UCLA UCLA Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UCLA UCLA Electronic Theses and Dissertations UCLA UCLA Electronic Theses and Dissertations Title Bipartite Network Community Detection: Development and Survey of Algorithmic and Stochastic Block Model Based Methods Permalink https://escholarship.org/uc/item/0tr9j01r Author Sun, Yidan Publication Date 2021 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Bipartite Network Community Detection: Development and Survey of Algorithmic and Stochastic Block Model Based Methods A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Statistics by Yidan Sun 2021 © Copyright by Yidan Sun 2021 ABSTRACT OF THE DISSERTATION Bipartite Network Community Detection: Development and Survey of Algorithmic and Stochastic Block Model Based Methods by Yidan Sun Doctor of Philosophy in Statistics University of California, Los Angeles, 2021 Professor Jingyi Li, Chair In a bipartite network, nodes are divided into two types, and edges are only allowed to connect nodes of different types. Bipartite network clustering problems aim to identify node groups with more edges between themselves and fewer edges to the rest of the network. The approaches for community detection in the bipartite network can roughly be classified into algorithmic and model-based methods. The algorithmic methods solve the problem either by greedy searches in a heuristic way or optimizing based on some criteria over all possible partitions. The model-based methods fit a generative model to the observed data and study the model in a statistically principled way. In this dissertation, we mainly focus on bipartite clustering under two scenarios: incorporation of node covariates and detection of mixed membership communities. In Chapter 2, we study an algorithmic bipartite clustering method in the context of gene co-clustering. Gene co-clustering is a widely-used technique that has enabled computational prediction of unknown gene functions within a species. However, it remains a challenge to refine gene function prediction by leveraging evolutionarily conserved genes in another species. This challenge calls for a new computational algorithm to identify gene co-clusters in two species, so that genes in each co-cluster exhibit similar expression levels in each species and strong conservation between the species. Here we develop the bipartite tight ii spectral clustering (BiTSC) algorithm, which identifies gene co-clusters in two species based on gene orthology information and gene expression data. BiTSC novelly implements a formulation that encodes gene orthology as a bipartite network and gene expression data as node covariates. This formulation allows BiTSC to adopt and combine the advantages of multiple unsupervised learning techniques: kernel enhancement, bipartite spectral clustering, consensus clustering, tight clustering, and hierarchical clustering. As a result, BiTSC is a flexible and robust algorithm capable of identifying informative gene co-clusters without forcing all genes into co-clusters. Another advantage of BiTSC is that it does not rely on any distributional assumptions. Beyond cross-species gene co-clustering, BiTSC also has wide applications as a general algorithm for identifying tight node co-clusters in any bipartite network with node covariates. We demonstrate the accuracy and robustness of BiTSC through comprehensive simulation studies. In a real data example, we use BiTSC to identify conserved gene co-clusters of D. melanogaster and C. elegans, and we perform a series of downstream analyses to both validate BiTSC and verify the biological significance of the identified co-clusters. The stochastic block model (SBM) serves as a fundamental and classic tool to study model- based community detection in a statistically principled way. It is a simple generative model but too restrictive to include empirical network characteristics. With the flexibility of the SBM, many SBM variants have been proposed to accommodate the real-world scenarios, such as node degree heterogeneity, mixed membership communities, and bipartite structure. In Chapter 3, we review a few extensions of the SBM, including degree-correction SBM, mixed membership SBM, and bipartite SBM. We conduct a survey about community detection methods based on the mixed membership SBM and bipartite SBM. We discuss these methods in detail and summarize the challenges in introducing degree-correction to the mixed membership SBM; the challenges in extending the degree-corrected mixed membership SBM to the bipartite network. To address some of the research gaps discussed in Chapter 3, we construct a generative bipartite degree-corrected mixed membership SBM in Chapter 4. To fit the model, we iii propose a variational expectation-maximization (EM) algorithm. We perform a preliminary simulation study in which the result suggests that the algorithm is sensitive to the initial values. We discuss the possible improvements for future directions. iv The dissertation of Yidan Sun is approved. Mark Stephen Handcock Yingnian Wu Sriram Sankararaman Jingyi Li, Committee Chair University of California, Los Angeles 2021 v To my mom and dad. vi TABLE OF CONTENTS List of Figures ...................................... x List of Tables ....................................... xii Acknowledgments .................................... xiii Vita ............................................. xiv 1 Introduction ...................................... 