An Efficient Inter-Coding Algorithm for H.264

Total Page:16

File Type:pdf, Size:1020Kb

An Efficient Inter-Coding Algorithm for H.264 15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP AN EFFICIENT INTER-CODING ALGORITHM FOR H.264 Laeeq Aslam and Nadeem Ahmad Khan Department of Computer Science, Lahore University of Management Sciences Opposite Sector ‘U’, DHA, 54792, Lahore, Pakistan phone: + (92)42-5722670-9, fax: + (92)42-5722591, email: {laeeq, nkhan}@lums.edu.pk web: http://cs.lums.edu.pk ABSTRACT In general, a large area with consistent motion is An efficient inter-coding algorithm for H.264 video cod- more likely to be coded using large block size, and the area ing standard is presented that gives a simultaneous improve- containing the boundaries of motion are more likely to be ment of encoding time and bit rate without a loss in SNR. coded using smaller block sizes. The basic idea is to exploit This is an extension of 3DRS algorithm for variable block the homogeneity of motion in the scene. The encoder selects sizes which was previously known for fixed block sizes. We the best macroblock partition and mode of prediction for use central difference to find boundaries in a consistent mo- each macroblock, such that the video coding performance is tion vector field to make macroblock partition decision. In optimized. comparison to Full Search (FS) algorithm the proposed al- gorithm on average takes 66.65% less computational time, producing 2.9% less number of bits with an average SNR gain of 0.053 dB. The proposed algorithm, on average, saves 6.31% of computational time and 1.5% number of bits as compared to Fast Motion Estimation (FME) reference algo- rithm with a gain of 0.072 dB of SNR. Experimental results using six different sequences are presented to demonstrate the advantage of using the proposed algorithm. 1. INTRODUCTION H.264 defines three key profiles: Baseline, Main, and Ex- tended. The Baseline profile is the simplest profile which targets applications with limited processing resources and Figure 1 - Allowed macroblock and sub-macroblock partitioning in low delay requirements. The Main profile adds features that H.264 improve video quality at the expense of a significant in- In the next section we will give an overview of the crease in computational complexity. The Extended profile related work from the literature. Third section will cover the targets streaming video, and includes features to improve suggested algorithm and fourth section contains the experi- error resilience and to facilitate switching between different mental results after which we give conclusions. bit streams [1]. To overcome the high computational com- plexity of the codec we need fast algorithms, efficient im- 2. OVERVIEW OF RELATED WORK plementation and enhanced computational resources. All three profiles use inter-coding to exploit the temporal redun- A lot of work in recent years has been done suggesting algo- dancy. This work is regarding inter-coding and is more use- rithms to find the best mode and partition [2, 3, 6, 7]. If we ful for the baseline profile due to limited processing re- can identify, prior to motion estimation, the macroblocks that sources, however other profiles will also get benefit of the are likely to be skipped, we can save a lot of computations. proposed scheme. Inter coding in H.264 is done with mac- One such technique is suggested in [2] which can reduce the roblocks partitioned into different ways as shown in figure encoding time by 29.67% on average without significant loss 1; with a minimum luma-block size of 4x4 to a maximum of in rate-distortion performance. This is achieved by estimating 16x16. The primary macroblock partition patterns are a Lagrangian rate-distortion cost function. 16x16, 16x8, 8x16 and 8x8. If the 8x8 partitioning is se- In [3] an early termination algorithm is given for vari- lected, it can be further partitioned into 8x4, 4x8 or 4x4 [1]. able block-size motion estimation by concentrating on zero If we take object coding and fixed block coding as two ex- motion. If the rate distortion cost of a partition in a macrob- treme approaches, H.264 gives the flexibility to use variable lock at (0, 0) is less than a threshold, it is declared as a zero block sizes to explore the tradeoffs between the two ap- motion block. For sequences with less motion this technique proaches. can save up to 93.4% search points per macroblock while reduction in PSNR is not more than .05 dB, whereas, in se- ©2007 EURASIP 1260 15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP quences with high motion, this technique can save up to 60% In the first step, our algorithm obtains the consistent mo- of search points with a negligible loss