Inferring Mechanisms of Toxicity from Differential Genomics and Semantic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Method to Infer Changed Activity of Metabolic Function from Transcript Profiles
ModeScore: A Method to Infer Changed Activity of Metabolic Function from Transcript Profiles Andreas Hoppe and Hermann-Georg Holzhütter Charité University Medicine Berlin, Institute for Biochemistry, Computational Systems Biochemistry Group [email protected] Abstract Genome-wide transcript profiles are often the only available quantitative data for a particular perturbation of a cellular system and their interpretation with respect to the metabolism is a major challenge in systems biology, especially beyond on/off distinction of genes. We present a method that predicts activity changes of metabolic functions by scoring reference flux distributions based on relative transcript profiles, providing a ranked list of most regulated functions. Then, for each metabolic function, the involved genes are ranked upon how much they represent a specific regulation pattern. Compared with the naïve pathway-based approach, the reference modes can be chosen freely, and they represent full metabolic functions, thus, directly provide testable hypotheses for the metabolic study. In conclusion, the novel method provides promising functions for subsequent experimental elucidation together with outstanding associated genes, solely based on transcript profiles. 1998 ACM Subject Classification J.3 Life and Medical Sciences Keywords and phrases Metabolic network, expression profile, metabolic function Digital Object Identifier 10.4230/OASIcs.GCB.2012.1 1 Background The comprehensive study of the cell’s metabolism would include measuring metabolite concentrations, reaction fluxes, and enzyme activities on a large scale. Measuring fluxes is the most difficult part in this, for a recent assessment of techniques, see [31]. Although mass spectrometry allows to assess metabolite concentrations in a more comprehensive way, the larger the set of potential metabolites, the more difficult [8]. -
RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY
RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY Proceedings of the 5th WSEAS International Conference on CELLULAR and MOLECULAR BIOLOGY, BIOPHYSICS and BIOENGINEERING (BIO '09) Proceedings of the 3rd WSEAS International Conference on COMPUTATIONAL CHEMISTRY (COMPUCHEM '09) Puerto De La Cruz, Tenerife, Canary Islands, Spain December 14-16, 2009 Recent Advances in Biology and Biomedicine A Series of Reference Books and Textbooks Published by WSEAS Press ISSN: 1790-5125 www.wseas.org ISBN: 978-960-474-141-0 RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY Proceedings of the 5th WSEAS International Conference on CELLULAR and MOLECULAR BIOLOGY, BIOPHYSICS and BIOENGINEERING (BIO '09) Proceedings of the 3rd WSEAS International Conference on COMPUTATIONAL CHEMISTRY (COMPUCHEM '09) Puerto De La Cruz, Tenerife, Canary Islands, Spain December 14-16, 2009 Recent Advances in Biology and Biomedicine A Series of Reference Books and Textbooks Published by WSEAS Press www.wseas.org Copyright © 2009, by WSEAS Press All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press. All papers of the present volume were peer reviewed -
The Kyoto Encyclopedia of Genes and Genomes (KEGG)
Kyoto Encyclopedia of Genes and Genome Minoru Kanehisa Institute for Chemical Research, Kyoto University HFSPO Workshop, Strasbourg, November 18, 2016 The KEGG Databases Category Database Content PATHWAY KEGG pathway maps Systems information BRITE BRITE functional hierarchies MODULE KEGG modules KO (KEGG ORTHOLOGY) KO groups for functional orthologs Genomic information GENOME KEGG organisms, viruses and addendum GENES / SSDB Genes and proteins / sequence similarity COMPOUND Chemical compounds GLYCAN Glycans Chemical information REACTION / RCLASS Reactions / reaction classes ENZYME Enzyme nomenclature DISEASE Human diseases DRUG / DGROUP Drugs / drug groups Health information ENVIRON Health-related substances (KEGG MEDICUS) JAPIC Japanese drug labels DailyMed FDA drug