1 1.1 Background and Motivation . .1 1.2 Outline . .6 2 Bipartite Tight Spectral Clustering (BiTSC) Algorithm .......... 7 2.1 Introduction . .7 2.2 Methods . 10 2.2.1 Bipartite network formulation . 10 2.2.2 The BiTSC algorithm . 11 2.2.3 Six possible variants . 17 2.3 Results . 19 2.3.1 Simulation . 19 2.3.2 Real data analysis . 23 2.3.3 Bioinformatics gene function analysis . 31 2.4 Discussion . 34 2.5 Acknowledgments . 36 vii Appendices ........................................ 37 2.A Code . 37 2.B Evaluation metric of clustering result . 37 2.C Robustness analysis of input parameters . 38 2.D Choice of K0 in the real data application . 40 2.E Computational time . 41 3 A Survey of Mixed Membership SBMs and Bipartite SBMs ....... 56 3.1 Introduction . 56 3.2 Simple SBM . 58 3.3 Degree-correction SBM . 59 3.4 Mixed membership SBM . 61 3.5 Bipartite SBM . 67 3.6 Summary and discussion . 69 3.7 Acknowledgements . 70 4 A Bipartite Mixed Membership Stochastic Block Model .......... 72 4.1 Model . 72 4.2 Model fitting and variational EM algorithm . 75 4.2.1 Variational E step . 78 4.2.2 Variational M step . 80 4.2.3 Parameter estimation . 83 4.3 Preliminary simulation study . 85 4.4 Conclusion and future work . 87 4.5 Code . 90 viii 4.6 Acknowledgements . 90 Appendices ........................................ 92 4.A Details of updating φ ............................... 92 4.B Details of updating θ ............................... 92 4.B.1 Definitions . 93 4.B.2 Douglas-Rachford splitting method . 94 4.C The power law and the Pareto distribution . 94 5 Discussion ....................................... 96 Bibliography ....................................... 97 ix LIST OF FIGURES 2.1 Diagram illustrating the input and output of BiTSC . 11 2.2 Performance of BiTSC vs. (a) its six variant algorithms and (b) OrthoClust . 24 2.3 Comparison of BiTSC and OrthoClust in terms of their identified fly-worm gene co-clusters . 26 2.4 Visualization of the 16 gene co-clusters found by BiTSC from the fly-worm gene network . 30 2.5 Performance of BiTSC vs. OrthoClust . 41 2.6 Top five enriched BP GO terms in each of the 16 fly-worm gene co-clusters identified by BiTSC . 42 2.7 Boxplots of pairwise Pearson correlation coefficients in each species within each of the 16 fly-worm gene co-clusters identified by BiTSC . 43 2.8 Workflow of BiTSC . 44 2.9 The simulated bipartite network example . 45 2.10 Clustering performance of BiTSC and three variant algorithms as functions of K0, ρ and τ ........................................ 46 2.11 Clustering performance of BiTSC and three variant algorithms as functions of τ 47 2.12 Choice of K0 ..................................... 50 2.13 Robustness of the random selection of 1,000 unclustered genes . 52 2.14 MF and CC GO terms of the genes without BP GO terms in the 16 gene co-clusters identified by BiTSC . 53 2.15 Comparison of BiTSC and OrthoClust in terms of their identified co-clusters . 54 2.16 Comparison of BiTSC and OrthoClust in terms of link prediction performance on the fly-worm data set . 55 x 4.1 A diagram of the generative bipartite degree-corrected mixed membership stochastic block model. 75 4.2 The diagram of the variational distribution. 78 4.3 The simulation results in the non-degree-correction scenario. 88 4.4 The simulation results in the degree-correction scenario. 89 xi LIST OF TABLES 2.1 Fly-worm gene co-clusters identified by BiTSC . 29 2.2 Fly-worm gene co-clusters identified by OrthoClust (Section 2.3.2) . 48 2.3 Fly-worm gene co-clusters identified by OrthoClust (Section 2.3.2) . 49 3.1 List of (degree-corrected) mixed membership stochastic block models and (degree- corrected) bipartite stochastic block models. 71 xii ACKNOWLEDGMENTS I would like to thank my advisor Prof. Jingyi Jessica Li for the continuous support, help, patience, encouragement, and career guidance throughout my graduate study. I owe the successful completion of my thesis to her. I would not be where I am today without her help. I would like to thank my committee members, Prof. Mark Handcock, Prof. Yingnian Wu and Prof. Sriram Sankararaman, for their insightful suggestions and discussions on my dissertation. Special thanks to Prof. Mark Handcock, Prof. Nicolas Christou and Prof. Xin Tong, for their help in career guidance. I would like to thank my co-author Heather Zhou for the generous help. I would like to thank my friends, Kexin Li, Wei Li, Wenbin Guo, Ruochen Jiang, Dongyuan Song, Nan Xi, Guan’ao Yan, Yucheng Yang, Kun Zhou, Zhixin Zhou, and all the other members in the Junction of Statistics and Biology (http://jsb.ucla.edu), for their continuous support and encouragement. xiii VITA 2011 - 2015 B.S. in Mathematical Finance, Wuhan University 2015 - 2021 Ph.D.