in PSNR. tion field using 3DRS algorithm with fixed block size of According to [6], homogeneity decision of a block is de- 16x16. In the second step obtained motion field is used to pendent on edge information, and macroblock differencing determine whether a certain macroblock is on the motion can be used to judge whether the macroblock is time station- vector field discontinuity or not and what is the right partition ary or not. Based on these facts a fast algorithm for inter- of that macroblock. This process is performed as follows: coding is presented in [6] which can reduce the encoding Assume that we have (j x k) blocks in a given frame. Af- time up to 30% with a loss of 0.03 dB in PSNR and 0.6% ter the first step motion vector field can be represented as: increase in bit rate. MV = {(Xxy, Yxy) | 0≤ x < j & 0≤ y <k} th In [7], a prediction algorithm for block size and mode is Where, (Xab, Yab), is the motion vector for macroblock in a presented which have speedup factor of 30% in comparison row and bth column of macroblocks. As we are interested in to fast full search algorithm with a PSNR loss of 0.071 dB finding the macroblocks through which the motion field and a bit rate increase of 2.78%. boundaries are passing, we calculate the scaled central differ- In [9], 3DRS based variable block size motion estima- ence as: tion algorithm is presented which achieves 80% encoding DH = { MVX(x+1)y – MVX(x-1)y | 0< x < k-1 & 0≤ y <k } time improvement over full search and up to 55% over FME DV = { MVYx(y+1) - MVYx(y-1) | 0≤ x < k & 0< y <k-1 } by compromising around 0.15 dB SNR. The bit-stream size is slightly less as compared to FS and FME. DH contains difference of first elements of all motion vectors (pairs) while the difference of second elements is 3. THE PROPOSED ALGORITHM kept in DV. Note that it is scaled central difference because it is not divided by two but it is still a gradient estimator. If we We focus on inter-coding which starts at second frame of any consider the image plane as shown in figure 2, D will cap- sequence while the first one is intra coded. We suggest an H ture the horizontal edges in the MV field while the D will algorithm which is motion adaptive and exploits the motion V capture the vertical edges in the MV field. information to decide that whether a certain macroblock is at the discontinuity of motion vector field or not. Consistent or true motion field is obtained using 3DRS algorithm with fixed block size [8]. The examples of such motion field are shown in figure 3. Scaled absolute central difference is ap- plied on motion field to find the macroblocks containing the motion boundaries. Such macroblocks are partitioned to ob- tain high coding efficiency. The suggested algorithm consists of two steps: 1. Keep the mode of each macroblock as inter 16x16 and find Figure 2: Image plane considered in this paper the motion vectors using 3DRS algorithm [8]. Apply fine search to refine the motion vectors found. The strength of an edge in this case will be a measure of 2. Based on motion vector information found in above step, relative motion between two blocks in horizontal or vertical decide about the macroblock partitions and encode. direction. 3-D recursive search algorithm has been previously used It is also important to note that if we use forward or for fixed block size in [8], and for variable block-size in [9]. backward difference the obtained information is not suffi- Key idea of this algorithm is to use known motion vectors of cient to point out the blocks which contain the motion spatial and temporal neighbours to find motion vector for the boundaries; rather such difference will just tell us that two current block. Spatial neighbours are those for which we blocks are moving in different directions. To find the mac- have already found the motion vector. Temporal neighbours roblocks having motion boundaries we have to take the cen- are those for which current frame does not have the motion tral difference. vector information yet but the information for the previous Using central difference as approximate derivative we frame is still available and is not overwritten. Two estimators can capture many local properties. If right and left, or top and ‘a’ and ‘b’ are defined with diagonally opposite convergence bottom, neighbouring blocks are moving in different direc- directions. Each estimator provides a set of candidates con- tions then the difference in motion will be quantified by gra- sisting of a temporal predictor and up to four other candi- dient magnitude. Blocks containing boundary of two objects dates from spatial predictor by adding random update vectors or surfaces which have a relative motion will also be identi- to it.
