Hydrophobization and Bioconjugation for Enhanced Sirna Delivery and Targeting

Total Page:16

File Type:pdf, Size:1020Kb

Hydrophobization and Bioconjugation for Enhanced Sirna Delivery and Targeting JOBNAME: RNA 13#4 2007 PAGE: 1 OUTPUT: Saturday February 24 04:28:17 2007 csh/RNA/131733/rna4598 Downloaded from rnajournal.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting DANIEL DE PAULA,1,2 M. VITO´ RIA L.B. BENTLEY,1 and RAM I. MAHATO2 1Faculdade de Cieˆncias Farmaceˆuticas de Ribeira˜o Preto, Universidade de Sa˜o Paulo, Ribeira˜o Preto, SP, Brazil 2Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA ABSTRACT RNA interference (RNAi) is an evolutionarily conserved process by which double-stranded small interfering RNA (siRNA) induces sequence-specific, post-transcriptional gene silencing. Unlike other mRNA targeting strategies, RNAi takes advantage of the physiological gene silencing machinery. The potential use of siRNA as therapeutic agents has attracted great attention as a novel approach for treating severe and chronic diseases. RNAi can be achieved by either delivery of chemically synthesized siRNAs or endogenous expression of small hairpin RNA, siRNA, and microRNA (miRNA). However, the relatively high dose of siRNA required for gene silencing limits its therapeutic applications. This review discusses several strategies to improve therapeutic efficacy as well as to abrogate off-target effects and immunostimulation caused by siRNAs. There is an in-depth discussion on various issues related to the (1) mechanisms of RNAi, (2) methods of siRNA production, (3) barriers to RNAi-based therapies, (4) biodistribution, (5) design of siRNA molecules, (6) chemical modification and bioconjugation, (7) complex formation with lipids and polymers, (8) encapsulation into lipid particles, and (9) target specificity for enhanced therapeutic effectiveness. Keywords: RNA interference; small interfering RNA; bioconjugation; chemical modification; complex formation INTRODUCTION The revolutionary finding of RNAi resulted from the work of Andrew Fire and coworkers at the Carnegie RNA interference (RNAi) is an evolutionarily conserved Institute in Washington, D.C., who demonstrated in 1998 process by which double-stranded small interfering RNA that injection of dsRNA into Caenorhabditis elegans leads to (siRNA) induces sequence-specific, post-transcriptional efficient sequence-specific gene silencing (Fire et al. 1998). gene silencing (Hannon 2002). The process of RNAi At that time, the state of the art in gene silencing was the consists of an initiator step, in which long double-stranded use of antisense oligodeoxynucleotide (ODNs), which RNA (dsRNA) is cleaved into siRNA fragments, and an comprise single strands of short DNA or RNA comple- effector step, in which these fragments are incorporated mentary sequences that hybridize with the targeted mRNA into a protein complex, dissociated, and used as a guiding (Mahato et al. 2005). However, the dsRNA seemed to sequence to recognize homologous mRNA that is sub- induce silencing through a pathway distinct from classical sequently cleaved. RNAi is considered a self-defense mech- antisense therapies due to the catalytic nature of RNAi, in anism of eukaryotic cells to combat infection by RNA which one siRNA can be used over and over to guide the viruses and transposons. It is also assumed to tightly cleavage of many mRNA molecules (Dykxhoorn et al. regulate protein levels in response to various environmental 2003). Bertrand et al. (2002) have compared the effects of stimuli (Meister and Tuschl 2004). antisense ODNs and siRNAs targeting green fluorescent protein (GFP) in vitro and in vivo. siRNA was quantita- tively more efficient, and its effect lasted for a longer time Abbreviations: See list at end of paper. Reprint requests to: Ram I. Mahato, Department of Pharmaceutical in cell culture. In mice, siRNAs were able to silence gene Sciences, Health Science Center, University of Tennessee, 26 South Dunlap expression, whereas no effect was observed in the presence Street, Feurt Building, Room 413, Memphis, TN 38163, USA; e-mail: of antisense ODNs. [email protected]; fax: (901) 448-6092. Article published online ahead of print. Article and publication date are The first evidence that siRNAs can mediate sequence- at http://www.rnajournal.org/cgi/doi/10.1261/rna.459807. specific gene silencing in mammalian cells was provided in RNA (2007), 13:1–26. Published by Cold Spring Harbor Laboratory Press. Copyright Ó 2007 RNA Society. 