Charles Rice, Walter Sutton, Jack St. Clair Kilby, Judy Z. Wu

Total Page:16

File Type:pdf, Size:1020Kb

Charles Rice, Walter Sutton, Jack St. Clair Kilby, Judy Z. Wu Charles RICE current Kansas Sesquicentennial 2011 Jack St. Clair Kilby 1923-2005 Observes the millions of micro-organisms, many too small to see with the naked eye, Grew up in Great Bend and graduated from that live in soil, to explain how they work Great Bend High School. together to make good soil that grows Was interested in ham radios and healthy plants. Healthy plants release electronics as a teen. oxygen into the air. Earned degrees in electrical engineering. Studies how soil, plants and low-till farm In 1958, as a new employee at Texas practices help store one of the global Instruments, he invented the microchip. warming gasses, carbon dioxide, in the soil Microchips are used in things like instead of the air. computers and cell phones and are why Researches how agriculture can adapt and today’s electronics can be so small. Courtesy of Charles Rice provide a solution to climate change. Pacemakers use microchips to keep the Photo: Wikipedia heart beating regularly. Charles RICE Agronomy EXTRA COOL: Rice was a member of a United JACK St. CLAIR KILBY EXTRA COOL: Kilby won the 2000 Nobel Prize in Kansas State University Nations Intergovernmental Panel on climate change that received the 2007 Nobel Peace Prize. ELECTRICAL ENGINEERING Physics for his invention. SCIENCE in KANSAS 2007. BusinessProject Name of the Ad Astra Kansas Initiative 2011 Project of the Ad Astra Kansas Initiative Texas Instruments 150 years and counting www.adastra-ks.org www.adastra-ks.org TIST NAME FIELD Roy Business or University current Kansas Sesquicentennial 2011 Walter Sutton 1877-1916 Judy Z. WU Fell in love with physics and math in seventh Grew up on a ranch near Russell. grade. Started at KU in engineering, switched to Wu is a University Distinguished Professor biology and became a doctor after his at KU and is leading a NanoTechnology for brother died of typhus. Renewable Energy Team. Famous for his theory which explains that The team is devising improved and less hereditary information, such as eye or hair costly solar panels and cells for capturing color, is carried in a part of the cell called the sun’s energy. the chromosome. By working with the atoms and molecules As a surgeon, he developed many surgical that make up materials, the goal is to make instruments and was a pioneer in the use of materials that will better hold on to the sun’s Courtesy of KU Medical Center Archives x-ray localization. Courtesy KU University Relations energy so it can be used to light our homes archives or provide other power in the future. Judy Z. WU EXTRA COOL: While at KU, he played for Dr. WALTER SUTTON Physics / Astronomy James Naismith, the inventor of basketball. EXTRA COOL: Received a KU Kemper Award for MEDICINE University of Kansas Teaching Excellence in 2006. University of Kansas Project of the Ad Astra Kansas Initiative SCIENCE in KANSAS 2011 Project of the Ad Astra Kansas Initiative School of Medicine www.adastra-ks.org 150 years and counting www.adastra-ks.org .
