Developing the Chromosome Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Walter Sutton 11.1 Walter Sutton Discovered the Connection Between Inheritance and Chromosomes, a Concept We Take for Granted Today
Name: Date: Walter Sutton 11.1 Walter Sutton discovered the connection between inheritance and chromosomes, a concept we take for granted today. This connection set the stage for the development of modern molecular biology. Beginnings of innovation One particular grasshopper species was bigger than the others. When Sutton examined dissected tissue of Walter Sutton was born in the grasshopper, he observed very large cells under Utica, New York on April 5, his microscope. He prepared some samples and sent 1877. When Walter was then back to McClung, with the recommendation they ten, his father, William Bell begin using this species (Brachystola magna, the Sutton, a successful county “Lubber” grasshopper) for future experiments. judge, decided to move west with his family and Even though Sutton was only a second year student, open a ranch in Russell, McClung and several other faculty members quickly Kansas. agreed with Sutton, and considered his findings important to the study of reproductive cytology and Walter Sutton and his four morphology. Soon, cells from the Lubber brothers slowly became grasshopper were used by labs all over the world. accustomed to ranch life. With these cells, McClung was able to identify the About half of their ranch was grazing land for cattle, chromosome responsible for sex determination in and the other half planted with rye, barley, oats and sexual reproduction. potatoes. Walter especially enjoyed figuring out how to operate and maintain the many pieces of farm Building upon past success equipment on the Kansas ranch. Sutton received his undergraduate degree from the Sutton’s interest in farm machines and obvious University of Kansas in 1899, and his masters degree mechanical skills made the study of engineering a in 1900. -
The Role of Model Organisms in the History of Mitosis Research
Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press The Role of Model Organisms in the History of Mitosis Research Mitsuhiro Yanagida Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan Correspondence: [email protected] Mitosis is a cell-cycle stage during which condensed chromosomes migrate to the middle of the cell and segregate into two daughter nuclei before cytokinesis (cell division) with the aid of a dynamic mitotic spindle. The history of mitosis research is quite long, commencing well before the discovery of DNA as the repository of genetic information. However, great and rapid progress has been made since the introduction of recombinant DNA technology and discovery of universal cell-cycle control. A large number of conserved eukaryotic genes required for the progression from early to late mitotic stages have been discovered, confirm- ing that DNA replication and mitosis are the two main events in the cell-division cycle. In this article, a historical overview of mitosis is given, emphasizing the importance of diverse model organisms that have been used to solve fundamental questions about mitosis. Onko Chisin—An attempt to discover new truths by checkpoint [SAC]), then metaphase (in which studying the past through scrutiny of the old. the chromosomes are aligned in the middle of cell), anaphase A (in which identical sister chro- matids comprising individual chromosomes LARGE SALAMANDER CHROMOSOMES separate and move toward opposite poles of ENABLED THE FIRST DESCRIPTION the cell), anaphase B (in which the spindle elon- OF MITOSIS gates as the chromosomes approach the poles), itosis means “thread” in Greek. -
Centrosome Abnormalities in Cancer Cells and Tissue
Centrosome abnormalities in cancer cells and tissue Heide Schatten,* Maureen Ripple,** Ron Balczon,*** and Meghan Taylor* *Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211 ** University of Wisconsin Comprehensive Cancer Center, Department of Medicine, Environmental Toxicology Center, and the William S. Middleton Veterans Administration Hospital, University of Wisconsin, Madison, WI 53792 *** Department of Structural and Cellular Biology, The University of South Alabama, Mobile, AL 36688 This paper addresses cancer as a disease characterized by uncontrolled cell divisions in which the molecular controls for cytoskeletal regulation are bypassed. The focus of our studies are on centrosomes, microtubule-organizing cell organelles which are crucial for the organization of the mitotic apparatus during mitosis and cell division (1). The importance of centrosomes during normal cell division had been recognized by the classical cytologist Theodor Boveri (2) who also recognized that centrosome abnormalities are observed during cancer (3). Following up on these studies, we analyzed centrosome structure and function in the prostate cancer cell lines LNCaP and DU145 (45) as well as in fresh and archived prostate cancer tissue. Cancer cells and tissue was compared with normal human foreskin fibroblast (HFF) cells. The goal of these studies was to investigate the organization and the structural behavior of centrosomes in cancer and normal cells. Transmission electron microscopy of whole cells revealed centrosome and spindle abnormalities resulting in tri- and multipolar spindles in LNCaP and DU145 cells during mitosis which was not observed in normal HFF cells. Figure 1 depicts one section through a DU145 prostate cancer ceil with abnormal mitosis. Tri- and multipolar spindles are the result of centrosome instability which will lead to imbalances in chromosome distribution. -
