Neutrinos: Ghostly Particles with Exciting Implications Mapping The

Total Page:16

File Type:pdf, Size:1020Kb

Neutrinos: Ghostly Particles with Exciting Implications Mapping The PHYSICSUNIVERSITY OF CALIFORNIA, BERKELEY INSIDE Neutrinos: Ghostly Particles with Exciting Implications Mapping the Infant Universe: Revelations from the Cosmic Microwave Background The Compass Project ALUMNI NEWS AND MORE! FALL 2013 Cover: The Daya Bay Neutrino Experiment, a joint venture between China and USA, is a neutrino-oscillation experiment designed to measure the mixing angle θ13 using anti-neutrinos produced by the reactors of the Daya Bay Nuclear Power Plant and the Ling Ao Nuclear Power Plant in mainland China. Photo Physics at Berkeley 2013 documentation of construction. Published annually by the Photographer: Roy Kaltschmidt Department of Physics Steven Boggs: Chair Anil More: Director of Administration Maria Hjelm: Director of Development and Communications Devi Mathieu: Editor, Principal Writer Tom Colton, Ben Ailes and Peg Skorpinski: Photography Meg Coughlin: Design Department of Physics 366 LeConte Hall #7300 University of California, Berkeley Berkeley, CA 94720-7300 Copyright 2013 by The Regents of the University of California FEATURES 4 10 16 Neutrinos: Ghostly Mapping the Infant The Compass Project Particles with Exciting Universe: Revelations BERKELEY STUDENTS WORK Implications from the Cosmic TOGETHER TO FOSTER COMMUNITY AND SERVE EACH OTHER’S BERKELEY’S INFLUENTIAL Microwave Background EDUCATIONAL NEEDS CONTRIBUTIONS TO NEUTRINO BERKELEY ASTROPHYSICISTS Physics graduate students Jesse SCIENCE ARE ADVANCING ARE AT THE VERY CENTER OF Livezey and Hilary Jack describe THE FRONTIERS OF PARTICLE COSMOLOGICAL DISCOVERY PHYSICS AND COSMOLOGY. Compass, the award-winning Physics professors Adrian Lee, mentoring and academic support Experimental physicists Gabriel William Holzapfel, Uros Seljak, program that was born in Berkeley’s Orebi Gann, Yury Kolomensky, and Martin White use satellite Department of Physics, designed and Kam-Biu Luk devise cutting- data, telescope observations, and by students for students. edge experiments to wrest secrets theoretical calculations to trace from the elusive neutrino. the origins of the universe. DEPARTMENTS 2 LETTER FROM THE CHAIR 18 DEPARTMENT NEWS 28 IN MEMORY 31 PHYSICS IN THE MEDIA 35 UNDERGRADUATE AFFAIRS 37 GRADUATE AFFAIRS 42 ALUMNI AFFAIRS LETTER FROM THE CHAIR Dear Alumni and Friends, faculty as well as a bridge connecting to the 3rd floor of Old LeConte. Greetings from Berkeley! We look forward to many fantastic opportunities for collaboration among the entire Astrophysics/Astronomy community here at My first few months as Chair have been a whirlwind, but I am Berkeley. thrilled to have taken on the leadership of this great department. New Campbell Hall also includes basement lab space for the Our former Chair, Frances Hellman, left things in incredibly good NIST-funded Center for Integrated Precision and Quantum shape. She was a remarkable steward of the department for six Measurements. This will be our lowest noise, highest quality lab years, a few of which were financially very challenging, and I space in Physics, and will provide opportunities for new research am incredibly grateful for her accomplishments. It is my honor directions and ever more precise measurements. Many of us exper- to continue many of her efforts in making this department one imentalists have enjoyed touring the basement. New Campbell will of the best places for students to pursue a physics education and also be home to the new and exciting Kavli NanoSciences Institute for faculty to pursue research. (learn more on pg. 22). Donald A. Glaser Lab You can watch Campbell Hall being constructed at this Physics kicked off the fall semester with the dedication and celebra- website: http://berkeley.edu/webcams. tion of the Donald A. Glaser Advanced Lab, formerly known as the Promoting Diversity Physics 111 Lab. It was exciting to watch the remodeling of the lab Addressing issues of student diversity and women in physics is a and upgrading of the experimental equipment over the summer and long-term issue for this department (and the field in general), and so to have the revitalized lab ready for the students by fall semester. I am very proud of the fact that in January we are hosting the APS As many of you know from firsthand experience, the Donald Conference for Undergraduate Women in Physics (CUWiP ‘14), A. Glaser Advanced Lab is home to the two-semester experimental organized by Assistant Professor Gabriel Orebi Gann. CUWiP is a course required for all undergraduate majors. It is the notoriously 3-day regional conference designed to provide undergraduate women challenging capstone course of our undergraduate major and with information about graduate school and career opportunities in completing it successfully is an enormous achievement. This the physical sciences in the context of a professional conference. dedication will ensure that Don Glaser, whom we sadly lost this Students will have an opportunity to present their research in