Recommended publications
  • Memorial Tablets*
    Memorial Tablets* Gregori Aminoff 1883-1947 Born 8 Feb. 1883 in Stockholm; died 11 Feb. 1947 in Stockholm. 1905 First academic degree, U. of Uppsala, after studying science in Stockholm. 1905 to about 19 13 studied painting in Florence and Italy. 1913 Returned to science. 1918 Ph.D. ; appointed Lecturer in Mineralogy and Crystallo- graphy U. of Stockholm. Thesis: Calcite and Barytes from Mzgsbanshiitten (Sweden). 1923-47 Professor and Head of the Department of Mineralogy of the Museum of Natural History in Stockholm. 1930 Married Birgit Broome, herself a crystallographer. see Nature (London) 1947, 159, 597 (G. Hagg). Dirk Coster 1889-1950 Born 5 Oct. 1889 in Amsterdam; died 12 Feb. 1950 in Groningen. Studied in Leiden, Delft, Lund (with Siegbahn) and Copenhagen (with Bohr). 1922 Dr.-ing. Tech. University of Delft. Thesis: X-ray Spectra and the Atomic Theory of Bohr. 1923 Assistant of H. A. Lorentz, Teyler Stichting in Haarlem. 1924-50 Prof. of Physics and Meteorology, U. of Groningen. Bergen Davis 1869-1951 Born 31 March 1869 in White House, New Jersey; died 1951 in New York. 1896 B.Sc. Rutgers University. 1900 A.M. Columbia University (New York). 1901 Ph.D. Columbia University. 1901-02 Postgraduate work in GMtingen. 1902-03 Postgraduate work in Cambridge. * The author (P.P.E.) is particularly aware of the incompleteness of this section and would be gratefid for being sent additional data. MEMORIAL TABLETS 369 1903 Instructor 1 1910 Assistant Professor Columbia University, New York. 1914 Associate Professor I 1918 Professor of Physics ] Work on ionization, radiation, electron impact, physics of X-rays, X-ray spectroscopy with first two-crystal spectrometer.
    [Show full text]
  • Walter Sutton 11.1 Walter Sutton Discovered the Connection Between Inheritance and Chromosomes, a Concept We Take for Granted Today
    Name: Date: Walter Sutton 11.1 Walter Sutton discovered the connection between inheritance and chromosomes, a concept we take for granted today. This connection set the stage for the development of modern molecular biology. Beginnings of innovation One particular grasshopper species was bigger than the others. When Sutton examined dissected tissue of Walter Sutton was born in the grasshopper, he observed very large cells under Utica, New York on April 5, his microscope. He prepared some samples and sent 1877. When Walter was then back to McClung, with the recommendation they ten, his father, William Bell begin using this species (Brachystola magna, the Sutton, a successful county “Lubber” grasshopper) for future experiments. judge, decided to move west with his family and Even though Sutton was only a second year student, open a ranch in Russell, McClung and several other faculty members quickly Kansas. agreed with Sutton, and considered his findings important to the study of reproductive cytology and Walter Sutton and his four morphology. Soon, cells from the Lubber brothers slowly became grasshopper were used by labs all over the world. accustomed to ranch life. With these cells, McClung was able to identify the About half of their ranch was grazing land for cattle, chromosome responsible for sex determination in and the other half planted with rye, barley, oats and sexual reproduction. potatoes. Walter especially enjoyed figuring out how to operate and maintain the many pieces of farm Building upon past success equipment on the Kansas ranch. Sutton received his undergraduate degree from the Sutton’s interest in farm machines and obvious University of Kansas in 1899, and his masters degree mechanical skills made the study of engineering a in 1900.
    [Show full text]
  • Kansas Inventors and Innovators Fourth Grade
    Kansas Inventors and Innovators Fourth Grade Developed for Kansas Historical Society at the Library of Congress, Midwest Region Workshop “It’s Elementary: Teaching with Primary Sources” 2012 Terry Healy Woodrow Wilson School, USD 383, Manhattan Overview This lesson is designed to teach students about inventors and innovators of Kansas. Students will read primary sources about Jack St. Clair Kilby, Clyde Tombaugh, George Washington Carver, and Walter P. Chrysler. Students will use a document analysis sheet to record information before developing a Kansas Innovator card. Standards History: Benchmark 1, Indicator 1 The student researches the contributions made by notable Kansans in history. Benchmark 4, Indicator 4 The student identifies and compares information from primary and secondary sources (e.g., photographs, diaries/journals, newspapers, historical maps). Common Core ELA Reading: Benchmark RI.4.9 The student integrates information from two texts on the same topic in order to write or speak about the subject knowledgably. Benchmark RI.4.10. By the end of year, read and comprehend informational texts, including history/social studies, science, and technical texts, in the grades 4–5 text complexity band proficiently, with scaffolding as needed at the high end of the range. Objectives Content The student will summarize and present information about a Kansas inventor/innovator. 1 Skills The student will analyze and summarize primary and secondary sources to draw conclusions. Essential Questions How do we know about past inventions and innovations? What might inspire or spark the creation of an invention or innovation? How do new inventions or innovations impact our lives? Resource Table Image Description Citation URL Photograph of Jack Photograph of Jack http://kshs.org/kans Kilby (Handout 1) Kilby, Kansapedia, apedia/jack-st-clair- from Texas Kansas Historical kilby/12125 Instruments Society (Topeka, Kansas) Photo originally from Texas Instruments.