Recommended publications
  • A Method to Infer Changed Activity of Metabolic Function from Transcript Profiles
    ModeScore: A Method to Infer Changed Activity of Metabolic Function from Transcript Profiles Andreas Hoppe and Hermann-Georg Holzhütter Charité University Medicine Berlin, Institute for Biochemistry, Computational Systems Biochemistry Group [email protected] Abstract Genome-wide transcript profiles are often the only available quantitative data for a particular perturbation of a cellular system and their interpretation with respect to the metabolism is a major challenge in systems biology, especially beyond on/off distinction of genes. We present a method that predicts activity changes of metabolic functions by scoring reference flux distributions based on relative transcript profiles, providing a ranked list of most regulated functions. Then, for each metabolic function, the involved genes are ranked upon how much they represent a specific regulation pattern. Compared with the naïve pathway-based approach, the reference modes can be chosen freely, and they represent full metabolic functions, thus, directly provide testable hypotheses for the metabolic study. In conclusion, the novel method provides promising functions for subsequent experimental elucidation together with outstanding associated genes, solely based on transcript profiles. 1998 ACM Subject Classification J.3 Life and Medical Sciences Keywords and phrases Metabolic network, expression profile, metabolic function Digital Object Identifier 10.4230/OASIcs.GCB.2012.1 1 Background The comprehensive study of the cell’s metabolism would include measuring metabolite concentrations, reaction fluxes, and enzyme activities on a large scale. Measuring fluxes is the most difficult part in this, for a recent assessment of techniques, see [31]. Although mass spectrometry allows to assess metabolite concentrations in a more comprehensive way, the larger the set of potential metabolites, the more difficult [8].
    [Show full text]
  • RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY
    RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY Proceedings of the 5th WSEAS International Conference on CELLULAR and MOLECULAR BIOLOGY, BIOPHYSICS and BIOENGINEERING (BIO '09) Proceedings of the 3rd WSEAS International Conference on COMPUTATIONAL CHEMISTRY (COMPUCHEM '09) Puerto De La Cruz, Tenerife, Canary Islands, Spain December 14-16, 2009 Recent Advances in Biology and Biomedicine A Series of Reference Books and Textbooks Published by WSEAS Press ISSN: 1790-5125 www.wseas.org ISBN: 978-960-474-141-0 RECENT ADVANCES in BIOLOGY, BIOPHYSICS, BIOENGINEERING and COMPUTATIONAL CHEMISTRY Proceedings of the 5th WSEAS International Conference on CELLULAR and MOLECULAR BIOLOGY, BIOPHYSICS and BIOENGINEERING (BIO '09) Proceedings of the 3rd WSEAS International Conference on COMPUTATIONAL CHEMISTRY (COMPUCHEM '09) Puerto De La Cruz, Tenerife, Canary Islands, Spain December 14-16, 2009 Recent Advances in Biology and Biomedicine A Series of Reference Books and Textbooks Published by WSEAS Press www.wseas.org Copyright © 2009, by WSEAS Press All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press. All papers of the present volume were peer reviewed
    [Show full text]
  • The Kyoto Encyclopedia of Genes and Genomes (KEGG)