past year (see p. 28), remains an inspiration to our students and talks and posters, as well as tour Lawrence Livermore National faculty for many years to come. Laboratory. We are looking forward to a huge turnout for this event. New Campbell Hall Similarly, we are increasingly looking at ways for the department New Campbell Hall construction is proceeding ahead of schedule, to address issues of retaining our students in this admittedly and with continued good luck we will move into the building in fall rigorous major. This coming spring, Physics will be joining a 2014. New Campbell sits next to LeConte Hall, on the site of the handful of other departments on campus in implementing original (and seismically-poor) Campbell Hall. The new building Berkeley Connect, a new mentoring program at Cal. Berkeley will house all of our colleagues in the Astronomy Department, and Connect offers undergraduate students a chance to connect with there are offices and shared space for many of our Astrophysics their peers, graduate students, professors, and alums based on a 2 PHYSICS AT BERKELEY | Fall 2013 THIS COMING SPRING, Physics will be joining a handful of other departments on campus in implementing Berkeley Connect, a new mentoring program at Cal. Berkeley Connect offers undergraduate students a chance to connect with their peers, graduate students, professors, and alumns based on a shared love of (in our case) physics. shared love of (in our case) physics. This program pairs a small hottest room in undergraduate group with a graduate student mentor in a semester- the department. long program that includes advising, small-group discussions, Most of the special events, and excursions. The goal of the program is to foster offices for the closer ties among our undergrad students through small group advisors and interactions, ties that will help support them throughout their student groups undergraduate careers here at Berkeley. We are eager to see how that help support this program plays out in Physics. our undergradu- ate community Career Development are scattered Our students are enterprising. This past year, a group of our graduate throughout the students formed the Career Development Initiative for the Physical different buildings in the physics complex. Sciences (CDIPS). This student-led organization aims to expose I am just starting to build a vision of how to improve this envi- graduate and postgraduate students to careers outside academia, and ronment. I would like to remodel the Reading Room and modernize to strengthen ties between academic science and industry. its infrastructure, making this a comfortable and inviting place for CDIPS is running an incredibly successful speaker series students to work and socialize. I’d also like to see the offices for that hosts Berkeley PhD alums in successful non-academic or non-traditional careers to inform PhD students about the wide student groups and undergraduate advisors located nearby, making variety of careers available in the physical sciences. I encourage a visible home for our undergraduate majors in the department. any of our alums who might be interested in sharing their career Your feedback and ideas are welcome. experiences to be in touch with us. Public Events More Improvements Just a reminder that Berkeley Physics hosts a number of public Looking to the future, I anticipate embarking on a campaign to events throughout the year, and you are welcome and encouraged improve the physical environment for our undergraduate students. to attend. Looking forward to the Spring semester, you are invited You probably remember the“Reading Room” in New Le Conte, just to attend the Regents’ Lecture by Nobel Laureate and Cal alumnus down the hall from the Donald A. Glaser Advanced Lab. It has been John Mather on February 24. Just a few weeks later, we will host the hub of undergraduate life in the department, and it has not Jim Gates for the Oppenheimer Lecture on March 17, as well as changed for decades. throw open the doors for the ever-popular Cal Day on April 12. If you stop by the Reading Room on any afternoon you will Please join us if you can! find dozens of students working together on their homework, And now, I invite you to learn more in the following pages discussing the latest physics results, or just enjoying the company about the exciting research and activities going on in Berkeley of friends. You will also find them clustered around the few Physics. I’m sure you will be as proud of the work being done electrical outlets on the walls of the room to power their laptops, here as I am. Here’s looking forward to another incredible year! and sweating profusely since aging ventilation makes this the –Steve Boggs Fall 2013 | PHYSICS AT BERKELEY 3 Neutrinos: Ghostly Particles with Exciting Implications BERKELEY’S INFLUENTIAL CONTRIBUTIONS TO NEUTRINO SCIENCE ARE ADVANCING THE FRONTIERS OF PARTICLE PHYSICS AND COSMOLOGY. A SNO+ collaborator hand-cleans the acrylic vessel that will house the experiment’s liquid scintillator target. Also visible are many of the photomultiplier tubes that surround the vessel.