Recommended publications
  • Kulkarni Uta 2502M 11649.Pdf
    IMPLEMENTATION OF A FAST INTER-PREDICTION MODE DECISION IN H.264/AVC VIDEO ENCODER by AMRUTA KIRAN KULKARNI Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON May 2012 ACKNOWLEDGEMENTS First and foremost, I would like to take this opportunity to offer my gratitude to my supervisor, Dr. K.R. Rao, who invested his precious time in me and has been a constant support throughout my thesis with his patience and profound knowledge. His motivation and enthusiasm helped me in all the time of research and writing of this thesis. His advising and mentoring have helped me complete my thesis. Besides my advisor, I would like to thank the rest of my thesis committee. I am also very grateful to Dr. Dongil Han for his continuous technical advice and financial support. I would like to acknowledge my research group partner, Santosh Kumar Muniyappa, for all the valuable discussions that we had together. It helped me in building confidence and motivated towards completing the thesis. Also, I thank all other lab mates and friends who helped me get through two years of graduate school. Finally, my sincere gratitude and love go to my family. They have been my role model and have always showed me right way. Last but not the least; I would like to thank my husband Amey Mahajan for his emotional and moral support. April 20, 2012 ii ABSTRACT IMPLEMENTATION OF A FAST INTER-PREDICTION MODE DECISION IN H.264/AVC VIDEO ENCODER Amruta Kulkarni, M.S The University of Texas at Arlington, 2011 Supervising Professor: K.R.
    [Show full text]
  • 1. in the New Document Dialog Box, on the General Tab, for Type, Choose Flash Document, Then Click______
    1. In the New Document dialog box, on the General tab, for type, choose Flash Document, then click____________. 1. Tab 2. Ok 3. Delete 4. Save 2. Specify the export ________ for classes in the movie. 1. Frame 2. Class 3. Loading 4. Main 3. To help manage the files in a large application, flash MX professional 2004 supports the concept of _________. 1. Files 2. Projects 3. Flash 4. Player 4. In the AppName directory, create a subdirectory named_______. 1. Source 2. Flash documents 3. Source code 4. Classes 5. In Flash, most applications are _________ and include __________ user interfaces. 1. Visual, Graphical 2. Visual, Flash 3. Graphical, Flash 4. Visual, AppName 6. Test locally by opening ________ in your web browser. 1. AppName.fla 2. AppName.html 3. AppName.swf 4. AppName 7. The AppName directory will contain everything in our project, including _________ and _____________ . 1. Source code, Final input 2. Input, Output 3. Source code, Final output 4. Source code, everything 8. In the AppName directory, create a subdirectory named_______. 1. Compiled application 2. Deploy 3. Final output 4. Source code 9. Every Flash application must include at least one ______________. 1. Flash document 2. AppName 3. Deploy 4. Source 10. In the AppName/Source directory, create a subdirectory named __________. 1. Source 2. Com 3. Some domain 4. AppName 11. In the AppName/Source/Com directory, create a sub directory named ______ 1. Some domain 2. Com 3. AppName 4. Source 12. A project is group of related _________ that can be managed via the project panel in the flash.