    Kyoto Encyclopedia of Genes and Genome Minoru Kanehisa Institute for Chemical Research, Kyoto University HFSPO Workshop, Strasbourg, November 18, 2016 The KEGG Databases Category Database Content PATHWAY KEGG pathway maps Systems information BRITE BRITE functional hierarchies MODULE KEGG modules KO (KEGG ORTHOLOGY) KO groups for functional orthologs Genomic information GENOME KEGG organisms, viruses and addendum GENES / SSDB Genes and proteins / sequence similarity COMPOUND Chemical compounds GLYCAN Glycans Chemical information REACTION / RCLASS Reactions / reaction classes ENZYME Enzyme nomenclature DISEASE Human diseases DRUG / DGROUP Drugs / drug groups Health information ENVIRON Health-related substances (KEGG MEDICUS) JAPIC Japanese drug labels DailyMed FDA drug labels 12 manually curated original DBs 3 DBs taken from outside sources and given original annotations (GENOME, GENES, ENZYME) 1 computationally generated DB (SSDB) 2 outside DBs (JAPIC, DailyMed) KEGG is widely used for functional interpretation and practical application of genome sequences and other high-throughput data KO PATHWAY GENOME BRITE DISEASE GENES MODULE DRUG Genome Molecular High-level Practical Metagenome functions functions applications Transcriptome etc. Metabolome Glycome etc. COMPOUND GLYCAN REACTION Funding Annual budget Period Funding source (USD) 1995-2010 Supported by 10+ grants from Ministry of Education, >2 M Japan Society for Promotion of Science (JSPS) and Japan Science and Technology Agency (JST) 2011-2013 Supported by National Bioscience Database Center 0.8 M (NBDC) of JST 2014-2016 Supported by NBDC 0.5 M 2017- ? 1995 KEGG website made freely available 1997 KEGG FTP site made freely available 2011 Plea to support KEGG KEGG FTP academic subscription introduced 1998 First commercial licensing Contingency Plan 1999 Pathway Solutions Inc.
    [Show full text]
  • Applied Category Theory for Genomics – an Initiative
    Applied Category Theory for Genomics { An Initiative Yanying Wu1,2 1Centre for Neural Circuits and Behaviour, University of Oxford, UK 2Department of Physiology, Anatomy and Genetics, University of Oxford, UK 06 Sept, 2020 Abstract The ultimate secret of all lives on earth is hidden in their genomes { a totality of DNA sequences. We currently know the whole genome sequence of many organisms, while our understanding of the genome architecture on a systematic level remains rudimentary. Applied category theory opens a promising way to integrate the humongous amount of heterogeneous informations in genomics, to advance our knowledge regarding genome organization, and to provide us with a deep and holistic view of our own genomes. In this work we explain why applied category theory carries such a hope, and we move on to show how it could actually do so, albeit in baby steps. The manuscript intends to be readable to both mathematicians and biologists, therefore no prior knowledge is required from either side. arXiv:2009.02822v1 [q-bio.GN] 6 Sep 2020 1 Introduction DNA, the genetic material of all living beings on this planet, holds the secret of life. The complete set of DNA sequences in an organism constitutes its genome { the blueprint and instruction manual of that organism, be it a human or fly [1]. Therefore, genomics, which studies the contents and meaning of genomes, has been standing in the central stage of scientific research since its birth. The twentieth century witnessed three milestones of genomics research [1]. It began with the discovery of Mendel's laws of inheritance [2], sparked a climax in the middle with the reveal of DNA double helix structure [3], and ended with the accomplishment of a first draft of complete human genome sequences [4].