    [Show full text]
  • Chromosomal-Theory.Pdf
    DNA Is The Stuff Of Life Phil McClean Septemeber 2005 The research of Gregor Mendel dramatically changed our perception of heredity. His conclusion that a trait was controlled by a particulate factor suggested that some physical entity existed that controlled heredity. Mendel’s 1st Law, the law of segregation, suggested the factor was somehow reduced when it was passed onto what we know now is the gamete. We also know that this reduction event occurs during meiosis. Mendel’s 2nd Law, the law of independent assortment, implied that each trait was controlled by a unique factor. As significant as the discoveries of Mendel were, they did not consider the actual physical entity that controls heredity. A separate set of conclusions, many based on simple empirical scientific observation, lead to the eventual determination that these factors reside on chromosomes, and that DNA was the heredity material. Genes Reside on Chromosomes From 1879-1892, Flemming, Strasburger, Waldeyer, van Beneden, and Weismann made significant contributions to our concepts of chromosomes. Flemming (1882) observed structures in the nucleus of salamanders that bound dye, and these structures had a string like appearance. He termed the structures chromatin (or colored substance). He also developed the concept of cell division that he later termed mitosis. The universality of this discovery is attributed to Strasburger who discovered the same process in plants. Waldeyer, in 1888, called the structures that divided during mitosis chromosomes (or colored bodies). Weismann made the very critical observation that sperm and egg cells contain exactly half the number of chromosomes. van Beneden further observed that when a sperm cell fertilizes an egg, the result is the diploid chromosome number found in cells that undergo mitosis.
    [Show full text]
  • Corrosion of Hafnium and Hafnium Alloys
    © 2005 ASM International. All Rights Reserved. www.asminternational.org ASM Handbook, Volume 13B, Corrosion: Materials (#06508G) Corrosion of Hafnium and Hafnium Alloys D.R. Holmes, ATI Wah Chang, Allegheny Technologies HAFNIUM is element number 72. It resides in In addition to the inherent corrosion resistance impurities such as oxygen, carbon, and nitrogen group IVA of the periodic table with titanium of hafnium, other properties make hafnium use- are left behind, along with some of the impurity and zirconium. Hafnium is always associated ful in chemical equipment. It is relatively easy to metals. Electron beam melting is also effective in with zirconium in minerals such as zircon and form and join, sufficiently strong, ductile, and purifying hafnium. In this process, hafnium is baddeleyite, usually in the range of 1 to 5%. wear resistant to withstand the abuse of industrial slowly double-melted under high vacuum. This The chemical similarity between hafnium and applications. Its coefficient of thermal expansion process removes impurities having partial pres- zirconium is more pronounced than between any is approximately 60% lower than that of 304 sures at the surface of the melt greater than the other two elements in the periodic table, except stainless steel at ambient temperature, and its vapor pressure of hafnium, which is approxi- the inert gases. This similarity in chemistry of thermal conductivity is approximately 40% mately 0.1 Pa (0.75 mm Hg) at 2500 K hafnium and zirconium makes separation ex- higher at ambient temperature (Ref 3). (4040 F). The more volatile metallic impurities, tremely difficult. Along with zirconium, hafnium Hafnium appears to be nontoxic.