Chromosomes and Karyotypes
Chromosomes and Karyotypes 1838 – Cell Theory, M.J. Schleiden and others (Schwann) 1842 – chromosomes first seen by Nageli 1865 – Charles Darwin, Pangenesis theory, blending inheritance 1865 - Gregor Mendel discovers, by crossbreeding peas, that specific laws govern hereditary traits. Each traits determined by pair of factors. 1869 - Friedrich Miescher isolates DNA for the first time, names it nuclein. 1882 – Walther Flemming describes threadlike ’chromatin’ in the nucleus that turns red with staining, studied and named mitosis. The term ‘chromosome’ used by Heinrich Waldeyer in 1888. 1902 – Mendel’s work rediscovered and appreciated (DeVries, Corens, etc) 1903 – Walter Sutton, the chromosomal theory of inheritance, chromosomes are the carriers of genetic information 1944 - Avery, MacLeod and McCarty show DNA was the genetic material 1953 - James Watson and Francis Crick discover the molecular structure of DNA: a double helix with base pairs of A + T and C + G. 1955 - human chromosome number first established 1999 - The first complete sequence of a human chromosome (22) was published. 2004 - Complete sequencing of the human genome was finished by an international public consortium. Craig Venter etc. Matthias Jakob Schleiden - 1838 proposes that cells are the basic structural elements of all plants. Cell Theory 1. All living organisms are composed of one or more cells 2. The cell is the basic unit of structure and organization of organisms Plate 1 from J. M. Schleiden, Principles of 3. All cells come from preexisting cells Scientific Botany, 1849, showing various features of cell development Weismann – Germline significance of meiosis for reproduction and inheritance - 1890 FIRST LAW: 1. Each trait due to a pair of hereditary factors which 2. -
Chromosomal Theory and Genetic Linkage
362 Chapter 13 | Modern Understandings of Inheritance 13.1 | Chromosomal Theory and Genetic Linkage By the end of this section, you will be able to do the following: • Discuss Sutton’s Chromosomal Theory of Inheritance • Describe genetic linkage • Explain the process of homologous recombination, or crossing over • Describe chromosome creation • Calculate the distances between three genes on a chromosome using a three-point test cross Long before scientists visualized chromosomes under a microscope, the father of modern genetics, Gregor Mendel, began studying heredity in 1843. With improved microscopic techniques during the late 1800s, cell biologists could stain and visualize subcellular structures with dyes and observe their actions during cell division and meiosis. With each mitotic division, chromosomes replicated, condensed from an amorphous (no constant shape) nuclear mass into distinct X-shaped bodies (pairs of identical sister chromatids), and migrated to separate cellular poles. Chromosomal Theory of Inheritance The speculation that chromosomes might be the key to understanding heredity led several scientists to examine Mendel’s publications and reevaluate his model in terms of chromosome behavior during mitosis and meiosis. In 1902, Theodor Boveri observed that proper sea urchin embryonic development does not occur unless chromosomes are present. That same year, Walter Sutton observed chromosome separation into daughter cells during meiosis (Figure 13.2). Together, these observations led to the Chromosomal Theory of Inheritance, which identified chromosomes as the genetic material responsible for Mendelian inheritance. Figure 13.2 (a) Walter Sutton and (b) Theodor Boveri developed the Chromosomal Theory of Inheritance, which states that chromosomes carry the unit of heredity (genes). -
Introduction
Oncogene (2002) 21, 6140 – 6145 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc Introduction Kenji Fukasawa*,1 1Department of Cell Biology, University of Cincinnati College of Medicine, PO Box 670521, Cincinnati, Ohio, OH 45267-0521, USA Oncogene (2002) 21, 6140 – 6145. doi:10.1038/sj.onc. Centrosomes have recently attracted considerable 1205771 attention primarily because of their potential impor- tance in carcinogenesis. Chromosome instability is a hallmark of virtually all solid cancers, being a Keywords: centrosome; cancer; chromosome instability formidable force that drives multi-step carcinogenesis: either loss or gain of a single chromosome can simultaneously introduce multiple mutations, which are responsible for acquisition of further malignant The centrosome of animal cells is a small non- phenotypes. The presence of more than two centro- membranous organelle, and is often associated with somes