    [Show full text]
  • Discrete Cosine Transform for 8X8 Blocks with CUDA
    Discrete Cosine Transform for 8x8 Blocks with CUDA Anton Obukhov [email protected] Alexander Kharlamov [email protected] October 2008 Document Change History Version Date Responsible Reason for Change 0.8 24.03.2008 Alexander Kharlamov Initial release 0.9 25.03.2008 Anton Obukhov Added algorithm-specific parts, fixed some issues 1.0 17.10.2008 Anton Obukhov Revised document structure October 2008 2 Abstract In this whitepaper the Discrete Cosine Transform (DCT) is discussed. The two-dimensional variation of the transform that operates on 8x8 blocks (DCT8x8) is widely used in image and video coding because it exhibits high signal decorrelation rates and can be easily implemented on the majority of contemporary computing architectures. The key feature of the DCT8x8 is that any pair of 8x8 blocks can be processed independently. This makes possible fully parallel implementation of DCT8x8 by definition. Most of CPU-based implementations of DCT8x8 are firmly adjusted for operating using fixed point arithmetic but still appear to be rather costly as soon as blocks are processed in the sequential order by the single ALU. Performing DCT8x8 computation on GPU using NVIDIA CUDA technology gives significant performance boost even compared to a modern CPU. The proposed approach is accompanied with the sample code “DCT8x8” in the NVIDIA CUDA SDK. October 2008 3 1. Introduction The Discrete Cosine Transform (DCT) is a Fourier-like transform, which was first proposed by Ahmed et al . (1974). While the Fourier Transform represents a signal as the mixture of sines and cosines, the Cosine Transform performs only the cosine-series expansion.
    [Show full text]
  • Analysis Application for H.264 Video Encoding
    IT 10 061 Examensarbete 30 hp November 2010 Analysis Application for H.264 Video Encoding Ying Wang Institutionen för informationsteknologi Department of Information Technology Abstract Analysis Application for H.264 Video Encoding Ying Wang Teknisk- naturvetenskaplig fakultet UTH-enheten A video analysis application ERANA264(Ericsson Research h.264 video Besöksadress: ANalysis Application) is developed in Ångströmlaboratoriet Lägerhyddsvägen 1 this project. Erana264 is a tool that Hus 4, Plan 0 analyzes H.264 encoded video bitstreams, extracts the encoding information and Postadress: parameters, analyzes them in different Box 536 751 21 Uppsala stages and displays the results in a user friendly way. The intention is that Telefon: such an application would be used during 018 – 471 30 03 development and testing of video codecs. Telefax: The work is implemented on top of 018 – 471 30 00 existing H.264 encoder/decoder source code (C/C++) developed at Ericsson Hemsida: Research. http://www.teknat.uu.se/student Erana264 consists of three layers. The first layer is the H.264 decoder previously developed in Ericsson Research. By using the decoder APIs, the information is extracted from the bitstream and is sent to the higher layers. The second layer visualizes the different decoding stages, uses overlay to display some macro block and picture level information and provides a set of play back functions. The third layer analyzes and presents the statistics of prominent parameters in video compression process, such as video quality measurements, motion vector distribution, picture bit distribution etc. Key words: H.264, Video compression, Bitstream analysis, Video encoding Handledare: Zhuangfei Wu and Clinton Priddle Ämnesgranskare: Cris Luengo Examinator: Anders Jansson IT10061 Tryckt av: Reprocentralen ITC Acknowledgements Fist of all, I am heartily thankful to my supervisors, Fred Wu and Clinton Priddle, whose encouragement, supervision and support from the preliminary to the concluding level enabled me to develop an understanding of the subject.
    [Show full text]
  • CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Optimized AV1 Inter
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Optimized AV1 Inter Prediction using Binary classification techniques A graduate project submitted in partial fulfillment of the requirements for the degree of Master of Science in Software Engineering by Alex Kit Romero May 2020 The graduate project of Alex Kit Romero is approved: ____________________________________ ____________ Dr. Katya Mkrtchyan Date ____________________________________ ____________ Dr. Kyle Dewey Date ____________________________________ ____________ Dr. John J. Noga, Chair Date California State University, Northridge ii Dedication This project is dedicated to all of the Computer Science professors that I have come in contact with other the years who have inspired and encouraged me to pursue a career in computer science. The words and wisdom of these professors are what pushed me to try harder and accomplish more than I ever thought possible. I would like to give a big thanks to the open source community and my fellow cohort of computer science co-workers for always being there with answers to my numerous questions and inquiries. Without their guidance and expertise, I could not have been successful. Lastly, I would like to thank my friends and family who have supported and uplifted me throughout the years. Thank you for believing in me and always telling me to never give up. iii Table of Contents Signature Page ................................................................................................................................ ii Dedication .....................................................................................................................................