    [Show full text]
  • 3 13437143.Pdf
    Title Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones Imanishi, Tadashi; Itoh, Takeshi; Suzuki, Yutaka; O'Donovan, Claire; Fukuchi, Satoshi; Koyanagi, Kanako O.; Barrero, Roberto A.; Tamura, Takuro; Yamaguchi-Kabata, Yumi; Tanino, Motohiko; Yura, Kei; Miyazaki, Satoru; Ikeo, Kazuho; Homma, Keiichi; Kasprzyk, Arek; Nishikawa, Tetsuo; Hirakawa, Mika; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Ashurst, Jennifer; Jia, Libin; Nakao, Mitsuteru; Thomas, Michael A.; Mulder, Nicola; Karavidopoulou, Youla; Jin, Lihua; Kim, Sangsoo; Yasuda, Tomohiro; Lenhard, Boris; Eveno, Eric; Suzuki, Yoshiyuki; Yamasaki, Chisato; Takeda, Jun-ichi; Gough, Craig; Hilton, Phillip; Fujii, Yasuyuki; Sakai, Hiroaki; Tanaka, Susumu; Amid, Clara; Bellgard, Matthew; Bonaldo, Maria de Fatima; Bono, Hidemasa; Bromberg, Susan K.; Brookes, Anthony J.; Bruford, Elspeth; Carninci, Piero; Chelala, Claude; Couillault, Christine; Souza, Sandro J. de; Debily, Marie-Anne; Devignes, Marie-Dominique; Dubchak, Inna; Endo, Toshinori; Estreicher, Anne; Eyras, Eduardo; Fukami-Kobayashi, Kaoru; R. Gopinath, Gopal; Graudens, Esther; Hahn, Yoonsoo; Han, Michael; Han, Ze-Guang; Hanada, Kousuke; Hanaoka, Hideki; Harada, Erimi; Hashimoto, Katsuyuki; Hinz, Ursula; Hirai, Momoki; Hishiki, Teruyoshi; Hopkinson, Ian; Imbeaud, Sandrine; Inoko, Hidetoshi; Kanapin, Alexander; Kaneko, Yayoi; Kasukawa, Takeya; Kelso, Janet; Kersey, Author(s) Paul; Kikuno, Reiko; Kimura, Kouichi; Korn, Bernhard; Kuryshev, Vladimir; Makalowska, Izabela; Makino, Takashi; Mano, Shuhei;
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Unsupervised And
    UNIVERSITY OF CALIFORNIA RIVERSIDE Unsupervised and Zero-Shot Learning for Open-Domain Natural Language Processing A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science by Muhammad Abu Bakar Siddique June 2021 Dissertation Committee: Dr. Evangelos Christidis, Chairperson Dr. Amr Magdy Ahmed Dr. Samet Oymak Dr. Evangelos Papalexakis Copyright by Muhammad Abu Bakar Siddique 2021 The Dissertation of Muhammad Abu Bakar Siddique is approved: Committee Chairperson University of California, Riverside To my family for their unconditional love and support. i ABSTRACT OF THE DISSERTATION Unsupervised and Zero-Shot Learning for Open-Domain Natural Language Processing by Muhammad Abu Bakar Siddique Doctor of Philosophy, Graduate Program in Computer Science University of California, Riverside, June 2021 Dr. Evangelos Christidis, Chairperson Natural Language Processing (NLP) has yielded results that were unimaginable only a few years ago on a wide range of real-world tasks, thanks to deep neural networks and the availability of large-scale labeled training datasets. However, existing supervised methods assume an unscalable requirement that labeled training data is available for all classes: the acquisition of such data is prohibitively laborious and expensive. Therefore, zero-shot (or unsupervised) models that can seamlessly adapt to new unseen classes are indispensable for NLP methods to work in real-world applications effectively; such models mitigate (or eliminate) the need for collecting and annotating data for each domain. This dissertation ad- dresses three critical NLP problems in contexts where training data is scarce (or unavailable): intent detection, slot filling, and paraphrasing. Having reliable solutions for the mentioned problems in the open-domain setting pushes the frontiers of NLP a step towards practical conversational AI systems.