    [Show full text]
  • Dinosaur Incubation Periods Directly Determined from Growth-Line Counts in Embryonic Teeth Show Reptilian-Grade Development
    Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development Gregory M. Ericksona,1, Darla K. Zelenitskyb, David Ian Kaya, and Mark A. Norellc aDepartment of Biological Science, Florida State University, Tallahassee, FL 32306-4295; bDepartment of Geoscience, University of Calgary, Calgary, AB, Canada T2N 1N4; and cDivision of Paleontology, American Museum of Natural History, New York, NY 10024 Edited by Neil H. Shubin, University of Chicago, Chicago, IL, and approved December 1, 2016 (received for review August 17, 2016) Birds stand out from other egg-laying amniotes by producing anatomical, behavioral and eggshell attributes of birds related to relatively small numbers of large eggs with very short incubation reproduction [e.g., medullary bone (32), brooding (33–36), egg- periods (average 11–85 d). This aspect promotes high survivorship shell with multiple structural layers (37, 38), pigmented eggs (39), by limiting exposure to predation and environmental perturba- asymmetric eggs (19, 40, 41), and monoautochronic egg pro- tion, allows for larger more fit young, and facilitates rapid attain- duction (19, 40)] trace back to their dinosaurian ancestry (42). For ment of adult size. Birds are living dinosaurs; their rapid development such reasons, rapid avian incubation has generally been assumed has been considered to reflect the primitive dinosaurian condition. throughout Dinosauria (43–45). Here, nonavian dinosaurian incubation periods in both small and Incubation period estimates using regressions of typical avian large ornithischian taxa are empirically determined through growth- values relative to egg mass range from 45 to 80 d across the line counts in embryonic teeth.
    [Show full text]
  • Carbides and Nitrides of Zirconium and Hafnium
    materials Review Carbides and Nitrides of Zirconium and Hafnium Sergey V. Ushakov 1,* , Alexandra Navrotsky 1,* , Qi-Jun Hong 2,* and Axel van de Walle 2,* 1 Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, CA 95616, USA 2 School of Engineering, Brown University, Providence, RI 02912, USA * Correspondence: [email protected] (S.V.U.); [email protected] (A.N.); [email protected] (Q.-J.H.); [email protected] (A.v.d.W.) Received: 6 August 2019; Accepted: 22 August 2019; Published: 26 August 2019 Abstract: Among transition metal carbides and nitrides, zirconium, and hafnium compounds are the most stable and have the highest melting temperatures. Here we review published data on phases and phase equilibria in Hf-Zr-C-N-O system, from experiment and ab initio computations with focus on rocksalt Zr and Hf carbides and nitrides, their solid solutions and oxygen solubility limits. The systematic experimental studies on phase equilibria and thermodynamics were performed mainly 40–60 years ago, mostly for binary systems of Zr and Hf with C and N. Since then, synthesis of several oxynitrides was reported in the fluorite-derivative type of structures, of orthorhombic and cubic higher nitrides Zr3N4 and Hf3N4. An ever-increasing stream of data is provided by ab initio computations, and one of the testable predictions is that the rocksalt HfC0.75N0.22 phase would have the highest known melting temperature. Experimental data on melting temperatures of hafnium carbonitrides are absent, but minimum in heat capacity and maximum in hardness were reported for Hf(C,N) solid solutions.