in a cell results in the formation of defective the nuclear membrane. It is composed of a pair of mitotic spindles directed by multiple spindle poles, centrioles and a surrounding electron dense matrix of which in turn increases the chromosome segregation protein aggregates referred to as the pericentriolar errors. This potential role of centrosomes in chromo- material (PCM) (Figure 1, also see Figure 1 in Dutertre some instability, hence in cancer development, is by et al., 2002). Each centriole is cylindrical in shape and no means a new-sprung idea. It was initially built with the nine sets of triplet microtubules. The two proposed by Theodor Boveri (1914). In his book, centrioles are paired in close proximity at one end, and The Origin of Malignant Tumors, he wrote, ‘malig- positioned vertical to each other. -
A Brief History of Genetics
A Brief History of Genetics A Brief History of Genetics By Chris Rider A Brief History of Genetics By Chris Rider This book first published 2020 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2020 by Chris Rider All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-5885-1 ISBN (13): 978-1-5275-5885-4 Cover A cartoon of the double-stranded helix structure of DNA overlies the sequence of the gene encoding the A protein chain of human haemoglobin. Top left is a portrait of Gregor Mendel, the founding father of genetics, and bottom right is a portrait of Thomas Hunt Morgan, the first winner of a Nobel Prize for genetics. To my wife for her many years of love, support, patience and sound advice TABLE OF CONTENTS List of Figures.......................................................................................... viii List of Text Boxes and Tables .................................................................... x Foreword .................................................................................................. xi Acknowledgements ................................................................................. xiii Chapter 1 ................................................................................................... -
Chromosomal-Theory.Pdf
DNA Is The Stuff Of Life Phil McClean Septemeber 2005 The research of Gregor Mendel dramatically changed our perception of heredity. His conclusion that a trait was controlled by a particulate factor suggested that some physical entity existed that controlled heredity. Mendel’s 1st Law, the law of segregation, suggested the factor was somehow reduced when it was passed onto what we know now is the gamete. We also know that this reduction event occurs during meiosis. Mendel’s 2nd Law, the law of independent assortment, implied that each trait was controlled by a unique factor. As significant as the discoveries of Mendel were, they did not consider the actual physical entity that controls heredity. A separate set of conclusions, many based on simple empirical scientific observation, lead to the eventual determination that these factors reside on chromosomes, and that DNA was the heredity material. Genes Reside on Chromosomes From 1879-1892, Flemming, Strasburger, Waldeyer, van Beneden, and Weismann made significant contributions to our concepts of chromosomes. Flemming (1882) observed structures in the nucleus of salamanders that bound dye, and these structures had a string like appearance. He termed the structures chromatin (or colored substance). He also developed the concept of cell division that he later termed mitosis. The universality of this discovery is attributed to Strasburger who discovered the same process in plants. Waldeyer, in 1888, called the structures that divided during mitosis chromosomes (or colored bodies). Weismann made the very critical observation that sperm and egg cells contain exactly half the number of chromosomes. van Beneden further observed that when a sperm cell fertilizes an egg, the result is the diploid chromosome number found in cells that undergo mitosis. -
Charles Rice, Walter Sutton, Jack St. Clair Kilby, Judy Z. Wu
Charles RICE current Kansas Sesquicentennial 2011 Jack St. Clair Kilby 1923-2005 Observes the millions of micro-organisms, many too small to see with the naked eye, Grew up in Great Bend and graduated from that live in soil, to explain how they work Great Bend High School. together to make good soil that grows Was interested in ham radios and healthy plants. Healthy plants release electronics as a teen. oxygen into the air. Earned degrees in electrical engineering. Studies how soil, plants and low-till farm In 1958, as a new employee at Texas practices help store one of the global Instruments, he invented the microchip. warming gasses, carbon dioxide, in the soil Microchips are used in things like instead of the air. computers and cell phones and are why Researches how agriculture can adapt and today’s electronics can be so small. Courtesy of Charles Rice provide a solution to climate change. Pacemakers use microchips to keep the Photo: Wikipedia heart beating regularly. Charles RICE Agronomy EXTRA COOL: Rice was a member of a United JACK St. CLAIR KILBY EXTRA COOL: Kilby won the 2000 Nobel Prize in Kansas State University Nations Intergovernmental Panel on climate change that received the 2007 Nobel Peace Prize. ELECTRICAL ENGINEERING Physics for his invention. SCIENCE in KANSAS 2007. BusinessProject Name of the Ad Astra Kansas Initiative 2011 Project of the Ad Astra Kansas Initiative Texas Instruments 150 years and counting www.adastra-ks.org www.adastra-ks.org TIST NAME FIELD Roy Business or University current Kansas Sesquicentennial 2011 Walter Sutton 1877-1916 Judy Z. -