    [Show full text]
  • Video Coding Standards
    Module 8 Video Coding Standards Version 2 ECE IIT, Kharagpur Lesson 23 MPEG-1 standards Version 2 ECE IIT, Kharagpur Lesson objectives At the end of this lesson, the students should be able to : 1. Enlist the major video coding standards 2. State the basic objectives of MPEG-1 standard. 3. Enlist the set of constrained parameters in MPEG-1 4. Define the I- P- and B-pictures 5. Present the hierarchical data structure of MPEG-1 6. Define the macroblock modes supported by MPEG-1 23.0 Introduction In lesson 21 and lesson 22, we studied how to perform motion estimation and thereby temporally predict the video frames to exploit significant temporal redundancies present in the video sequence. The error in temporal prediction is encoded by standard transform domain techniques like the DCT, followed by quantization and entropy coding to exploit the spatial and statistical redundancies and achieve significant video compression. The video codecs therefore follow a hybrid coding structure in which DPCM is adopted in temporal domain and DCT or other transform domain techniques in spatial domain. Efforts to standardize video data exchange via storage media or via communication networks are actively in progress since early 1980s. A number of international video and audio standardization activities started within the International Telephone Consultative Committee (CCITT), followed by the International Radio Consultative Committee (CCIR), and the International Standards Organization / International Electrotechnical Commission (ISO/IEC). An experts group, known as the Motion Pictures Expects Group (MPEG) was established in 1988 in the framework of the Joint ISO/IEC Technical Committee with an objective to develop standards for coded representation of moving pictures, associated audio, and their combination for storage and retrieval of digital media.
    [Show full text]
  • AVC to the Max: How to Configure Encoder
    Contents Company overview …. ………………………………………………………………… 3 Introduction…………………………………………………………………………… 4 What is AVC….………………………………………………………………………… 6 Making sense of profiles, levels, and bitrate………………………………………... 7 Group of pictures and its structure..………………………………………………… 11 Macroblocks: partitioning and prediction modes….………………………………. 14 Eliminating spatial redundancy……………………………………………………… 15 Eliminating temporal redundancy……...……………………………………………. 17 Adaptive quantization……...………………………………………………………… 24 Deblocking filtering….….…………………………………………………………….. 26 Entropy encoding…………………………………….……………………………….. 2 8 Conclusion…………………………………………………………………………….. 29 Contact details..………………………………………………………………………. 30 2 www.elecard.com Company overview Elecard company, founded in 1988, is a leading provider of software products for encoding, decoding, processing, monitoring and analysis of video and audio data in 9700 companies various formats. Elecard is a vendor of professional software products and software development kits (SDKs); products for in - depth high - quality analysis and monitoring of the media content; countries 1 50 solutions for IPTV and OTT projects, digital TV broadcasting and video streaming; transcoding servers. Elecard is based in the United States, Russia, and China with 20M users headquarters located in Tomsk, Russia. Elecard products are highly appreciated and widely used by the leaders of IT industry such as Intel, Cisco, Netflix, Huawei, Blackmagic Design, etc. For more information, please visit www.elecard.com. 3 www.elecard.com Introduction Video compression is the key step in video processing. Compression allows broadcasters and premium TV providers to deliver their content to their audience. Many video compression standards currently exist in TV broadcasting. Each standard has different properties, some of which are better suited to traditional live TV while others are more suited to video on demand (VoD). Two basic standards can be identified in the history of video compression: • MPEG-2, a legacy codec used for SD video and early digital broadcasting.
