rent ...................................................................................... 11 A. The resource
    [Show full text]
  • Abstracts.Pdf
    Abdelbary, Kareem Social Justice Platform (University of Manchester) Shokran Bank Misr: Inventing Egypt’s 20th Century Economic Nationalism Myth. Today, wandering through the streets of Cairo, one would take no time to notice the over-flooding of “Tal’at Harb raga’a” billboards. The campaign was launched in 2017 by Bank Misr, one of Egypt’s largest state-owned banks, propagating for its services in financing small and medium-sized enterprises. Historically, the bank was established by Harb in 1920 in the aftermath of events known as Egypt’s 1919 revolution. So, it continues to be held as a nationalist symbol. Indeed, the tactic of calling on Tala’at Harb [the godfather of Egypt’s economic nationalism] among the ‘ordinary’ citizen, is not unprecedented or alien and was used in earlier campaign titled “Shokran Bank Misr” among others. The popular narrative [found in official circulars and main sources written by both Egyptian liberal and leftist intellectuals] contends that 1919 was a movement uniting Egyptians of different classes, calling for independence from the British occupation. Further, is this narrative’s emphasis on 1919’s economic nationalism, embodied in projects such as Bank Misr, as the blueprint not just to prosperity and welfare but also to economic independence. Altogether, this depiction coincides with the current regime’s nationalistic rhetoric about mega-nationalist project. By presenting [read utilizing] that era’s model as inspiration, the regime is trying to legitimize its neoliberal inspirations while reviving a nationalistic sentiment among the masses to secure public consent. Analogously, it creates a propagandistic mirroring which fetishizes the 1919’s model.
    [Show full text]