Recommended publications
  • CERN Courier–Digital Edition
    CERNMarch/April 2021 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the March/April 2021 issue of CERN Courier. Hadron colliders have contributed to a golden era of discovery in high-energy physics, hosting experiments that have enabled physicists to unearth the cornerstones of the Standard Model. This success story began 50 years ago with CERN’s Intersecting Storage Rings (featured on the cover of this issue) and culminated in the Large Hadron Collider (p38) – which has spawned thousands of papers in its first 10 years of operations alone (p47). It also bodes well for a potential future circular collider at CERN operating at a centre-of-mass energy of at least 100 TeV, a feasibility study for which is now in full swing. Even hadron colliders have their limits, however. To explore possible new physics at the highest energy scales, physicists are mounting a series of experiments to search for very weakly interacting “slim” particles that arise from extensions in the Standard Model (p25). Also celebrating a golden anniversary this year is the Institute for Nuclear Research in Moscow (p33), while, elsewhere in this issue: quantum sensors HADRON COLLIDERS target gravitational waves (p10); X-rays go behind the scenes of supernova 50 years of discovery 1987A (p12); a high-performance computing collaboration forms to handle the big-physics data onslaught (p22); Steven Weinberg talks about his latest work (p51); and much more. To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING ATLAS spots rare Higgs decay Weinberg on effective field theory Hunting for WISPs CCMarApr21_Cover_v1.indd 1 12/02/2021 09:24 CERNCOURIER www.
    [Show full text]
  • UNIVERSIT`A DEGLI STUDI DI TRIESTE Using Hydrodynamical
    UNIVERSITA` DEGLI STUDI DI TRIESTE Facolt`adi Scienze Matematiche, Fisiche e Naturali Dottorato di Ricerca in Fisica - XX Ciclo Using hydrodynamical simulations to combine Sunyaev–Zeldovich and X–ray studies of galaxy clusters DOTTORANDA COORDINATORE DEL COLLEGIO DEI DOCENTI Silvia Ameglio Chiar.mo Prof. Gaetano Senatore, Universit`adi Trieste TUTORE Chiar.mo Prof. Stefano Borgani, Universit`adi Trieste RELATORE Chiar.mo Prof. Stefano Borgani, Universit`adi Trieste a.a. 2006/2007 Contents 1 Introduction 1 2 Clusters of galaxies: an overview 5 2.1 X–rayemission ................................. 6 2.2 The Sunyaev–Zeldovich effect (SZ) . ... 8 2.2.1 The thermal Sunyaev–Zeldovich effect (tSZ) . .... 8 2.2.2 The kinetic Sunyaev–Zeldovich effect . 11 2.3 Statusofobservations . .. .. .. .. .. .. .. .. 11 2.3.1 X–rays.................................. 11 2.3.2 The Sunyaev–Zeldovich effect . 17 2.4 Cosmology with galaxy clusters . 23 2.5 Conclusions ................................... 29 3 Hydrodynamical simulations of galaxy clusters 31 3.1 The gravitational dynamics: the N–body TREE code . ...... 31 3.2 The gas physics: Smoothed Particle Hydrodynamics (SPH) ........ 33 3.3 Thesetofsimulatedclusters . 35 3.3.1 Thermal processes in the IntraCluster Medium (ICM) . ..... 38 3.3.2 The sample of simulated clusters . 40 3.3.3 Generation of tSZ, X–ray and temperature maps . 41 3.4 Definitionsoftemperature. 45 4 The angular diameter distance measurement 51 4.1 The polytropic β–model ............................ 53 4.2 DA from combined X-ray and tSZ observations . 53 4.3 Results...................................... 55 4.3.1 Resultsfromtheisothermalmodel . 55 4.3.2 Resultsfromthepolytropicfit . 57 4.3.3 Implications for cosmological parameters . ...... 60 4.4 Conclusions ..................................