    [Show full text]
  • UNIVERSITY of CALIFORNIA SAN DIEGO Making Sense of Microbial
    UNIVERSITY OF CALIFORNIA SAN DIEGO Making sense of microbial populations from representative samples A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science by James T. Morton Committee in charge: Professor Rob Knight, Chair Professor Pieter Dorrestein Professor Rachel Dutton Professor Yoav Freund Professor Siavash Mirarab 2018 Copyright James T. Morton, 2018 All rights reserved. The dissertation of James T. Morton is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California San Diego 2018 iii DEDICATION To my friends and family who paved the road and lit the journey. iv EPIGRAPH The ‘paradox’ is only a conflict between reality and your feeling of what reality ‘ought to be’ —Richard Feynman v TABLE OF CONTENTS Signature Page . iii Dedication . iv Epigraph . .v Table of Contents . vi List of Abbreviations . ix List of Figures . .x List of Tables . xi Acknowledgements . xii Vita ............................................. xiv Abstract of the Dissertation . xvii Chapter 1 Methods for phylogenetic analysis of microbiome data . .1 1.1 Introduction . .2 1.2 Phylogenetic Inference . .4 1.3 Phylogenetic Comparative Methods . .6 1.4 Ancestral State Reconstruction . .9 1.5 Analysis of phylogenetic variables . 11 1.6 Using Phylogeny-Aware Distances . 15 1.7 Challenges of phylogenetic analysis . 18 1.8 Discussion . 19 1.9 Acknowledgements . 21 Chapter 2 Uncovering the horseshoe effect in microbial analyses . 23 2.1 Introduction . 24 2.2 Materials and Methods . 34 2.3 Acknowledgements . 35 Chapter 3 Balance trees reveal microbial niche differentiation . 36 3.1 Introduction .
    [Show full text]
  • A Computational and Evolutionary Approach to Understanding Cryptic Unstable Transcripts in Yeast
    A Computational and Evolutionary Approach to Understanding Cryptic Unstable Transcripts in Yeast By Jessica M. Vera B.S. University of Wisconsin-Madison, 2007 A thesis submitted to the Faculty of the Graduate School in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Molecular, Cellular, and Developmental Biology 2015 This thesis entitled: A Computational and Evolutionary Approach to Understanding Cryptic Unstable Transcripts in Yeast written by Jessica M. Vera has been approved for the Department of Molecular, Cellular, and Developmental Biology Tom Blumenthal Robin Dowell Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline iii Vera, Jessica M. (Ph.D., Molecular, Cellular and Developmental Biology) A Computational and Evolutionary Approach to Understanding Cryptic Unstable Transcripts in Yeast Thesis Directed by Robin Dowell Cryptic unstable transcripts (CUTs) are a largely unexplored class of nuclear exosome degraded, non-coding RNAs in budding yeast. It is highly debated whether CUT transcription has a functional role in the cell or whether CUTs represent noise in the yeast transcriptome. I sought to ascertain the extent of conserved CUT expression across a variety of Saccharomyces yeast strains to further understand and characterize the nature of CUT expression. To this end I designed a Hidden Markov Model (HMM) to analyze strand-specific RNA sequencing data from nuclear exosome rrp6Δ mutants to identify and compare CUTs in four different yeast strains: S288c, Σ1278b, JAY291 (S.cerevisiae) and N17 (S.paradoxus).
    [Show full text]
  • Standardised Benchmarking in the Quest for Orthologs
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH Standardised Benchmarking in the Quest for Orthologs The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Altenhoff, A. M., B. Boeckmann, S. Capella-Gutierrez, D. A. Dalquen, T. DeLuca, K. Forslund, J. Huerta-Cepas, et al. 2016. “Standardised Benchmarking in the Quest for Orthologs.” Nature methods 13 (5): 425-430. doi:10.1038/nmeth.3830. http://dx.doi.org/10.1038/ nmeth.3830. Published Version doi:10.1038/nmeth.3830 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29408292 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Methods Manuscript Author . Author manuscript; Manuscript Author available in PMC 2016 October 04. Published in final edited form as: Nat Methods. 2016 May ; 13(5): 425–430. doi:10.1038/nmeth.3830. Standardised Benchmarking in the Quest for Orthologs Adrian M. Altenhoff1,2, Brigitte Boeckmann3, Salvador Capella-Gutierrez4,5,6, Daniel A. Dalquen7, Todd DeLuca8, Kristoffer Forslund9, Jaime Huerta-Cepas9, Benjamin Linard10, Cécile Pereira11,12, Leszek P. Pryszcz4, Fabian Schreiber13, Alan Sousa da Silva13, Damian Szklarczyk14,15, Clément-Marie Train1, Peer Bork9,16,17, Odile Lecompte18, Christian von Mering14,15, Ioannis Xenarios3,19,20, Kimmen Sjölander21, Lars Juhl Jensen22, Maria J.
