Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chloroplast Transit Peptides: Structure, Function and Evolution
reviews Chloroplast transit Although the first demonstration of precursor trans- port into chloroplasts was shown over two decades peptides: structure, ago3,4, only now is this area of cell biology becom- ing well understood. Many excellent reviews have been published recently on the evolution of plas- function and tids5, the evolution of organelle genomes6, the mechanism of gene transfer from organelles to the nucleus7 and the mechanism of protein import into evolution chloroplasts8,9. Proteins destined to plastids and other organ- elles share in common the requirement for ‘new’ Barry D. Bruce sequence information to facilitate their correct trafficking within the cell. Although in most cases this information resides in a cleavable, N-terminal sequence often collectively referred to as signal It is thought that two to three thousand different proteins are sequence, the different organelle-targeting se- targeted to the chloroplast, and the ‘transit peptides’ that act as quences have distinct properties and names: ‘signal peptides’ for the endoplasmic reticulum, chloroplast targeting sequences are probably the largest class of ‘presequences’ for the mitochondria and ‘transit peptides’ for chloroplasts and other plastids. This targeting sequences in plants. At a primary structural level, transit review focuses on recent progress in dissecting peptide sequences are highly divergent in length, composition and the role of the stromal-targeting domain of chloro- plast transit peptides. I will consider briefly the organization. An emerging concept suggests that transit peptides multitude of distinct functions that transit peptides contain multiple domains that provide either distinct or overlapping perform, provide an update on the limited struc- tural information of a number of transit peptides functions. -
Centrosome-Nuclear Envelope Tethering and Microtubule Motor
bioRxiv preprint doi: https://doi.org/10.1101/442368; this version posted October 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Centrosome-nuclear envelope tethering and microtubule motor-based pulling forces collaborate in centrosome positioning during mitotic entry Vincent Boudreau1, Richard Chen1, Alan Edwards1, Muhammad Sulaimain1, Paul S. Maddox1* 1 Department of Biology, University of North Carolina at Chapel Hill * Direct all correspondence to this author at [email protected]. Centrosome positioning relative to the nucleus and cell nuclear envelope and at the cortex to ensure proper centrosome shape is highly regulated across cell types, during cell migration positioning (De Simone et al., 2016). Dynein regulators including and during spindle formation in cell division. Across most sexual- LIS-1 are also required for centrosome separation in the embryo ly reproducing animals, centrosomes are provided to the oocyte (Cockell et al., 2004), although their spatio-temporal contributions through fertilization and must be positioned properly to establish remain elusive. Despite our understanding of microtubule cyto- the zygotic mitotic spindle. How centrosomes are positioned in skeleton-based pulling forces, the contribution of key mitotic kinas- space and time through the concerted action of key mitotic en- es and phosphatases to centrosome positioning remains unclear. try biochemical regulators including Protein Phosphatase 2A The net effect of molecular regulators is a biophysical (PP2A-B55/SUR-6), biophysical regulators including Dynein mechanism required for positioning centrosomes during mitotic and the nuclear lamina is unclear. -
The Role of Model Organisms in the History of Mitosis Research
Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press The Role of Model Organisms in the History of Mitosis Research Mitsuhiro Yanagida Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan Correspondence: [email protected] Mitosis is a cell-cycle stage during which condensed chromosomes migrate to the middle of the cell and segregate into two daughter nuclei before cytokinesis (cell division) with the aid of a dynamic mitotic spindle. The history of mitosis research is quite long, commencing well before the discovery of DNA as the repository of genetic information. However, great and rapid progress has been made since the introduction of recombinant DNA technology and discovery of universal cell-cycle control. A large number of conserved eukaryotic genes required for the progression from early to late mitotic stages have been discovered, confirm- ing that DNA replication and mitosis are the two main events in the cell-division cycle. In this article, a historical overview of mitosis is given, emphasizing the importance of diverse model organisms that have been used to solve fundamental questions about mitosis. Onko Chisin—An attempt to discover new truths by checkpoint [SAC]), then metaphase (in which studying the past through scrutiny of the old. the chromosomes are aligned in the middle of cell), anaphase A (in which identical sister chro- matids comprising individual chromosomes LARGE SALAMANDER CHROMOSOMES separate and move toward opposite poles of ENABLED THE FIRST DESCRIPTION the cell), anaphase B (in which the spindle elon- OF MITOSIS gates as the chromosomes approach the poles), itosis means “thread” in Greek. -