1 rna4598 De Paula et al. REVIEW RA JOBNAME: RNA 13#4 2007 PAGE: 2 OUTPUT: Saturday February 24 04:28:18 2007 csh/RNA/131733/rna4598 Downloaded from rnajournal.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press De Paula et al. 2001 when the conversion of dsRNA into short RNA recognition by other RNAi components. Dicer is the fragments was shown to be bypassed by the transfection enzyme known to process dsRNA into siRNAs, and it of siRNA molecules into cells (Elbashir et al. 2001a). After contains dual catalytic domains and additional helicase and that, various in vivo effects of siRNA and short hairpin PAZ domains (Elbashir et al. 2001b; Zamore and Haley RNA (shRNA) have been reported (Lewis et al. 2002; 2005). Processed siRNA is incorporated into a protein McCaffrey et al. 2002; Xia et al. 2002; Song et al. 2003b). complex, termed RNA-induced silencing complex (RISC). For example, McCaffrey et al. (2002) showed that siRNA Dicer is also involved in the early steps of RISC formation and shRNA reduce luciferase (Luc) expression in the liver and may be required for siRNA entry into RISC (Lee et al. in a sequence-specific manner. Song et al. (2003b) found 2004). In mammalian cells, the protein Argonaute 2 (Ago2) that siRNA targeted to the Fas receptor protects mice from is the catalytic component of RISC that cleaves target liver fibrosis. mRNAs (Liu et al. 2004b; Meister et al. 2004). In the RISC Human clinical trials of RNAi-based drugs are currently assembly process, siRNAs are initially loaded into Ago2 as under way by Acuity Pharmaceuticals and Sirna Therapeu- duplexes, and then Ago2 cleaves the passenger strand, tics. Both companies are working on intravitreal adminis- thereby liberating the guide strand from the siRNA duplex tration of siRNA targeting vascular endothelial growth and producing active RISC capable of cleaving target factor (VEGF), whose overexpression is the primary cause mRNAs (Matranga et al. 2005; Leuschner et al. 2006). of age-related macular degeneration (AMD). The first The guide strand serves as a template for the recognition results are encouraging in terms of tolerability of siRNA of homologous mRNA, which upon binding to RISC is compounds. Other clinical trials involving siRNA for cleaved between bases 10 and 11 relative to the 59 base of treating chronic myeloid leukemia and respiratory syncytial the guide siRNA strand by the catalytic activity of Ago2 virus infection are also being carried out by the Hadassah (Elbashir et al. 2001c). The template siRNA is not affected Medical Organization and Alnylam Pharmaceutics, Inc., by this reaction, so the RISC can undergo numerous cycles respectively. of mRNA cleavage that comprise the high efficiency of Despite early excitement, siRNAs have shown to activate RNAi (Elbashir et al. 2001b; Meister and Tuschl 2004). The immune response in a sequence- and concentration-depen- mechanism by which passenger strands are cleaved by Ago2 dent manner, leading to nonspecific gene silencing (Jackson follows the same rules established for the siRNA-guided et al. 2003; Sioud 2005). In this respect, the introduction of cleavage of a target mRNA (Leuschner et al. 2006). chemical modifications and generation of designed siRNAs RNAi can also be induced by endogenous expression of have become essential for achieving high gene silencing small regulatory RNAs known as microRNAs (miRNAs) with a low degree of undesired effects. Chemical modifica- (Fig. 1). The generation of miRNAs occurs via sequential tions of siRNAs also appear to stabilize these molecules in processing and maturation of long primary transcripts (pri- serum and show enhanced gene silencing (Braasch et al. miRNA). Pre-microRNA (pre-miRNA) exits in the nucleus 2003; Chiu and Rana 2003; Layzer et al. 2004). A break- upon cleavage by Drosha and is recognized by the endo- through in this area has recently been achieved by linking nuclease Dicer, which processes the pre-miRNA into a cholesterol (Chol) to siRNAs (Soutschek et al. 2004), and 22-nt mature miRNA (Bartel 2004). The mature miRNA is by encapsulating them into stable nucleic acid lipid subsequently incorporated into the silencing complex particles (Zimmermann et al. 2006). Undoubtedly, effective (RISC), where it mediates translational repression. During in vivo delivery of siRNAs will be a key