labels 12 manually curated original DBs 3 DBs taken from outside sources and given original annotations (GENOME, GENES, ENZYME) 1 computationally generated DB (SSDB) 2 outside DBs (JAPIC, DailyMed) KEGG is widely used for functional interpretation and practical application of genome sequences and other high-throughput data KO PATHWAY GENOME BRITE DISEASE GENES MODULE DRUG Genome Molecular High-level Practical Metagenome functions functions applications Transcriptome etc. Metabolome Glycome etc. COMPOUND GLYCAN REACTION Funding Annual budget Period Funding source (USD) 1995-2010 Supported by 10+ grants from Ministry of Education, >2 M Japan Society for Promotion of Science (JSPS) and Japan Science and Technology Agency (JST) 2011-2013 Supported by National Bioscience Database Center 0.8 M (NBDC) of JST 2014-2016 Supported by NBDC 0.5 M 2017- ? 1995 KEGG website made freely available 1997 KEGG FTP site made freely available 2011 Plea to support KEGG KEGG FTP academic subscription introduced 1998 First commercial licensing Contingency Plan 1999 Pathway Solutions Inc. -
Applied Category Theory for Genomics – an Initiative
Applied Category Theory for Genomics { An Initiative Yanying Wu1,2 1Centre for Neural Circuits and Behaviour, University of Oxford, UK 2Department of Physiology, Anatomy and Genetics, University of Oxford, UK 06 Sept, 2020 Abstract The ultimate secret of all lives on earth is hidden in their genomes { a totality of DNA sequences. We currently know the whole genome sequence of many organisms, while our understanding of the genome architecture on a systematic level remains rudimentary. Applied category theory opens a promising way to integrate the humongous amount of heterogeneous informations in genomics, to advance our knowledge regarding genome organization, and to provide us with a deep and holistic view of our own genomes. In this work we explain why applied category theory carries such a hope, and we move on to show how it could actually do so, albeit in baby steps. The manuscript intends to be readable to both mathematicians and biologists, therefore no prior knowledge is required from either side. arXiv:2009.02822v1 [q-bio.GN] 6 Sep 2020 1 Introduction DNA, the genetic material of all living beings on this planet, holds the secret of life. The complete set of DNA sequences in an organism constitutes its genome { the blueprint and instruction manual of that organism, be it a human or fly [1]. Therefore, genomics, which studies the contents and meaning of genomes, has been standing in the central stage of scientific research since its birth. The twentieth century witnessed three milestones of genomics research [1]. It began with the discovery of Mendel's laws of inheritance [2], sparked a climax in the middle with the reveal of DNA double helix structure [3], and ended with the accomplishment of a first draft of complete human genome sequences [4]. -
3 13437143.Pdf
Title Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones Imanishi, Tadashi; Itoh, Takeshi; Suzuki, Yutaka; O'Donovan, Claire; Fukuchi, Satoshi; Koyanagi, Kanako O.; Barrero, Roberto A.; Tamura, Takuro; Yamaguchi-Kabata, Yumi; Tanino, Motohiko; Yura, Kei; Miyazaki, Satoru; Ikeo, Kazuho; Homma, Keiichi; Kasprzyk, Arek; Nishikawa, Tetsuo; Hirakawa, Mika; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Ashurst, Jennifer; Jia, Libin; Nakao, Mitsuteru; Thomas, Michael A.; Mulder, Nicola; Karavidopoulou, Youla; Jin, Lihua; Kim, Sangsoo; Yasuda, Tomohiro; Lenhard, Boris; Eveno, Eric; Suzuki, Yoshiyuki; Yamasaki, Chisato; Takeda, Jun-ichi; Gough, Craig; Hilton, Phillip; Fujii, Yasuyuki; Sakai, Hiroaki; Tanaka, Susumu; Amid, Clara; Bellgard, Matthew; Bonaldo, Maria de Fatima; Bono, Hidemasa; Bromberg, Susan K.; Brookes, Anthony J.; Bruford, Elspeth; Carninci, Piero; Chelala, Claude; Couillault, Christine; Souza, Sandro J. de; Debily, Marie-Anne; Devignes, Marie-Dominique; Dubchak, Inna; Endo, Toshinori; Estreicher, Anne; Eyras, Eduardo; Fukami-Kobayashi, Kaoru; R. Gopinath, Gopal; Graudens, Esther; Hahn, Yoonsoo; Han, Michael; Han, Ze-Guang; Hanada, Kousuke; Hanaoka, Hideki; Harada, Erimi; Hashimoto, Katsuyuki; Hinz, Ursula; Hirai, Momoki; Hishiki, Teruyoshi; Hopkinson, Ian; Imbeaud, Sandrine; Inoko, Hidetoshi; Kanapin, Alexander; Kaneko, Yayoi; Kasukawa, Takeya; Kelso, Janet; Kersey, Author(s) Paul; Kikuno, Reiko; Kimura, Kouichi; Korn, Bernhard; Kuryshev, Vladimir; Makalowska, Izabela; Makino, Takashi; Mano, Shuhei; -