    [Show full text]
  • Copyright by CLP Research 1600 1700 1750
    Spencer Compton 1600Copyright by CLP Research (1601-43) (2d Earl of Northampton); (Royalist/KIA fighting for King Charles I) Main Political Affiliation: Partial Genealogy of the Comptons = Mary Beaumont (1604-54) (of Ohio) 9 Others William Compton I 1763-83 Whig/Revolutionary (1622-94) 1789-1823 Republican (Emigrated from Northamptonshire, England to Long Island, New York, 1647); (moved to Middlesex co. New Jersey) 1824-33 National Republican = Mary Wilmot (1635-1713) See Wilmot of PA 1834-53 Whig 6 Others William Compton II Genealogy 1854- Republican (1649-1709) 1650 (born Long Island, New York); (moved to Middlesex co. New Jersey, then Monmouth co. NJ) = Mary Brown (1653-84) 9 Others Richard Compton (1667-1710); (merchant-store/farmer) = Providence Isselstyne (1664-1702) 6 Others Isselstyne Compton (1694-1763) 1700 = Orchie Altje Blaaw (1700-30) 7 Others Azariah Compton (1738-1825) (Rev War/Yorktown) = Margaret Mary Burlu 1750 (1760?-at least 1811) 7 Others Elias Compton (1788-1864); (farmer) (born Rosemont, Hunterdon co. NJ); (moved to Hamilton co. Ohio, 1816) Catheryne Die = = Bathsheba Hill 1800 (1790s?-1813) (1790-1832) 2 SonsWilson Martindale Compton 5 Others (1828-1908); (farmer) (born Springfield, Hamilton co. OH) = Elizabeth Hunt (1832-at least 1880) Rev. Elias Compton 4 Others 1850 (1856-at least 1927) (Wooster University professor of philosophy; dean) = Otelia Catheryne Augspurger (1858-1944) Dr. Karl Taylor Compton Dr. Wilson Martindale Comton 1 Daughter Arthur Holly Compton (1887-1954); (PhD/physics) (1890-1967); (PhD/physics) (1892-1962); (PhD/physics) (born Wooster, Wayne co. OH) (born Wooster, Wayne co. OH) (born Wooster, Wayne co. OH); (moved to Chicago, Cook co.
    [Show full text]
  • Download File
    The Astronomical Journal, 126:2209–2229, 2003 November E # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. A LARGE, UNIFORM SAMPLE OF X-RAY–EMITTING AGNs: SELECTION APPROACH AND AN INITIAL CATALOG FROM THE ROSAT ALL-SKY AND SLOAN DIGITAL SKY SURVEYS Scott F. Anderson,1 Wolfgang Voges,2 Bruce Margon,3 Joachim Tru¨ mper,2 Marcel A. Agu¨ eros,1 Thomas Boller,2 Matthew J. Collinge,4 L. Homer,1 Gregory Stinson,1 Michael A. Strauss,4 James Annis,5 Percy Go´mez,6 Patrick B. Hall,4,7 Robert C. Nichol,6 Gordon T. Richards,4 Donald P. Schneider,8 Daniel E. Vanden Berk,9 Xiaohui Fan,10 Zˇ eljko Ivezic´,4 Jeffrey A. Munn,11 Heidi Jo Newberg,12 Michael W. Richmond,13 David H. Weinberg,14 Brian Yanny,5 Neta A. Bahcall,4 J. Brinkmann,15 Masataka Fukugita,16 and Donald G. York17 Received 2003 May 5; accepted 2003 August 12 ABSTRACT Many open questions in X-ray astronomy are limited by the relatively small number of objects in uniform optically identified and observed samples, especially when rare subclasses are considered or when subsets are isolated to search for evolution or correlations between wavebands. We describe the initial results of a new program aimed to ultimately yield 104 fully characterized X-ray source identifications—a sample about an order of magnitude larger than earlier efforts. The technique is detailed and employs X-ray data from the ROSAT All-Sky Survey (RASS) and optical imaging and spectroscopic follow-up from the Sloan Digital Sky Survey (SDSS); these two surveys prove to be serendipitously very well matched in sensitivity.