factor in turning RISC assembly, the Ago2-mediated cleavage of the passen- siRNA into a new class of therapeutics. In this review, we ger strand is blocked by mismatches between the guide discuss several strategies to abrogate undesired effects and and passenger strands of miRNAs. In this case, a slower improve the efficiency of siRNA, including chemical modifi- ‘‘backup’’ pathway dissociates and destroys the passenger cations, siRNA sequence design, bioconjugation, complex strand, liberating active RISC (Matranga et al. 2005; formation, and encapsulation into lipid particles. Leuschner et al. 2006). In contrast to siRNA, miRNAs medi- ate RNAi through a translational inhibition mechanism involving imperfect complementarity
Recommended publications
  • Using Antenna Tile-Assisted Substrate Delivery to Improve Detection Limits of Deoxyribozyme
    University of Central Florida STARS HIM 1990-2015 2015 Using Antenna Tile-Assisted Substrate Delivery to Improve Detection Limits of Deoxyribozyme Amanda J. Cox University of Central Florida Part of the Biochemistry Commons Find similar works at: https://stars.library.ucf.edu/honorstheses1990-2015 University of Central Florida Libraries http://library.ucf.edu This Open Access is brought to you for free and open access by STARS. It has been accepted for inclusion in HIM 1990-2015 by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation Cox, Amanda J., "Using Antenna Tile-Assisted Substrate Delivery to Improve Detection Limits of Deoxyribozyme" (2015). HIM 1990-2015. 1861. https://stars.library.ucf.edu/honorstheses1990-2015/1861 USING ANTENNA TILE-ASSISTED SUBSTRATE DELIVERY TO IMPROVE THE DETECTION LIMITS OF DEOXYRIBOZYME BIOSENSORS by AMANDA J. COX A thesis submitted in partial fulfillment of the requirements for the Honors in the Major Program in Chemistry, Biochemistry Track in the College of Sciences and in the Burnett Honors College at the University of Central Florida Orlando, Florida Fall Term, 2015 Thesis Chair: Dr. Dmitry Kolpashchikov, PhD ABSTRACT One common limitation of enzymatic reactions is the diffusion of a substrate to the enzyme active site and/or the release of the reaction products. These reactions are known as diffusion – controlled. Overcoming this limitation may enable faster catalytic rates, which in the case of catalytic biosensors can potentially lower limits of detection of specific analyte. Here we created an artificial system to enable deoxyribozyme (Dz) 10-23 based biosensor to overcome its diffusion limit.
    [Show full text]
  • Split Deoxyribozyme Probe for Efficient Detection of Highly Structured RNA Targets
    University of Central Florida STARS Honors Undergraduate Theses UCF Theses and Dissertations 2018 Split Deoxyribozyme Probe For Efficient Detection of Highly Structured RNA Targets Sheila Raquel Solarez University of Central Florida Part of the Biochemistry Commons, and the Biology Commons Find similar works at: https://stars.library.ucf.edu/honorstheses University of Central Florida Libraries http://library.ucf.edu This Open Access is brought to you for free and open access by the UCF Theses and Dissertations at STARS. It has been accepted for inclusion in Honors Undergraduate Theses by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation Solarez, Sheila Raquel, "Split Deoxyribozyme Probe For Efficient Detection of Highly Structured RNA Targets" (2018). Honors Undergraduate Theses. 311. https://stars.library.ucf.edu/honorstheses/311 SPLIT DEOXYRIBOZYME PROBE FOR EFFICIENT DETECTION OF HIGHLY STRUCTURED RNA TARGETS By SHEILA SOLAREZ A thesis submitted in partial fulfillment of the requirements for the Honors in the Major Program in Biological Sciences in the College of Sciences and the Burnett Honors College at the University of Central Florida Orlando, Florida Spring Term, 2018 Thesis Chair: Yulia Gerasimova, PhD ABSTRACT Transfer RNAs (tRNAs) are known for their role as adaptors during translation of the genetic information and as regulators for gene expression; uncharged tRNAs regulate global gene expression in response to changes in amino acid pools in the cell. Aminoacylated tRNAs play a role in non-ribosomal peptide bond formation, post-translational protein labeling, modification of phospholipids in the cell membrane, and antibiotic biosynthesis. [1] tRNAs have a highly stable structure that can present a challenge for their detection using conventional techniques.