The Cell Cycle
CAMPBELL BIOLOGY IN FOCUS URRY • CAIN • WASSERMAN • MINORSKY • REECE 9 The Cell Cycle Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University © 2016 Pearson Education, Inc. SECOND EDITION Overview: The Key Roles of Cell Division . The ability of organisms to produce more of their own kind best distinguishes living things from nonliving matter . The continuity of life is based on the reproduction of cells, or cell division © 2016 Pearson Education, Inc. In unicellular organisms, division of one cell reproduces the entire organism . Cell division enables multicellular eukaryotes to develop from a single cell and, once fully grown, to renew, repair, or replace cells as needed . Cell division is an integral part of the cell cycle, the life of a cell from its formation to its own division © 2016 Pearson Education, Inc. Figure 9.2 100 m (a) Reproduction 50 m (b) Growth and development 20 m (c) Tissue renewal © 2016 Pearson Education, Inc. Concept 9.1: Most cell division results in genetically identical daughter cells . Most cell division results in the distribution of identical genetic material—DNA—to two daughter cells . DNA is passed from one generation of cells to the next with remarkable fidelity © 2016 Pearson Education, Inc. Cellular Organization of the Genetic Material . All the DNA in a cell constitutes the cell’s genome . A genome can consist of a single DNA molecule (common in prokaryotic cells) or a number of DNA molecules (common in eukaryotic cells) . DNA molecules in a cell are packaged into chromosomes © 2016 Pearson Education, Inc. Figure 9.3 20 m © 2016 Pearson Education, Inc. -
The Roles of Trim15 and UCHL3 in the Ubiquitin-Mediated Cell Cycle Regulation Katerina Jerabkova
The roles of Trim15 and UCHL3 in the ubiquitin-mediated cell cycle regulation Katerina Jerabkova To cite this version: Katerina Jerabkova. The roles of Trim15 and UCHL3 in the ubiquitin-mediated cell cycle regulation. Cellular Biology. Université de Strasbourg; Univerzita Karlova (Prague), 2019. English. NNT : 2019STRAJ034. tel-02884583 HAL Id: tel-02884583 https://tel.archives-ouvertes.fr/tel-02884583 Submitted on 30 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ IGBMC - CNRS UMR 7104 - Inserm U 1258 THÈSE présentée par : Kateřina JEŘÁBKOVÁ soutenue le : 09 Octobre 2019 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Aspects moléculaires et cellulaires de la biologie Les rôles de Trim15 et UCHL3 dans la régulation, médiée par l’ubiquitine, du cycle cellulaire. The roles of Trim15 and UCHL3 in the ubiquitin-mediated cell cycle regulation. THÈSE dirigée par : Mme SUMARA Izabela PhD, Université de Strasbourg Mme CHAWENGSAKSOPHAK -
Theodor and Marcella Boveri : Chromosomes and Cytoplasm in Heredity and Development Satzinger, Helga 2008
Repositorium für die Geschlechterforschung Theodor and Marcella Boveri : chromosomes and cytoplasm in heredity and development Satzinger, Helga 2008 https://doi.org/10.25595/151 Veröffentlichungsversion / published version Zeitschriftenartikel / journal article Empfohlene Zitierung / Suggested Citation: Satzinger, Helga: Theodor and Marcella Boveri : chromosomes and cytoplasm in heredity and development, in: Nature reviews : Genetics, Jg. 9 (2008) Nr. 3, 231-238. DOI: https://doi.org/10.25595/151. Erstmalig hier erschienen / Initial publication here: https://doi.org/10.1038/nrg2311 Nutzungsbedingungen: Terms of use: Dieser Text wird unter einer CC BY 4.0 Lizenz (Namensnennung) This document is made available under a CC BY 4.0 License zur Verfügung gestellt. Nähere Auskünfte zu dieser Lizenz finden (Attribution). For more information see: Sie hier: https://creativecommons.org/licenses/by/4.0/deed.en https://creativecommons.org/licenses/by/4.0/deed.de www.genderopen.de PERspECtiVES passion for botany and music. The young SERIE S O N H I S TORICAL PROFILE S — T IME L INE Boveri, as passionate as his parents about arts and music, was destined to become Theodor and Marcella Boveri: an engineer or architect, to which end he attended the Realgymnasium — a school focusing on sciences and mathematics. In chromosomes and cytoplasm in 1881 he enrolled at the University of Munich, Germany, beginning with courses in history, heredity and development philosophy and classical languages. However, after one term he changed to anatomy, became Helga Satzinger an assistant to the anatomist Carl von Kupffer and eventually finished his doctoral disserta- Abstract | The chromosome theory of heredity, developed in 1902–1904, became tion on nerve fibres under Kupffer’s supervi- one of the foundation stones of twentieth-century genetics.