UNIVERSITY of CALIFORNIA RIVERSIDE Unsupervised And
UNIVERSITY OF CALIFORNIA RIVERSIDE Unsupervised and Zero-Shot Learning for Open-Domain Natural Language Processing A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science by Muhammad Abu Bakar Siddique June 2021 Dissertation Committee: Dr. Evangelos Christidis, Chairperson Dr. Amr Magdy Ahmed Dr. Samet Oymak Dr. Evangelos Papalexakis Copyright by Muhammad Abu Bakar Siddique 2021 The Dissertation of Muhammad Abu Bakar Siddique is approved: Committee Chairperson University of California, Riverside To my family for their unconditional love and support. i ABSTRACT OF THE DISSERTATION Unsupervised and Zero-Shot Learning for Open-Domain Natural Language Processing by Muhammad Abu Bakar Siddique Doctor of Philosophy, Graduate Program in Computer Science University of California, Riverside, June 2021 Dr. Evangelos Christidis, Chairperson Natural Language Processing (NLP) has yielded results that were unimaginable only a few years ago on a wide range of real-world tasks, thanks to deep neural networks and the availability of large-scale labeled training datasets. However, existing supervised methods assume an unscalable requirement that labeled training data is available for all classes: the acquisition of such data is prohibitively laborious and expensive. Therefore, zero-shot (or unsupervised) models that can seamlessly adapt to new unseen classes are indispensable for NLP methods to work in real-world applications effectively; such models mitigate (or eliminate) the need for collecting and annotating data for each domain. This dissertation ad- dresses three critical NLP problems in contexts where training data is scarce (or unavailable): intent detection, slot filling, and paraphrasing. Having reliable solutions for the mentioned problems in the open-domain setting pushes the frontiers of NLP a step towards practical conversational AI systems. -
Genbank by Walter B
GenBank by Walter B. Goad o understand the significance of the information stored in memory—DNA—to the stuff of activity—proteins. The idea that GenBank, you need to know a little about molecular somehow the bases in DNA determine the amino acids in proteins genetics. What that field deals with is self-replication—the had been around for some time. In fact, George Gamow suggested in T process unique to life—and mutation and 1954, after learning about the structure proposed for DNA, that a recombination—the processes responsible for evolution-at the triplet of bases corresponded to an amino acid. That suggestion was fundamental level of the genes in DNA. This approach of working shown to be true, and by 1965 most of the genetic code had been from the blueprint, so to speak, of a living system is very powerful, deciphered. Also worked out in the ’60s were many details of what and studies of many other aspects of life—the process of learning, for Crick called the central dogma of molecular genetics—the now example—are now utilizing molecular genetics. firmly established fact that DNA is not translated directly to proteins Molecular genetics began in the early ’40s and was at first but is first transcribed to messenger RNA. This molecule, a nucleic controversial because many of the people involved had been trained acid like DNA, then serves as the template for protein synthesis. in the physical sciences rather than the biological sciences, and yet These great advances prompted a very distinguished molecular they were answering questions that biologists had been asking for geneticist to predict, in 1969, that biology was just about to end since years. -
Microblogging the ISMB: a New Approach to Conference Reporting