    [Show full text]
  • Synthetic Biology Applying Engineering to Biology
    Synthetic Biology Applying Engineering to Biology Report of a NEST High-Level Expert Group EUR 21796 PROJECT REPORT Interested in European research? RTD info is our quarterly magazine keeping you in touch with main developments (results, programmes, events, etc). It is available in English, French and German. A free sample copy or free subscription can be obtained from: European Commission Directorate-General for Research Information and Communication Unit B-1049 Brussels Fax : (32-2) 29-58220 E-mail: [email protected] Internet: http://europa.eu.int/comm/research/rtdinfo/index_en.html EUROPEAN COMMISSION Directorate-General for Research Directorate B — Structuring the European Research Area Unit B1 — Anticipation of Scientific and Technological Needs (NEST activity); Basic Research E-mail: [email protected] Contact: Christian Krassnig European Commission Office SDME 01/37 B-1049 Brussels Tel. (32-2) 29-86445 Fax (32-2) 29-93173 E-mail: [email protected] For further information on the NEST activity please refer to the following website: http://www.cordis.lu/nest/home.html EUROPEAN COMMISSION Synthetic Biology Applying Engineering to Biology Report of a NEST High-Level Expert Group NEST - New and Energing Science and Technology - is a research activity under the European Community’s 6th Framework Programme Directorate-General for Research Structuring the European Research Area 2005 Anticipating Scientific and Technological Needs; Basic Research EUR 21796 Europe Direct is a service to help you find answers to your questions about the European Union Freephone number: 00 800 6 7 8 9 10 11 LEGAL NOTICE: Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information.
    [Show full text]
  • Patenting Interfering RNA
    Patenting Interfering RNA J. Douglas Schultz SPE Art Unit 1635 (571) 272-0763 [email protected] Oligonucleotide Inhibitors: Mechanisms of Action RNAi - Mechanism of Action • dsRNA induces sequence-specific degradation of homologous gene transcripts • RISC metabolizes dsRNA to small 21-23- nucleotide siRNAs – RISC contains dsRNase (“Dicer”), ssRNase (Argonaut 2 or Ago2) • RISC utilizes antisense strand as “guide” to find cleavable target siRNA Mechanism of Action miRNA Mechanism of Action Interfering RNA Glossary of Terms • RNAi – RNA interference • dsRNA – double stranded RNA • siRNA – small interfering RNA, double stranded, 21-23 nucleotides • shRNA – short hairpin RNA (doubled stranded by virtue of a ssRNA folding back on itself) • miRNA – micro RNA • RISC – RNA-induced silencing complex – Dicer – RNase endonuclease siRNA miRNA • Exogenously delivered • Endogenously produced • 21-23mer dsRNA • 21-23mer dsRNA • Acts through RISC • Acts through RISC • Induces homologous target • Induces homologous target cleavage cleavage • Perfect sequence match • Imperfect sequence match – Results in target degradation – Results in translation arrest RNAi Patentability issues Sample Claims: • A siRNA that inhibits expression of a nucleic acid encoding protein X. OR • A siRNA comprising a 2’-modification, wherein said modification comprises 2’-fluoro, 2’-O-methyl, or 2’- deoxy. (Note: no target recited) OR • A method of reducing tumor cell growth comprising administering siRNA targeting protein X. RNAi Patentability Issues 35 U.S.C. 101 – Utility • Credible/Specific/Substantial/Well Established. • Used to attempt modulation of gene expression in human diseases • Routinely investigate gene function in a high throughput fashion or to (see Rana RT, Nat. Rev. Mol. Cell Biol. 2007, Vol. 8:23-36).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0086860 A1 Sohail (43) Pub
    US 20040O86860A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0086860 A1 Sohail (43) Pub. Date: May 6, 2004 (54) METHODS OF PRODUCING RNAS OF Publication Classification DEFINED LENGTH AND SEQUENCE (51) Int. Cl." .............................. C12Q 1/68; C12P 19/34 (76) Inventor: Muhammad Sohail, Marston (GB) (52) U.S. Cl. ............................................... 435/6; 435/91.2 Correspondence Address: MINTZ, LEVIN, COHN, FERRIS, GLOWSKY (57) ABSTRACT AND POPEO, PC. ONE FINANCIAL CENTER Methods of making RNA duplexes and single-stranded BOSTON, MA 02111 (US) RNAS of a desired length and Sequence based on cleavage of RNA molecules at a defined position, most preferably (21) Appl. No.: 10/264,748 with the use of deoxyribozymes. Novel deoxyribozymes capable of cleaving RNAS including a leader Sequence at a (22) Filed: Oct. 4, 2002 Site 3' to the leader Sequence are also described. Patent Application Publication May 6, 2004 Sheet 1 of 2 US 2004/0086860 A1 DNA Oligonucleotides T7 Promoter -TN-- OR 2N-2-N-to y Transcription Products GGGCGAAT-N-UU GGGCGAAT-N-UU w N Deoxyribozyme Cleavage - Q GGGCGAAT -------' Racction GGGCGAAT N-- UU N-UU ssRNA products N-UU Anneal ssRNA UU S-2N- UU siRNA product FIGURE 1: Flowchart summarising the procedure for siRNA synthesis. Patent Application Publication May 6, 2004 Sheet 2 of 2 US 2004/0086860 A1 Full-length transcript 3'-digestion product 5'-digestion product (5'GGGCGAATA) A: Production of single-stranded RNA templates by in vitro transcription and digestion With a deoxyribozyme V 2- 2 V 22inv 22 * 2 &3 S/AS - 88.8x, *...* or as IGFR -- is as 4.