Introduction to the Cell Cell History Cell Structures and Functions
Introduction to the cell cell history cell structures and functions CK-12 Foundation December 16, 2009 CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high quality educational content that will serve both as core text as well as provide an adaptive environment for learning. Copyright ©2009 CK-12 Foundation This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Contents 1 Cell structure and function dec 16 5 1.1 Lesson 3.1: Introduction to Cells .................................. 5 3 www.ck12.org www.ck12.org 4 Chapter 1 Cell structure and function dec 16 1.1 Lesson 3.1: Introduction to Cells Lesson Objectives • Identify the scientists that first observed cells. • Outline the importance of microscopes in the discovery of cells. • Summarize what the cell theory proposes. • Identify the limitations on cell size. • Identify the four parts common to all cells. • Compare prokaryotic and eukaryotic cells. Introduction Knowing the make up of cells and how cells work is necessary to all of the biological sciences. Learning about the similarities and differences between cell types is particularly important to the fields of cell biology and molecular biology. -
Centrosome Abnormalities in Cancer Cells and Tissue
Centrosome abnormalities in cancer cells and tissue Heide Schatten,* Maureen Ripple,** Ron Balczon,*** and Meghan Taylor* *Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211 ** University of Wisconsin Comprehensive Cancer Center, Department of Medicine, Environmental Toxicology Center, and the William S. Middleton Veterans Administration Hospital, University of Wisconsin, Madison, WI 53792 *** Department of Structural and Cellular Biology, The University of South Alabama, Mobile, AL 36688 This paper addresses cancer as a disease characterized by uncontrolled cell divisions in which the molecular controls for cytoskeletal regulation are bypassed. The focus of our studies are on centrosomes, microtubule-organizing cell organelles which are crucial for the organization of the mitotic apparatus during mitosis and cell division (1). The importance of centrosomes during normal cell division had been recognized by the classical cytologist Theodor Boveri (2) who also recognized that centrosome abnormalities are observed during cancer (3). Following up on these studies, we analyzed centrosome structure and function in the prostate cancer cell lines LNCaP and DU145 (45) as well as in fresh and archived prostate cancer tissue. Cancer cells and tissue was compared with normal human foreskin fibroblast (HFF) cells. The goal of these studies was to investigate the organization and the structural behavior of centrosomes in cancer and normal cells. Transmission electron microscopy of whole cells revealed centrosome and spindle abnormalities resulting in tri- and multipolar spindles in LNCaP and DU145 cells during mitosis which was not observed in normal HFF cells. Figure 1 depicts one section through a DU145 prostate cancer ceil with abnormal mitosis. Tri- and multipolar spindles are the result of centrosome instability which will lead to imbalances in chromosome distribution. -
Principles of Human Anatomy
Principles of Cells Human Anatomy Cells are the basic living structural, Eleventh Edition functional unit of the body Gerard J. Tortora Cytology is the branch of science that & studies cells Mark T. Nielsen The human body has 100 trillion cells 200 CHAPTER 2 different cell types with a variety of Cells shapes, sizes and functions. Copyright © 2007 by John Wiley & Sons, Inc. Cell Diversity Generalized Cell Sizes (diameter) Ovum – 140 µm RBC – 8 µm Major parts of a cell µm = 1/10,000 of a cm Shapes Plasma membrane Flat Cytoplasm Oval Cubed Organelles Star shaped Elongated Inclusions Concave Structures Flagella Cilia Microvilli Fluid mosaic model of the plasma membrane Membrane Lipids Phospholipids – 75% Lipid bilayer Glycolipids – 5% Self recognition Cholesterol – 20% Maintains integrity Maintains fluidity Membrane Proteins Functions of the Cell Membrane Integral proteins Extend across the Communication phospholipid bilayer Shape & protection Channels Pores Maintains the electrochemical gradient Receptors Electrical separation of charge Transporters Enzymes Chemical (concentration gradient) Peripheral proteins Selective permeability Loosely attached to inner or outer surface Some substances easily travel across the Enzymes membrane and others do not Cytoskeletal anchors Membrane Transport Membrane Transport Active transport (uses ATP) Passive transport (kinetic energy not ATP) Primary active transport Net diffusion Molecule mover hydrolyzes ATP Movement of molecules from [high] to [low] -
Centrosome Positioning in Vertebrate Development