Message from ISCB Microblogging the ISMB: A New Approach to Conference Reporting Neil Saunders1*, Pedro Beltra˜o2, Lars Jensen3, Daniel Jurczak4, Roland Krause5, Michael Kuhn6, Shirley Wu7 1 School of Molecular and Microbial Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia, 2 Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America, 3 Novo Nordisk Foundation Center for Protein Research, Panum Institute, Copenhagen, Denmark, 4 Department of Bioinformatics, University of Applied Sciences, Hagenberg, Freistadt, Austria, 5 Max-Planck-Institute for Molecular Genetics, Berlin, Germany, 6 European Molecular Biology Laboratory, Heidelberg, Germany, 7 Stanford Medical Informatics, Stanford University, Stanford, California, United States of America Cameron Neylon entitled FriendFeed for Claire Fraser-Liggett opened the meeting Scientists: What, Why, and How? (http:// with a review of metagenomics and an blog.openwetware.org/scienceintheopen/ introduction to the human microbiome 2008/06/12/friendfeed-for-scientists-what- project (http://friendfeed.com/search?q = why-and-how/) for an introduction. room%3Aismb-2008+microbiome+OR+ We—a group of science bloggers, most fraser). The subsequent Q&A session of whom met in person for the first time at covered many of the exciting challenges The International Conference on Intel- ISMB 2008—found FriendFeed a remark- for those working in this field. Clearly, ligent Systems for Molecular Biology -
The Basic Units of Life How Cell Atlases Can Shed Light on Disease Mechanisms with Remarkable Accuracy
Press Information, July 28, 2021 Cells: The Basic Units of Life How cell atlases can shed light on disease mechanisms with remarkable accuracy The Schering Stiftung awards the Ernst Schering Prize 2021 to Aviv Regev. A pioneer in the field of single-cell analysis, she successfully combines approaches from biology and computer science and thus revolutionizes the field of precision medicine. Aviv Regev is considered a pioneer in the field of single-cell biology and has broken new ground by combining the disciplines of biology, computation, and genetic engineering. She has uniquely succeeded in combining and refining some of the most important experimental and analytical tools in such a way that she can analyze the genome of hundreds of thousands of single cells simultaneously. This single-cell genome analysis makes it possible to map and characterize a large number of individual tissue cells. Aviv Regev was the first to apply these single-cell technologies to solid tumors and to successfully identify those cells and genes that influence tumor growth and resistance to treatment. In addition, she discovered rare cell types that are involved in cystic fibrosis and ulcerative colitis. Last but not least, together with international research groups, and her colleague Sarah Teichmann she built the Human Cell Atlas and inspired Prof. Aviv Regev, PhD scientists all over the world to use these tools to create a Photo: Casey Atkins comprehensive atlas of all cell types in the human body. These cell atlases of parts of the human body illuminate disease mechanisms with remarkable accuracy and have recently also been used successfully to study disease progression in COVID-19. -
CV Aviv Regev
AVIV REGEV Curriculum Vitae Education and training Ph.D., Computational Biology, Tel Aviv University, Tel Aviv, Israel, 1998-2002 Advisor: Prof. Eva Jablonka (Tel Aviv University) Advisor: Prof. Ehud Shapiro (Computer Science, Weizmann Institute) M.Sc. (direct, Summa cum laude) Tel Aviv University, Tel Aviv, Israel, 1992-1997 Advisor: Prof. Sara Lavi A student in the Adi Lautman Interdisciplinary Program for the Fostering of Excellence (studies mostly in Biology, Computer Science and Mathematics) Post Training Positions Executive Vice President and Global Head, Genentech Research and Early Development, Genentech/Roche, 2020 - Current HHMI Investigator, 2014-2020 Chair of the Faculty (Executive Leadership Team), Broad Institute, 2015 – 2020 Professor, Department of Biology, MIT, 2015-Current (on leave) Founding Director, Klarman Cell Observatory, Broad Institute, 2012-2020 Director, Cell Circuits Program, Broad Institute, 2013 - 2020 Associate Professor with Tenure, Department of Biology, MIT, 2011-2015 Early Career Scientist, Howard Hughes Medical Institute, 2009-2014 Core Member, Broad Institute of MIT and Harvard, 2006-Current (on leave) Assistant Professor, Department of Biology, MIT, 2006-2011 Bauer Fellow, Center for Genomics Research, Harvard University, 2003-2006 International Service Founding Co-Chair, Human Cell Atlas, 2016-Current Honors Vanderbilt Prize, 2021 AACR Academy, Elected Fellow, 2021 AACR-Irving Weinstein Foundation Distinguished Lecturer, 2021 James Prize in Science and Technology Integration, National Academy of -