    [Show full text]
  • Small Interfering RNA-Mediated Translation Repression Alters Ribosome Sensitivity to Inhibition by Cycloheximide in Chlamydomonas Reinhardtii
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Theses in Biological Sciences Biological Sciences, School of Spring 2013 Small Interfering RNA-Mediated Translation Repression Alters Ribosome Sensitivity to Inhibition by Cycloheximide in Chlamydomonas reinhardtii Xinrong Ma University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscidiss Part of the Biology Commons, Cellular and Molecular Physiology Commons, Microbiology Commons, and the Molecular Genetics Commons Ma, Xinrong, "Small Interfering RNA-Mediated Translation Repression Alters Ribosome Sensitivity to Inhibition by Cycloheximide in Chlamydomonas reinhardtii" (2013). Dissertations and Theses in Biological Sciences. 51. https://digitalcommons.unl.edu/bioscidiss/51 This Article is brought to you for free and open access by the Biological Sciences, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Theses in Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SMALL INTERFERING RNA-MEDIATED TRANSLATION REPRESSION ALTERS RIBOSOME SENSITIVITY TO INHIBITION BY CYCLOHEXIMIDE IN CHLAMYDOMONAS REINHARDTII by Xinrong Ma A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Biological Sciences Under the Supervision of Professor Heriberto Cerutti Lincoln, Nebraska May, 2013 SMALL INTERFERING RNA-MEDIATED TRANSLATION REPRESSION ALTERS RIBOSOME SENSITIVITY TO INHIBITION BY CYCLOHEXIMIDE IN CHLAMYDOMONAS REINHARDTII Xinrong Ma, Ph.D. University of Nebraska, 2013 Advisor: Heriberto Cerutti RNA interference (RNAi) is an evolutionarily conserved gene silencing mechanism in eukaryotes, with regulatory roles in a variety of biological processes, including cell cycle, cell differentiation, physiological and metabolic pathways, and stress responses.
    [Show full text]
  • Mirna Detection Using a Rolling Circle Amplification and RNA
    biosensors Article MiRNA Detection Using a Rolling Circle Amplification and RNA-Cutting Allosteric Deoxyribozyme Dual Signal Amplification Strategy Chenxin Fang, Ping Ouyang, Yuxing Yang, Yang Qing, Jialun Han, Wenyan Shang, Yubing Chen and Jie Du * State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, Haikou 570228, China; [email protected] (C.F.); [email protected] (P.O.); [email protected] (Y.Y.); [email protected] (Y.Q.); [email protected] (J.H.); [email protected] (W.S.); [email protected] (Y.C.) * Correspondence: [email protected] Abstract: A microRNA (miRNA) detection platform composed of a rolling circle amplification (RCA) system and an allosteric deoxyribozyme system is proposed, which can detect miRNA-21 rapidly and efficiently. Padlock probe hybridization with the target miRNA is achieved through complementary base pairing and the padlock probe forms a closed circular template under the action of ligase; this circular template results in RCA. In the presence of DNA polymerase, RCA proceeds and a long chain with numerous repeating units is formed. In the presence of single-stranded DNA (H1 and H2), multi-component nucleic acid enzymes (MNAzymes) are formed that have the ability to cleave substrates. Finally, substrates containing fluorescent and quenching groups and magnesium ions are added to the system to activate the MNAzyme and the substrate cleavage reaction, thus achieving fluorescence intensity amplification. The RCA–MNAzyme system has dual signal amplification and presents a sensing platform that demonstrates broad prospects in the analysis and detection of Citation: Fang, C.; Ouyang, P.; Yang, nucleic acids.