    [Show full text]
  • Nvidia Video Codec Sdk - Encoder
    NVIDIA VIDEO CODEC SDK - ENCODER Programming Guide vNVENCODEAPI_PG-06155-001_v11 | July 2021 Table of Contents Chapter 1. Introduction........................................................................................................ 1 Chapter 2. Basic Encoding Flow.......................................................................................... 2 Chapter 3. Setting Up Hardware for Encoding....................................................................3 3.1. Opening an Encode Session.....................................................................................................3 3.1.1. Initializing encode device................................................................................................... 3 3.1.1.1. DirectX 9.......................................................................................................................3 3.1.1.2. DirectX 10.....................................................................................................................3 3.1.1.3. DirectX 11.....................................................................................................................4 3.1.1.4. DirectX 12.....................................................................................................................4 3.1.1.5. CUDA............................................................................................................................ 4 3.1.1.6. OpenGL........................................................................................................................
    [Show full text]
  • An Analysis of VP8, a New Video Codec for the Web Sean Cassidy
    Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 11-1-2011 An Analysis of VP8, a new video codec for the web Sean Cassidy Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Cassidy, Sean, "An Analysis of VP8, a new video codec for the web" (2011). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. An Analysis of VP8, a New Video Codec for the Web by Sean A. Cassidy A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Engineering Supervised by Professor Dr. Andres Kwasinski Department of Computer Engineering Rochester Institute of Technology Rochester, NY November, 2011 Approved by: Dr. Andres Kwasinski R.I.T. Dept. of Computer Engineering Dr. Marcin Łukowiak R.I.T. Dept. of Computer Engineering Dr. Muhammad Shaaban R.I.T. Dept. of Computer Engineering Thesis Release Permission Form Rochester Institute of Technology Kate Gleason College of Engineering Title: An Analysis of VP8, a New Video Codec for the Web I, Sean A. Cassidy, hereby grant permission to the Wallace Memorial Library to repro- duce my thesis in whole or part. Sean A. Cassidy Date i Acknowledgements I would like to thank my thesis advisors, Dr. Andres Kwasinski, Dr. Marcin Łukowiak, and Dr. Muhammad Shaaban for their suggestions, advice, and support.
    [Show full text]
  • University of Texas at Arlington Dissertation Template
    IMPLEMENTATION AND ANALYSIS OF DIRECTIONAL DISCRETE COSINE TRANSFORM IN H.264 FOR BASELINE PROFILE by SHREYANKA SUBBARAYAPPA Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN ELECTRICAL ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON May 2012 Copyright © by Shreyanka Subbarayappa 2012 All Rights Reserved ACKNOWLEDGEMENTS Firstly, I would thank my advisor Prof. K. R. Rao for his valuable guidance and support, and his tireless guidance, dedication to his students and maintaining new trend in the research areas has inspired me a lot without which this thesis would not have been possible. I also like to thank the other members of my advisory committee Prof. W. Alan Davis and Prof. Kambiz Alavi for reviewing the thesis document and offering insightful comments. I appreciate all members of Multimedia Processing Lab, Tejas Sathe, Priyadarshini and Darshan Alagud for their support during my research work. I would also like to thank my friends Adarsh Keshavamurthy, Babu Hemanth Kumar, Raksha, Kirthi, Spoorthi, Premalatha, Sadaf, Tanaya, Karthik, Pooja, and my Intel manager Sumeet Kaur who kept me going through the trying times of my Masters. Finally, I am grateful to my family; my father Prof. H Subbarayappa, my mother Ms. Anasuya Subbarayappa, my sister Dr. Priyanka Subbarayappa, my brother-in-law Dr. Manju Jayram and my sweet little nephew Dishanth for their support, patience, and encouragement during my graduate journey. April 16, 2012 iii ABSTRACT IMPLEMENTATION AND ANALYSIS OF DIRECTIONAL DISCRETE COSINE TRANSFORM IN H.264 FOR BASELINE PROFILE Shreyanka Subbarayappa, M.S The University of Texas at Arlington, 2012 Supervising Professor: K.R.Rao H.264/AVC [1] is a video coding standard that has a wide range of applications ranging from high-end professional camera and editing systems to low-end mobile applications.