    [Show full text]
  • Correspondence
    Correspondence Commit to equity for — can we truly encourage and Matt W. Hayward* Bangor Carry on celebrating women researchers support research with the greatest University, UK. Mendel’s legacy academic, economic and societal [email protected] Heads of research agencies from impacts. Ensuring global equity *On behalf of 4 correspondents (see I disagree with Gregory Radick’s nearly 50 countries — large for women in research requires go.nature.com/1w32n9q for full list). strategy for teaching modern and small, with developed and that we each make a personal genetics (Nature 533, 293; emerging economies — adopted commitment to action. 2016). In my view, we should not a Statement of Principles and France A. Córdova National Freelance scientists discard the legacies of Gregor Actions Promoting the Equality Science Foundation, USA. need EU for support Mendel, William Bateson, and Status of Women in Research [email protected] Walter Sutton, Thomas Hunt at the Global Research Council’s As ‘freelance’ scientists, we Morgan and their ilk, whose fifth annual meeting last month undertake research jointly beautiful science continues to in New Delhi (see go.nature. Don’t bank African with academic institutions provide the best explanations for com/1yqtyg). rhinos in Australia and provide Earth-science inheritance. According to a report modelling services for clients — I teach basic genetics to commissioned by the Science and The Australian Rhino Project (see an alternative career path that veterinary students, who learn Engineering Research Board of go.nature.com/28c8s29) aims to European Union funding enables the laws of inheritance without India and Research Councils UK, move 80 rhinoceroses from South us to pursue.
    [Show full text]
  • Teach Them Thy Sons, and Thy Son's Son, Lest They Depart from Thy Heart
    TEACH THEM THY SONS, AND THY SON'S SON, LEST THEY DEPART FROM THY HEART VAUGHT COMPILATION VAUGHT LINEAGE RESEARCH GROUP VOLUME THREE JOHN PAUL VAUGHT LINE DESCENDANTS OF GEORGE VAUGHT Fourth Edition ~ September 1997 Compiled by Bill Everett Callahan 653 Matsonia Drive Foster City, California 94404 Resource Consultants — Mickey Martin and the late Helen Spurlin of Diamond Springs, CA Aneta Vaught Thomas of Murfreesboro, Tennessee THE VAUGHT FAMILY OF AMERICA The Household of Johan Paul Vogt "I am afraid you may not consider (the household) an altogether substantial concern. It has to be seen in a certain way, under certain conditions. Some people never see it at all. You must understand, this is no dead pile of stones and unmeaning timber. It is a living thing ... When you enter it you hear a sound-a sound as of some mighty poem chanted. Listen long enough, and you will learn that it is made up of the beating of human hearts, of the nameless music of men's souls-that is, if you have ears. If you have eyes, you will presently see the (household) itself-a looming mystery of many shapes and shadows, leaping sheer from floor to dome. The work of no ordinary builders!-The pillars of it go up like the brawny trunks of heroes; the sweet human flesh of men and women is molded about its bulwarks, strong, impregnable; the faces of little children laugh out from every corner-stone: the terrible spans and arches of it are the joined hands of comrades; and up in the heights and spaces there are inscribed the numberless musings of all the dreamers of the world.
    [Show full text]
  • Bone Histology of Protoceratops Andrewsi from the Late Cretaceous of Mongolia and Its Biological Implications
    Bone histology of Protoceratops andrewsi from the Late Cretaceous of Mongolia and its biological implications ŁUCJA FOSTOWICZ-FRELIK and JUSTYNA SŁOWIAK Fostowicz-Frelik, Ł. and Słowiak, J. 2018. Bone histology of Protoceratops andrewsi from the Late Cretaceous of Mon- golia and its biological implications. Acta Palaeontologica Polonica 63 (3): 503–517. Protoceratops andrewsi is one of the best known and abundant ornithischian dinosaurs from the Djadokhta Formation (Late Cretaceous, Mongolia) and a subject of many morphological studies. Here we present the first study of its bone tissue (from the long bones, frill, and rib), describing microstructure, extent of remodeling, and growth tempo changes in ontogeny. Several specimens representing juvenile, subadult, and adult age stages have been studied. In general, paleohistology of Protoceratops is quite uniform throughout ontogeny, showing basic fibrolamellar bone complex with prevalence of woven-fibered bone and scarce remodeling. In adults the parallel-fibered bone matrix forms distinct al- though irregular zonation in the cortex until dominating it. The bone displays noteworthy abundance of fossilized fibers (including Sharpey’s fibers), which apparently strengthen the tissue and enhance its elasticity. Growth tempo increased in the studied femora of Protoceratops at the subadult stage, which suggests changes in bone proportions (i.e., elongation of the hind limbs) in a similar manner as it was observed in a more basal Psittacosaurus. Key words: Dinosauria, Ornithischia, Ceratopsia, paleohistology, ontogeny, growth tempo, Cretaceous, Mongolia. Łucja Fostowicz-Frelik [[email protected]], Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warsaw, Poland; and Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Pale- ontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, People’s Republic of China.