    [Show full text]
  • Subnuclear Physics: Past, Present and Future
    Subnuclear Physics: Past, Present and Future International Symposium 30 October - 2 November 2011 – The purpose of the Symposium is to discuss the origin, the status and the future of the new frontier of Physics, the Subnuclear World, whose first two hints were discovered in the middle of the last century: the so-called “Strange Particles” and the “Resonance #++”. It took more than two decades to understand the real meaning of these two great discoveries: the existence of the Subnuclear World with regularities, spontaneously plus directly broken Symmetries, and totally unexpected phenomena including the existence of a new fundamental force of Nature, called Quantum ChromoDynamics. In order to reach this new frontier of our knowledge, new Laboratories were established all over the world, in Europe, in USA and in the former Soviet Union, with thousands of physicists, engineers and specialists in the most advanced technologies, engaged in the implementation of new experiments of ever increasing complexity. At present the most advanced Laboratory in the world is CERN where experiments are being performed with the Large Hadron Collider (LHC), the most powerful collider in the world, which is able to reach the highest energies possible in this satellite of the Sun, called Earth. Understanding the laws governing the Space-time intervals in the range of 10-17 cm and 10-23 sec will allow our form of living matter endowed with Reason to open new horizons in our knowledge. Antonino Zichichi Participants Prof. Werner Arber H.E. Msgr. Marcelo Sánchez Sorondo Prof. Guido Altarelli Prof. Ignatios Antoniadis Prof. Robert Aymar Prof. Rinaldo Baldini Ferroli Prof.
    [Show full text]
  • Samantha Scibelli E=Mc Journal Article I've Lived in the Small Town Of
    Samantha Scibelli E=mc2 Journal Article I've lived in the small town of Burnt Hills, New York for all of my life. Starting at a young age I developed a love for science. In my spare time I would polish rocks in my rock tumbler. I spent hours digging around my gravel driveway trying to pick out the quartz among the limestone. I also enjoyed analyzing fingerprints with my toy forensic kit. At one point I actually wanted to become a forensic anthropologist (the show Bones was a favorite of mine). My father had a part in helping to propel my scientific interests. He had an old chemistry set and we would do experiments on the weekends. He also would set up his old telescope so we could gaze at the stars. Perhaps that's where my love of astronomy began. My interest in nature also influenced my passion for science. As a little girl I would catch frogs, butterflies, crickets - really anything I could get my hands on. I loved, and still love, fishing at my grandparent's lake, only a couple hours from where I live. Bloody Pond, despite the gruesome name, is where I have had some of my best memories. I've especially enjoyed my time spent looking up at the sky on those clear nights. As I got older I watched documentaries and read books on concepts like light speed and parallel universes, which immediately captured my imagination. I was in awe by how the world works and how we can learn about it through equations and experiments.
    [Show full text]
  • 2006-2007 Science Planning Summaries
    Project Indexes Find information about projects approved for the 2006-2007 USAP field season using the available indexes. Project Web Sites Find more information about 2006-2007 USAP projects by viewing project web sites. More Information Additional information pertaining to the 2006-2007 Field Season. Home Page Station Schedules Air Operations Staffed Field Camps Event Numbering System 2006-2007 USAP Field Season Project Indexes Project Indexes Find information about projects approved for the 2006-2007 USAP field season using the USAP Program Indexes available indexes. Aeronomy and Astrophysics Dr. Bernard Lettau, Program Director (acting) Project Web Sites Biology and Medicine Dr. Roberta Marinelli, Program Director Find more information about 2006-2007 USAP projects by Geology and Geophysics viewing project web sites. Dr. Thomas Wagner, Program Director Glaciology Dr. Julie Palais, Program Director More Information Ocean and Climate Systems Additional information pertaining Dr. Bernhard Lettau, Program Director to the 2006-2007 Field Season. Artists and Writers Home Page Ms. Kim Silverman, Program Director Station Schedules USAP Station and Vessel Indexes Air Operations Staffed Field Camps Amundsen-Scott South Pole Station Event Numbering System McMurdo Station Palmer Station RVIB Nathaniel B. Palmer ARSV Laurence M. Gould Special Projects Principal Investigator Index Deploying Team Members Index Institution Index Event Number Index Technical Event Index Project Web Sites 2006-2007 USAP Field Season Project Indexes Project Indexes Find information about projects approved for the 2006-2007 USAP field season using the Project Web Sites available indexes. Principal Investigator/Link Event No. Project Title Aghion, Anne W-218-M Works and days: An antarctic Project Web Sites chronicle Find more information about 2006-2007 USAP projects by Ainley, David B-031-M Adélie penguin response to viewing project web sites.