Commentary 4951 Centrosome positioning in vertebrate development Nan Tang1,2,*,` and Wallace F. Marshall2,` 1Department of Anatomy, Cardiovascular Research Institute, The University of California, San Francisco, USA 2Department Biochemistry and Biophysics, The University of California, San Francisco, USA *Present address: National Institute of Biological Science, Beijing, China `Authors for correspondence ([email protected]; [email protected]) Journal of Cell Science 125, 4951–4961 ß 2012. Published by The Company of Biologists Ltd doi: 10.1242/jcs.038083 Summary The centrosome, a major organizer of microtubules, has important functions in regulating cell shape, polarity, cilia formation and intracellular transport as well as the position of cellular structures, including the mitotic spindle. By means of these activities, centrosomes have important roles during animal development by regulating polarized cell behaviors, such as cell migration or neurite outgrowth, as well as mitotic spindle orientation. In recent years, the pace of discovery regarding the structure and composition of centrosomes has continuously accelerated. At the same time, functional studies have revealed the importance of centrosomes in controlling both morphogenesis and cell fate decision during tissue and organ development. Here, we review examples of centrosome and centriole positioning with a particular emphasis on vertebrate developmental systems, and discuss the roles of centrosome positioning, the cues that determine positioning and the mechanisms by which centrosomes respond to these cues. The studies reviewed here suggest that centrosome functions extend to the development of tissues and organs in vertebrates. Key words: Centrosome, Development, Mitotic spindle orientation Introduction radiating out to the cell cortex (Fig. 2A). In some cases, the The centrosome of animal cells (Fig. -
Chromosomal Theory and Genetic Linkage
362 Chapter 13 | Modern Understandings of Inheritance 13.1 | Chromosomal Theory and Genetic Linkage By the end of this section, you will be able to do the following: • Discuss Sutton’s Chromosomal Theory of Inheritance • Describe genetic linkage • Explain the process of homologous recombination, or crossing over • Describe chromosome creation • Calculate the distances between three genes on a chromosome using a three-point test cross Long before scientists visualized chromosomes under a microscope, the father of modern genetics, Gregor Mendel, began studying heredity in 1843. With improved microscopic techniques during the late 1800s, cell biologists could stain and visualize subcellular structures with dyes and observe their actions during cell division and meiosis. With each mitotic division, chromosomes replicated, condensed from an amorphous (no constant shape) nuclear mass into distinct X-shaped bodies (pairs of identical sister chromatids), and migrated to separate cellular poles. Chromosomal Theory of Inheritance The speculation that chromosomes might be the key to understanding heredity led several scientists to examine Mendel’s publications and reevaluate his model in terms of chromosome behavior during mitosis and meiosis. In 1902, Theodor Boveri observed that proper sea urchin embryonic development does not occur unless chromosomes are present. That same year, Walter Sutton observed chromosome separation into daughter cells during meiosis (Figure 13.2). Together, these observations led to the Chromosomal Theory of Inheritance, which identified chromosomes as the genetic material responsible for Mendelian inheritance. Figure 13.2 (a) Walter Sutton and (b) Theodor Boveri developed the Chromosomal Theory of Inheritance, which states that chromosomes carry the unit of heredity (genes). -
The Emerging Role of Ncrnas and RNA-Binding Proteins in Mitotic Apparatus Formation
non-coding RNA Review The Emerging Role of ncRNAs and RNA-Binding Proteins in Mitotic Apparatus Formation Kei K. Ito, Koki Watanabe and Daiju Kitagawa * Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; [email protected] (K.K.I.); [email protected] (K.W.) * Correspondence: [email protected] Received: 11 November 2019; Accepted: 13 March 2020; Published: 20 March 2020 Abstract: Mounting experimental evidence shows that non-coding RNAs (ncRNAs) serve a wide variety of biological functions. Recent studies suggest that a part of ncRNAs are critically important for supporting the structure of subcellular architectures. Here, we summarize the current literature demonstrating the role of ncRNAs and RNA-binding proteins in regulating the assembly of mitotic apparatus, especially focusing on centrosomes, kinetochores, and mitotic spindles. Keywords: ncRNA; centrosome; kinetochore; mitotic spindle 1. Introduction Non-coding RNAs (ncRNAs) are defined as a class of RNA molecules that are transcribed from genomic DNA, but not translated into proteins. They are mainly classified into the following two categories according to their length—small RNA (<200 nt) and long non-coding RNA (lncRNA) (>200 nt). Small RNAs include traditional RNA molecules, such as transfer RNA (tRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), PIWI-interacting RNA (piRNA), and micro RNA (miRNA), and they have been studied extensively [1]. Research on lncRNA is behind that on small RNA despite that recent transcriptome analysis has revealed that more than 120,000 lncRNAs are generated from the human genome [2–4]. -
Chromosomal-Theory.Pdf