    [Show full text]
  • Retroviral Delivery of Small Interfering RNA Into Primary Cells
    Retroviral delivery of small interfering RNA into primary cells Gregory M. Barton and Ruslan Medzhitov* Section of Immunobiology and The Howard Hughes Medical Institute, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520 Communicated by Peter Cresswell, Yale University School of Medicine, New Haven, CT, October 2, 2002 (received for review August 9, 2002) RNA interference is an evolutionarily conserved process in which gene was replaced with the human CD4 gene, which was cloned recognition of double-stranded RNA ultimately leads to posttran- from splenic cDNA. To eliminate any potential signaling, a scriptional suppression of gene expression. This suppression is premature stop codon was introduced after amino acid 425, just mediated by short (21- to 22-nt) small interfering RNAs (siRNAs), after the transmembrane domain. The human H1 promoter was which induce degradation of mRNA based on complementary base cloned from genomic DNA and inserted either upstream of the pairing. The silencing of gene expression by siRNAs is emerging cytomegalovirus (CMV) promoter (RVH1) by using previously rapidly as a powerful method for genetic analysis. Recently, several introduced XhoI and EcoRI sites or within the 3Ј LTR by groups have reported systems designed to express siRNAs in using SalI. The oligonucleotides encoding the human p53 mammalian cells through transfection of either oligonucleotides or siRNA, described by Brummelkamp et al. (6), were 5Ј-GATC- plasmids encoding siRNAs. Because these systems rely on trans- CCCGACTCCAGTGGTAATCTACTTCAAGAGAGTA- fection for delivery, the cell types available for study are restricted GATTACCACTGGAGTCTTTTTGGAAC-3Ј and 5Ј-TCGA- generally to transformed cell lines. Here, we describe a retroviral GTTCCAAAAAGACTCCAGTGGTAATCTACTCTCTTG- system for delivery of siRNA into cells.
    [Show full text]
  • Viral Vectors Applied for Rnai-Based Antiviral Therapy
    viruses Review Viral Vectors Applied for RNAi-Based Antiviral Therapy Kenneth Lundstrom PanTherapeutics, CH1095 Lutry, Switzerland; [email protected] Received: 30 July 2020; Accepted: 21 August 2020; Published: 23 August 2020 Abstract: RNA interference (RNAi) provides the means for alternative antiviral therapy. Delivery of RNAi in the form of short interfering RNA (siRNA), short hairpin RNA (shRNA) and micro-RNA (miRNA) have demonstrated efficacy in gene silencing for therapeutic applications against viral diseases. Bioinformatics has played an important role in the design of efficient RNAi sequences targeting various pathogenic viruses. However, stability and delivery of RNAi molecules have presented serious obstacles for reaching therapeutic efficacy. For this reason, RNA modifications and formulation of nanoparticles have proven useful for non-viral delivery of RNAi molecules. On the other hand, utilization of viral vectors and particularly self-replicating RNA virus vectors can be considered as an attractive alternative. In this review, examples of antiviral therapy applying RNAi-based approaches in various animal models will be described. Due to the current coronavirus pandemic, a special emphasis will be dedicated to targeting Coronavirus Disease-19 (COVID-19). Keywords: RNA interference; shRNA; siRNA; miRNA; gene silencing; viral vectors; RNA replicons; COVID-19 1. Introduction Since idoxuridine, the first anti-herpesvirus antiviral drug, reached the market in 1963 more than one hundred antiviral drugs have been formally approved [1]. Despite that, there is a serious need for development of novel, more efficient antiviral therapies, including drugs and vaccines, which has become even more evident all around the world today due to the recent coronavirus pandemic [2].