Integrative Annotation of 21,037 Human Genes Validated by Full-Length Cdna Clones
Title Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones Imanishi, Tadashi; Itoh, Takeshi; Suzuki, Yutaka; O'Donovan, Claire; Fukuchi, Satoshi; Koyanagi, Kanako O.; Barrero, Roberto A.; Tamura, Takuro; Yamaguchi-Kabata, Yumi; Tanino, Motohiko; Yura, Kei; Miyazaki, Satoru; Ikeo, Kazuho; Homma, Keiichi; Kasprzyk, Arek; Nishikawa, Tetsuo; Hirakawa, Mika; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Ashurst, Jennifer; Jia, Libin; Nakao, Mitsuteru; Thomas, Michael A.; Mulder, Nicola; Karavidopoulou, Youla; Jin, Lihua; Kim, Sangsoo; Yasuda, Tomohiro; Lenhard, Boris; Eveno, Eric; Suzuki, Yoshiyuki; Yamasaki, Chisato; Takeda, Jun-ichi; Gough, Craig; Hilton, Phillip; Fujii, Yasuyuki; Sakai, Hiroaki; Tanaka, Susumu; Amid, Clara; Bellgard, Matthew; Bonaldo, Maria de Fatima; Bono, Hidemasa; Bromberg, Susan K.; Brookes, Anthony J.; Bruford, Elspeth; Carninci, Piero; Chelala, Claude; Couillault, Christine; Souza, Sandro J. de; Debily, Marie-Anne; Devignes, Marie-Dominique; Dubchak, Inna; Endo, Toshinori; Estreicher, Anne; Eyras, Eduardo; Fukami-Kobayashi, Kaoru; R. Gopinath, Gopal; Graudens, Esther; Hahn, Yoonsoo; Han, Michael; Han, Ze-Guang; Hanada, Kousuke; Hanaoka, Hideki; Harada, Erimi; Hashimoto, Katsuyuki; Hinz, Ursula; Hirai, Momoki; Hishiki, Teruyoshi; Hopkinson, Ian; Imbeaud, Sandrine; Inoko, Hidetoshi; Kanapin, Alexander; Kaneko, Yayoi; Kasukawa, Takeya; Kelso, Janet; Kersey, Author(s) Paul; Kikuno, Reiko; Kimura, Kouichi; Korn, Bernhard; Kuryshev, Vladimir; Makalowska, Izabela; Makino, Takashi; Mano, Shuhei; -
Modeling and Analysis of RNA-Seq Data: a Review from a Statistical Perspective
Modeling and analysis of RNA-seq data: a review from a statistical perspective Wei Vivian Li 1 and Jingyi Jessica Li 1;2;∗ Abstract Background: Since the invention of next-generation RNA sequencing (RNA-seq) technolo- gies, they have become a powerful tool to study the presence and quantity of RNA molecules in biological samples and have revolutionized transcriptomic studies. The analysis of RNA-seq data at four different levels (samples, genes, transcripts, and exons) involve multiple statistical and computational questions, some of which remain challenging up to date. Results: We review RNA-seq analysis tools at the sample, gene, transcript, and exon levels from a statistical perspective. We also highlight the biological and statistical questions of most practical considerations. Conclusion: The development of statistical and computational methods for analyzing RNA- seq data has made significant advances in the past decade. However, methods developed to answer the same biological question often rely on diverse statical models and exhibit dif- ferent performance under different scenarios. This review discusses and compares multiple commonly used statistical models regarding their assumptions, in the hope of helping users select appropriate methods as needed, as well as assisting developers for future method development. 1 Introduction RNA sequencing (RNA-seq) uses the next generation sequencing (NGS) technologies to reveal arXiv:1804.06050v3 [q-bio.GN] 1 May 2018 the presence and quantity of RNA molecules in biological samples. Since its invention, RNA- seq has revolutionized transcriptome analysis in biological research. RNA-seq does not require any prior knowledge on RNA sequences, and its high-throughput manner allows for genome-wide profiling of transcriptome landscapes [1,2].