    [Show full text]
  • The Basics of Video Compression
    The Basics of Video Compression Marko Slyz February 18, 2003 (Sourcecoders talk) 1/18 Outline 1. Non-technical Survey of Video Compressors 2. Basic Description of MPEG 1 3. Discussion of Other Compressors 4. Numerical Comparisons 2/18 Some Applications of Video Compressors MPEG-1 Video-CD MPEG-2 HDTV, DVD (usually), some camcorders, current digital cable, TiVo/ReplayTV MPEG-4 (a.k.a. divx) internet video, future digital cable, at least one camcorder, cell phones. H.261, H.263 video conferencing (e.g. Polycom) H.26L (a.k.a. MPEG-4 part 10, JVT H.264?) (Not yet done?) Intended for both low-delay and high-delay applications. 3/18 Another Classification of Video Compressors MPEG-1 (?) Corona (MS) requires MPEG-2 royalties RealVideo ISO/IEC Standard MPEG-4 Sorenson ITU-T Standard doesn’t H.261 vp3 (on2) require H.263 Tarkin (ogg) royalties H.26L (base) WaveVideo (?) formally not formally standardized standardized 4/18 Basic Idea of MPEG 1 or 2 (and :::) An uncompressed video file consists of a sequence of frames. MPEG (often) uses DPCM between frames, and uses a block-based DCT within a frame. MPEG has lots of forward-adaptive parts, lots of static parts, and no (?), except for the DPCM just mentioned, backward-adaptive parts. 5/18 MPEG 1 or 2 Beginnings To code a particular frame, start by 1. transforming its colors into Y,Cb,Cr space, 2. then partitioning it into macroblocks, each of which consists of a 16x16 block of pixels from Y, and 8x8 blocks of the subsampled versions of Cb and Cr (4:2:0).
    [Show full text]
  • Redalyc.Performance Evaluation of Macroblock-Level Parallelization Of
    Revista Avances en Sistemas e Informática ISSN: 1657-7663 [email protected] Universidad Nacional de Colombia Colombia Alvarez, Mauricio; Ramirez, Alex; Valero, Mateo; Azevedo, Arnaldo; Meenderinck, Cor; Juurlink, Ben Performance evaluation of macroblock-level parallelization of H.264 decoding on a cc-NUMA multiprocessor architecture Revista Avances en Sistemas e Informática, vol. 6, núm. 1, junio, 2009, pp. 219-228 Universidad Nacional de Colombia Medellín, Colombia Available in: http://www.redalyc.org/articulo.oa?id=133112608024 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Performance evaluation of macroblock­level parallelization of H.264 decoding on a cc­NUMA multiprocessor architecture Evaluación del rendimiento paralelo en el nivel macro bloque del decodificador H.264 en una arquitectura multiprocesador cc­NUMA Mauricio Alvarez, Ing. 1, Alex Ramirez, PhD. 1;2, Mateo Valero, PhD. 1;2 Arnaldo Azevedo, MSc. 3, Cor Meenderinck, MSc. 3, Ben Juurlink, PhD 3 1. Universitat Politècnica de Catalunya, Barcelona, Spain. 2. Barcelona Supercomputing Center, Barcelona, Spain. 3. Delft University of Technology, Delft, The Netherlands [email protected], [email protected], cor, [email protected], [email protected], [email protected] Recibido para revisión 5 de junio de 2009, aceptado 5 de junio de 2009, versión final 5 de junio de 2009 Abstract—This paper presents a study of the performance scalability mejor escalabilidad. Este artículo incluye una evaluación del impacto en of a macroblock­level parallelization of the H.264 decoder for High sincronización en bloque APIs como hilos POSIX y extensiones de Definition (HD) applications on a multiprocessor architecture.
    [Show full text]