    [Show full text]
  • Genbank by Walter B
    GenBank by Walter B. Goad o understand the significance of the information stored in memory—DNA—to the stuff of activity—proteins. The idea that GenBank, you need to know a little about molecular somehow the bases in DNA determine the amino acids in proteins genetics. What that field deals with is self-replication—the had been around for some time. In fact, George Gamow suggested in T process unique to life—and mutation and 1954, after learning about the structure proposed for DNA, that a recombination—the processes responsible for evolution-at the triplet of bases corresponded to an amino acid. That suggestion was fundamental level of the genes in DNA. This approach of working shown to be true, and by 1965 most of the genetic code had been from the blueprint, so to speak, of a living system is very powerful, deciphered. Also worked out in the ’60s were many details of what and studies of many other aspects of life—the process of learning, for Crick called the central dogma of molecular genetics—the now example—are now utilizing molecular genetics. firmly established fact that DNA is not translated directly to proteins Molecular genetics began in the early ’40s and was at first but is first transcribed to messenger RNA. This molecule, a nucleic controversial because many of the people involved had been trained acid like DNA, then serves as the template for protein synthesis. in the physical sciences rather than the biological sciences, and yet These great advances prompted a very distinguished molecular they were answering questions that biologists had been asking for geneticist to predict, in 1969, that biology was just about to end since years.
    [Show full text]
  • Program Book
    Pacific Symposium on Biocomputing 2016 January 4-8, 2016 Big Island of Hawaii Program Book PACIFIC SYMPOSIUM ON BIOCOMPUTING 2016 Big Island of Hawaii, January 4-8, 2016 Welcome to PSB 2016! We have prepared this program book to give you quick access to information you need for PSB 2016. Enclosed you will find • Logistics information • Menus for PSB hosted meals • Full conference schedule • Call for Session and Workshop Proposals for PSB 2017 • Poster/abstract titles and authors • Participant List Conference materials are also available online at http://psb.stanford.edu/conference-materials/. PSB 2016 gratefully acknowledges the support the Institute for Computational Biology, a collaborative effort of Case Western Reserve University, the Cleveland Clinic Foundation, and University Hospitals; the National Institutes of Health (NIH), the National Science Foundation (NSF); and the International Society for Computational Biology (ISCB). If you or your institution are interested in sponsoring, PSB, please contact Tiffany Murray at [email protected] If you have any questions, the PSB registration staff (Tiffany Murray, Georgia Hansen, Brant Hansen, Kasey Miller, and BJ Morrison-McKay) are happy to help you. Aloha! Russ Altman Keith Dunker Larry Hunter Teri Klein Maryln Ritchie The PSB 2016 Organizers PACIFIC SYMPOSIUM ON BIOCOMPUTING 2016 Big Island of Hawaii, January 4-8, 2016 SPEAKER INFORMATION Oral presentations of accepted proceedings papers will take place in Salon 2 & 3. Speakers are allotted 10 minutes for presentation and 5 minutes for questions for a total of 15 minutes. Instructions for uploading talks were sent to authors with oral presentations. If you need assistance with this, please see Tiffany Murray or another PSB staff member.
    [Show full text]
  • Multiscale Modeling in Systems Biology
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2051 Multiscale Modeling in Systems Biology Methods and Perspectives ADRIEN COULIER ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-1225-5 UPPSALA URN urn:nbn:se:uu:diva-442412 2021 Dissertation presented at Uppsala University to be publicly examined in 2446 ITC, Lägerhyddsvägen 2, Uppsala, Friday, 10 September 2021 at 10:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Mark Chaplain (University of St Andrews). Abstract Coulier, A. 2021. Multiscale Modeling in Systems Biology. Methods and Perspectives. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2051. 60 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1225-5. In the last decades, mathematical and computational models have become ubiquitous to the field of systems biology. Specifically, the multiscale nature of biological processes makes the design and simulation of such models challenging. In this thesis we offer a perspective on available methods to study and simulate such models and how they can be combined to handle biological processes evolving at different scales. The contribution of this thesis is threefold. First, we introduce Orchestral, a multiscale modular framework to simulate multicellular models. By decoupling intracellular chemical kinetics, cell-cell signaling, and cellular mechanics by means of operator-splitting, it is able to combine existing software into one massively parallel simulation. Its modular structure makes it easy to replace its components, e.g. to adjust the level of modeling details. We demonstrate the scalability of our framework on both high performance clusters and in a cloud environment.
    [Show full text]