    [Show full text]
  • Fabiola Gianotti
    Fabiola Gianotti Date of Birth 29 October 1960 Place Rome, Italy Nomination 18 August 2020 Field Physics Title Director-General of the European Laboratory for Particle Physics, CERN, Geneva Most important awards, prizes and academies Honorary Professor, University of Edinburgh; Corresponding or foreign associate member of the Italian Academy of Sciences (Lincei), the National Academy of Sciences of the United States, the French Academy of Sciences, the Royal Society London, the Royal Academy of Sciences and Arts of Barcelona, the Royal Irish Academy and the Russian Academy of Sciences. Honorary doctoral degrees from: University of Uppsala (2012); Ecole Polytechnique Federale de Lausanne (2013); McGill University, Montreal (2014); University of Oslo (2014); University of Edinburgh (2015); University of Roma Tor Vergata (2017); University of Chicago (2018); University Federico II, Naples (2018); Université de Paris Sud, Orsay (2018); Université Savoie Mont Blanc, Annecy (2018); Weizmann Institute, Israel (2018); Imperial College, London (2019). National honours: Cavaliere di Gran Croce dell'Ordine al Merito della Repubblica, awarded by the Italian President Giorgio Napolitano (2014). Special Breakthrough Prize in Fundamental Physics (shared, 2013); Enrico Fermi Prize of the Italian Physical Society (shared, 2013); Medal of Honour of the Niels Bohr Institute, Copenhagen (2013); Wilhelm Exner Medal, Vienna (2017); Tate Medal of the American Institute of Physics for International Leadership (2019). Summary of scientific research Fabiola Gianotti is a particle physicist working at high-energy accelerators. In her scientific career, she has made significant contributions to several experiments at CERN, including UA2 at the proton-antiproton collider (SpbarpS), ALEPH at the Large Electron-Positron collider (LEP) and ATLAS at the Large Hadron Collider (LHC).
    [Show full text]
  • 8.962 General Relativity, Spring 2017 Massachusetts Institute of Technology Department of Physics
    8.962 General Relativity, Spring 2017 Massachusetts Institute of Technology Department of Physics Lectures by: Alan Guth Notes by: Andrew P. Turner May 26, 2017 1 Lecture 1 (Feb. 8, 2017) 1.1 Why general relativity? Why should we be interested in general relativity? (a) General relativity is the uniquely greatest triumph of analytic reasoning in all of science. Simultaneity is not well-defined in special relativity, and so Newton's laws of gravity become Ill-defined. Using only special relativity and the fact that Newton's theory of gravity works terrestrially, Einstein was able to produce what we now know as general relativity. (b) Understanding gravity has now become an important part of most considerations in funda- mental physics. Historically, it was easy to leave gravity out phenomenologically, because it is a factor of 1038 weaker than the other forces. If one tries to build a quantum field theory from general relativity, it fails to be renormalizable, unlike the quantum field theories for the other fundamental forces. Nowadays, gravity has become an integral part of attempts to extend the standard model. Gravity is also important in the field of cosmology, which became more prominent after the discovery of the cosmic microwave background, progress on calculations of big bang nucleosynthesis, and the introduction of inflationary cosmology. 1.2 Review of Special Relativity The basic assumption of special relativity is as follows: All laws of physics, including the statement that light travels at speed c, hold in any inertial coordinate system. Fur- thermore, any coordinate system that is moving at fixed velocity with respect to an inertial coordinate system is also inertial.
    [Show full text]
  • The Legacy of Mildred Dresselhaus, the Queen of Carbon
    The legacy of Mildred Dresselhaus, the Queen of Carbon Zeila Zanolli RWTH Aachen June 7, 2017 - ETSF Young Researchers Meeting, Tarragona Mildred Dresselhaus Laid the foundations for C nanotechnology: Pioneer of experimental techniques to study 2D materials Predicted the possibility and characteristics of CNTs (band structure, …) Low-dimensional thermolectrics: model of thermal transport in nanostructures, energy materials, electronic properties, phonons, electron-phonon interactions, … Her work has been crucial for developing lithium-ion batteries, electronic devices, renewable-energy generators, … [email protected] Millie: Institute Professor at MIT > 1700 publications h-index 135 > 25 prestigious awards 28 honorary doctorates Supervised >60 PhD 57 years at MIT [email protected] How did she started? [email protected] Millie: a tale of persistence 1930: born in Brooklyn lived in the Bronx family of immigrants, quite poor during the Great Depression 1936 ( 6 y): got a scholarship for a Music school and heard about the Hunter College “My teachers didn’t think it was possible to get in. But Hunter sent me a practice exam, and I studied what I needed to know to pass the exam.” at Hunter, Rosalyn Yalow (future Nobel laureate) encouraged Millie in pursuing a scientific career. 1951 (21 y): Bachelor, Hunter College, New York [email protected] Millie as Young Researcher 1953 (23 y): MA, Radcliffe College on a Fulbright Fellowship, Cambridge (MA) & Harvard 1958 (28 y): PhD, University of Chicago on the properties of superconductors in a magnetic field. Daily chats with E. Fermi. “My nominal thesis adviser told me in 1955 that women had no place in physics” I told him that I was not expecting to have others show interest in my work.