    [Show full text]
  • Advances in Oligonucleotide Drug Delivery
    REVIEWS Advances in oligonucleotide drug delivery Thomas C. Roberts 1,2 ✉ , Robert Langer 3 and Matthew J. A. Wood 1,2 ✉ Abstract | Oligonucleotides can be used to modulate gene expression via a range of processes including RNAi, target degradation by RNase H-mediated cleavage, splicing modulation, non-coding RNA inhibition, gene activation and programmed gene editing. As such, these molecules have potential therapeutic applications for myriad indications, with several oligonucleotide drugs recently gaining approval. However, despite recent technological advances, achieving efficient oligonucleotide delivery, particularly to extrahepatic tissues, remains a major translational limitation. Here, we provide an overview of oligonucleotide-based drug platforms, focusing on key approaches — including chemical modification, bioconjugation and the use of nanocarriers — which aim to address the delivery challenge. Oligonucleotides are nucleic acid polymers with the In addition to their ability to recognize specific tar- potential to treat or manage a wide range of diseases. get sequences via complementary base pairing, nucleic Although the majority of oligonucleotide therapeutics acids can also interact with proteins through the for- have focused on gene silencing, other strategies are being mation of three-dimensional secondary structures — a pursued, including splice modulation and gene activa- property that is also being exploited therapeutically. For tion, expanding the range of possible targets beyond example, nucleic acid aptamers are structured
    [Show full text]
  • Ribozyme-Enhanced Single-Stranded Ago2-Processed Interfering RNA Triggers Efficient Gene Silencing with Fewer Off-Target Effects
    ARTICLE Received 9 Dec 2014 | Accepted 21 Aug 2015 | Published 12 Oct 2015 DOI: 10.1038/ncomms9430 OPEN Ribozyme-enhanced single-stranded Ago2-processed interfering RNA triggers efficient gene silencing with fewer off-target effects Renfu Shang1,2,3, Fengjuan Zhang1,2,3, Beiying Xu1,2,3, Hairui Xi4, Xue Zhang1,2,3, Weihua Wang1,2,3 & Ligang Wu1,2,3 Short-hairpin RNAs (shRNAs) are widely used to produce small-interfering RNAs (siRNAs) for gene silencing. Here we design an alternative siRNA precursor, named single-stranded, Argonaute 2 (Ago2)-processed interfering RNA (saiRNA), containing a 16–18 bp stem and a loop complementary to the target transcript. The introduction of a self-cleaving ribozyme derived from hepatitis delta virus to the 30 end of the transcribed saiRNA dramatically improves its silencing activity by generating a short 30 overhang that facilitates the efficient binding of saiRNA to Ago2. The same ribozyme also enhances the activity of Dicer-dependent shRNAs. Unlike a classical shRNA, the strand-specific cleavage of saiRNA by Ago2 during processing eliminates the passenger strand and prevents the association of siRNA with non-nucleolytic Ago proteins. As a result, off-target effects are reduced. In addition, saiRNA exhibits less competition with the biogenesis of endogenous miRNAs. Therefore, ribozyme-enhanced saiRNA provides a reliable tool for RNA interference applications. 1 National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. 2 Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.
    [Show full text]
  • Manipulation of Gene Expression in Zebrafish Using Caged Circular Morpholino Oligomers Yuan Wang, Li Wu, Peng Wang, Cong Lv, Zhenjun Yang and Xinjing Tang*
    Published online 22 September 2012 Nucleic Acids Research, 2012, Vol. 40, No. 21 11155–11162 doi:10.1093/nar/gks840 Manipulation of gene expression in zebrafish using caged circular morpholino oligomers Yuan Wang, Li Wu, Peng Wang, Cong Lv, Zhenjun Yang and Xinjing Tang* State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, China Received May 18, 2012; Revised August 12, 2012; Accepted August 14, 2012 ABSTRACT strategy with the attachment of multiple caging moieties to the nucleobases or the backbone of phosphate groups. Morpholino oligomers (MOs) have been widely used Ando et al. caged a green fluorescent protein (GFP) to knock down specific genes in zebrafish, but their mRNA and a DNA plasmid through non-specific constitutive activities limit their experimental appli- labeling of the backbone phosphates approximately once cations for studying a gene with multiple functions every 35 bases with coumarin-based photolabile protecting or within a gene network. We report herein a new groups. These caged mRNA and DNA constructs enabled design and synthesis of caged circular MOs (caged the photoregulation of GFP expression in zebrafish and cMOs) with two ends linked by a photocleavable subsequent study of the role of lhx2 in zebrafish forebrain moiety. These caged cMOs were successfully used growth (49,52). More recently, Deiters et al. reported to photomodulate b-catenin-2 and no tail expres- morpholino oligomers (MOs) with multiple photocaged sion in zebrafish embryos. monomeric building blocks and demonstrated the utility of these caged MOs in light-activated control of gene function in zebrafish embryos (26).
    [Show full text]