DNA Is The Stuff Of Life Phil McClean Septemeber 2005 The research of Gregor Mendel dramatically changed our perception of heredity. His conclusion that a trait was controlled by a particulate factor suggested that some physical entity existed that controlled heredity. Mendel’s 1st Law, the law of segregation, suggested the factor was somehow reduced when it was passed onto what we know now is the gamete. We also know that this reduction event occurs during meiosis. Mendel’s 2nd Law, the law of independent assortment, implied that each trait was controlled by a unique factor. As significant as the discoveries of Mendel were, they did not consider the actual physical entity that controls heredity. A separate set of conclusions, many based on simple empirical scientific observation, lead to the eventual determination that these factors reside on chromosomes, and that DNA was the heredity material. Genes Reside on Chromosomes From 1879-1892, Flemming, Strasburger, Waldeyer, van Beneden, and Weismann made significant contributions to our concepts of chromosomes. Flemming (1882) observed structures in the nucleus of salamanders that bound dye, and these structures had a string like appearance. He termed the structures chromatin (or colored substance). He also developed the concept of cell division that he later termed mitosis. The universality of this discovery is attributed to Strasburger who discovered the same process in plants. Waldeyer, in 1888, called the structures that divided during mitosis chromosomes (or colored bodies). Weismann made the very critical observation that sperm and egg cells contain exactly half the number of chromosomes. van Beneden further observed that when a sperm cell fertilizes an egg, the result is the diploid chromosome number found in cells that undergo mitosis. -
The Central Role of Centrosomes in Translocation of Mitochondria and Centrosome Proteins
916 Microsc Microanal 11(Suppl 2), 2005 DOI: 10.1017/S1431927605505798 Copyright 2005 Microscopy Society of America The central role of centrosomes in translocation of mitochondria and centrosome proteins H. Schatten*, Z.H. Liu**, Y.H Hao**, L.X Lai**, D.Wax**, M. Samuel**, Q.-Y. Sun***, and R.S. Prather** *Dept. of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211 **Division of Animal Science, University of Missouri-Columbia, Columbia MO 65211 ***State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P.R. China Centrosomes are central cell bodies that are predominantly known for their role as microtubule organizing centers. However, by nucleating and organizing microtubules into specific patterns, centrosomes play also a crucial role in directing the translocation of cell organelles, vesicles, and proteins to their functional destinations. Here we review translocation of mitochondria and the nuclear mitotic apparatus protein (NuMA) in somatic cells and during oocyte maturation, parthenogenetic activation, fertilization, nuclear cloning, and development in porcine oocytes. Our studies have shown that a temporal, spatial, and developmental relationship exists between microtubule organization and the progressive translocation of mitochondria and NuMA allowing dynamic and precisely coordinated cell and molecular interactions. During normal fertilization in most species centrosomes are crucial for the organization of the sperm aster that unites maternal and paternal genomes during fertilization and for the equal distribution of DNA and cell organelles during cell division, cell differentiation, and development [1,2,3,4,5,6]. Mitochondria play a significant role in cellular metabolism by providing energy in form of ATP that is required for specific cell cycle and developmental events. -
Theodor and Marcella Boveri : Chromosomes and Cytoplasm in Heredity and Development Satzinger, Helga 2008
Repositorium für die Geschlechterforschung Theodor and Marcella Boveri : chromosomes and cytoplasm in heredity and development Satzinger, Helga 2008 https://doi.org/10.25595/151 Veröffentlichungsversion / published version Zeitschriftenartikel / journal article Empfohlene Zitierung / Suggested Citation: Satzinger, Helga: Theodor and Marcella Boveri : chromosomes and cytoplasm in heredity and development, in: Nature reviews : Genetics, Jg. 9 (2008) Nr. 3, 231-238. DOI: https://doi.org/10.25595/151. Erstmalig hier erschienen / Initial publication here: https://doi.org/10.1038/nrg2311 Nutzungsbedingungen: Terms of use: Dieser Text wird unter einer CC BY 4.0 Lizenz (Namensnennung) This document is made available under a CC BY 4.0 License zur Verfügung gestellt. Nähere Auskünfte zu dieser Lizenz finden (Attribution). For more information see: Sie hier: https://creativecommons.org/licenses/by/4.0/deed.en https://creativecommons.org/licenses/by/4.0/deed.de www.genderopen.de PERspECtiVES passion for botany and music. The young SERIE S O N H I S TORICAL PROFILE S — T IME L INE Boveri, as passionate as his parents about arts and music, was destined to become Theodor and Marcella Boveri: an engineer or architect, to which end he attended the Realgymnasium — a school focusing on sciences and mathematics. In chromosomes and cytoplasm in 1881 he enrolled at the University of Munich, Germany, beginning with courses in history, heredity and development philosophy and classical languages. However, after one term he changed to anatomy, became Helga Satzinger an assistant to the anatomist Carl von Kupffer and eventually finished his doctoral disserta- Abstract | The chromosome theory of heredity, developed in 1902–1904, became tion on nerve fibres under Kupffer’s supervi- one of the foundation stones of twentieth-century genetics.