    [Show full text]
  • Calorimetry for Particle Physics
    REVIEWS OF MODERN PHYSICS, VOLUME 75, OCTOBER 2003 Calorimetry for particle physics Christian W. Fabjan and Fabiola Gianotti CERN, 1211 Geneva 23, Switzerland (Published 15 October 2003) Calorimetry has become a well-understood, powerful, and versatile measurement method. Besides perfecting this technique to match increasingly demanding operation at high-energy particle accelerators, physicists are developing low-temperature calorimeters to extend detection down to ever lower energies, and atmospheric and deep-sea calorimeters to scrutinize the universe up to the highest energies. The authors summarize the state of the art, with emphasis on the physics of the detectors and innovative technologies. CONTENTS VI. Citius, Altius, Fortius 1280 A. Introduction 1280 B. Atmospheric calorimeters 1280 I. Introduction 1243 1. Setting the energy scale 1283 II. Electromagnetic Calorimetry 1244 2. Energy resolution 1283 A. Physics of the electromagnetic cascade 1244 C. Deep-water calorimeters 1283 B. Energy resolution of electromagnetic VII. Conclusions 1284 calorimeters 1246 Acknowledgments 1284 1. Stochastic term 1247 References 1284 2. Noise term 1247 3. Constant term 1247 4. Additional contributions 1248 C. Main techniques and examples of facilities 1249 I. INTRODUCTION 1. Homogeneous calorimeters 1249 a. Semiconductor calorimeters 1249 Calorimetry is an ubiquitous detection principle in b. Cherenkov calorimeters 1250 particle physics. Originally invented for the study of c. Scintillation calorimeters 1251 cosmic-ray phenomena, this method was developed and d. Noble-liquid calorimeters 1254 perfected for accelerator-based particle physics experi- 2. Sampling calorimeters 1256 mentation primarily in order to measure the energy of a. Scintillation sampling calorimeters 1257 electrons, photons, and hadrons. Calorimeters are b. Gas sampling calorimeters 1257 blocks of instrumented material in which particles to be c.
    [Show full text]
  • Xiaowei Zhuang Harvard University, Howard Hughes Medical Institute Xiaowei Zhuang Is the David B
    Xiaowei Zhuang Harvard University, Howard Hughes Medical Institute Xiaowei Zhuang is the David B. Arnold Professor of Science at Harvard University and an investigator of Howard Hughes Medical Institute. Her laboratory has developed single-molecule, super-resolution and genomic- scale imaging methods, including STORM and MERFISH, and has used these methods to discover novel molecular structures in cells and cell organizations in tissues. Zhuang received her BS in physics from the University of Science and Technology of China, her PhD in physics in the lab of Prof. Y. R. Shen at University of California, Berkeley, and her postdoctoral training in biophysics in the lab of Prof. Steven Chu at Stanford University. She joined the faculty of Harvard University in 2001 and became a Howard Hughes Medical Institute investigator in 2005. Zhuang is a member of the US National Academy of Sciences and the American Academy of Arts and Sciences, a foreign member of the Chinese Academy of Sciences and the European Molecular Biology Organization, a fellow of the American Association of the Advancement of Science and the American Physical Society. She received honorary doctorate degrees from the Stockholm University in Sweden and the Delft University of Technology in the Netherlands. She has received a number of awards, including the Breakthrough Prize in Life Sciences, National Academy of Sciences Award in Scientific Discovery, Dr. H.P. Heineken Prize for Biochemistry and Biophysics, National Academy of Sciences Award in Molecular Biology, Raymond and Beverly Sackler International Prize in Biophysics, Max Delbruck Prize in Biological Physics, American Chemical Society Pure Chemistry Award, MacArthur Fellowship, etc.
    [Show full text]