    [Show full text]
  • Evolution of Ceratopsian Dental Microstructure David Kay
    Florida State University Libraries Honors Theses The Division of Undergraduate Studies 2014 Evolution of Ceratopsian Dental Microstructure David Kay Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES EVOLUTION OF CERATOPSIAN DENTAL MICROSTRUCTURE By David Kay A Thesis submitted to the Department of Biological Science in partial fulfillment of the requirements for graduation with Honors in the Major Degree Awarded: Summer, 2014 1 The members of the Defense Committee approve the thesis of David Kay defended on April 21st, 2014. ______________________________ Professor Gregory M. Erickson Thesis Director ______________________________ Professor William C. Parker Outside Committee Member ______________________________ Professor Scott J. Steppan Committee Member 2 Acknowledgements To be brutally honest, I almost didn’t write this section because I figured that as an undergraduate thesis that there didn’t need to be one; then I realized that by trivializing this I in effect trivialize all the time and guidance that people have given to me. First and foremost I need to thank Greg Erickson for all that he has done for me, including but not limited to: letting me into his reading group, letting me work in the lab, giving me spectacular advice on how to pursue a career in the paleo world, and being a top-notch mentor to a guy with a few screws loose. I would also like to thank Dr. Steppan, whose comments and advise are always amazing and make whatever I’m writing at least five times better. Dr.
    [Show full text]
  • Nobel Prize Awards in Radiochemistry
    Radiochim. Acta 100, 509–521 (2012) / DOI 10.1524/ract.2012.1953 © by Oldenbourg Wissenschaftsverlag, München Nobel Prize awards in Radiochemistry By J.-P. Adloff∗ University of Strasbourg, 63 Rue Saint Urbain, 67100 Strasbourg, France Dedicated to the memory of late Karl H. Lieser, Gerhard L. Stöcklin and Alfred P. Wolf with whom the author shared the editorial work of Radiochimica Acta from 1977 to 1995 (Received October 10, 2011; accepted in revised form January 19, 2012) (Published online March 26, 2012) Nobel Prize / Chemistry / Physics Summary. In 1996 the Editors of Radiochimica Acta brought out a special volume of the journal to celebrate the hundredth anniversary of the discovery of radioactivity [1]. On the occasion of the 50th anniversary of Radiochimica Acta, which follows closely upon the centenary of Marie Curie’s second Nobel Prize in 1911, the author has the privilege to informally review “Radiochemistry and Nobel Prize Awards”, including discoveries of radioelements and new fields in chemistry based on radiochemical methods. 1. The beginning The Nobel Prizes in Physics and Chemistry were estab- lished in 1901, six years after the discovery of radioactivity and three years after the discoveries of the elements polo- Fig. 1. Antoine Henri Becquerel (1852–1908). nium and radium. They are awarded by Kungliga Veten- skapakademien (the Royal Swedish Academy of Sciences) on the basis of proposals made by respective Committees rays when he thought the subject was exhausted. By the end on Physics and Chemistry, which receive recommendations of 1897 radioactivity was something of a dead horse: it was from Swedish and foreign scientists [2].
    [Show full text]