Genomic Analysis of Fungal Species Causing Ascochyta Blight in Field Pea

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Analysis of Fungal Species Causing Ascochyta Blight in Field Pea Department of Environment and Agriculture School of Science and Engineering Genomic Analysis of Fungal Species Causing Ascochyta Blight in Field Pea Chala Jefuka Turo This thesis is presented for the Degree of Doctor of Philosophy of Curtin University February 2016 School of Science and Engineering Declaration To the best of my knowledge and belief this thesis contains no material previously published by any other person except where due acknowledgment has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any university. Signature: ____________________Date: ____________________ Acknowledgements I would like to express my appreciation to my initial principal supervisor Dr Judith Lichtenzveig for providing me the opportunity to study at Curtin University. Thank you for remarkable mentorship, encouragement and patience during my study. Special thanks go to my principal supervisor, Dr James Hane, for his tremendous mentorship and invaluable inputs. I am thankful for teaching me bioinformatics from the scratch to advanced computational biology, guidance and advice throughout writing my thesis. I have no words to explain, without you, it would have been impossible to produce this thesis. I am thankful to my co-supervisor, Dr Bernadette Henares, for your supervision, teaching quantitative PCR techniques and commenting the thesis. I would also like to thank my chair of supervisory committee, Professor Mark Gibberd, for evaluating my research progress, encouragement and serving committee members, particularly in the event of hardship situations. My special thanks extends to Dr Kate Trinajstic for serving as the chair of my supervisory committee toward the end of my studies. I am grateful to Julie Lawrence for teaching me molecular laboratory methods and for provision of technical assistances. I extend my special thanks to Lydia Kupsky, who taught me how to perform florescent microscopy. I’m indebted to invaluable technical and moral support obtained from Lina Farfan Caceres from start to end of my thesis. I am also grateful for bioinformatics support obtained from Robert Syme and Angela Williams. I would like to thank Francis Kessie, Robert Lee, Winnie Liu, Johannes Debler, Christy Grime, Bahram Sharifnabi and Fiona Kamphuis for various inputs and assistances provided. I would like to extend my gratitude to all CCDM staff members for their kind collaboration. I’m grateful to support from Julie Craig, from the International Sponsored Student Unit, for logistics arrangements and support. I am thankful to Australian Government for providing me a scholarship opportunity. I am also grateful to the financial assistance obtained from the Department of Environment and Agriculture, Curtin University. Finally, I would like express my appreciation to my beloved wife Aklil Knifu Kelifa, who always supports me in every moment and in all aspects throughout my studies. i Abstract The fungal pathogen Peyronellaea pinodes, Peyronellaea pinodella, Ascochyta pisi and Phoma koolunga are the most destructive fungal pathogens of field pea. Whole genome sequencing, comparative and in planta transcriptome studies were pursued to test the hypothesis that these pathogens secrete effectors as part of their pathogenicity arsenal. The genome of isolates of P. pinodes (2), P. pinodella (2), A. pisi (3) and Ph. koolunga (2) were completely sequenced and evaluated. In planta transcriptomes of P. pinodes, P. pinodella and Ph. koolunga were obtained as part of effector prediction. The genome assemblies varied between 29 and 33 Mbp with equilibrated GC content (51- 53%). The synteny relationship between P. pinodes and other fungal pathogens is congruent to their established evolutionary relationship. Genome analysis uncovered plant cell wall de-polymerization strategies evolved by ascochyta blight pathogens to establish themselves in their host. Heterologous expression confirmed that necrosis- inducing proteins (NLP) from Didymellaceae elicited cell-death only to dicots. This cytotoxic NLP is absent from cereal pathogens analysed suggesting niche adaptive evolution of Didymellaceae pathogens. About 223, 226 and 123 effector candidates were predicted from P. pinodes, P. pinodella and Ph. koolunga, respectively. In planta expressed effectors might play crucial role during infection. Further functional analysis will lead to development of novel pea breeding techniques. The availability of these genome data have contributed to scare molecular data available for studying host pathogen interaction. It is perceived that public availability of these data will increase public research engagement, hasten integration of available host and pathogen genome resources and boost pea improvement programs. ii Contents ......................................................................................................... Page Acknowledgements ...............................................................................................i Abstract ............................................................................................................... ii List of Tables .....................................................................................................vii List of Figures ..................................................................................................... ix Abbreviations ...................................................................................................... xi 1. General Introduction ................................................................................. 1 2. Molecular Basis of Ascochyta Blight Pathogens of Field Pea in the genomic Era ............................................................................................................ 5 2.1 Introduction .................................................................................................... 5 2.2 Molecular basis of interaction between plants and pathogens .......................... 5 2.3 Taxonomy and relatedness of ascochyta blight pathogens of field pea ............ 7 2.4 Infection and disease development in ascochyta blight pathogens of field pea 8 2.5 Population structure of ascochyta blight pathogens of pea (ABPFP) ............. 11 2.6 Host specificity of ascochyta blight pathogens of field pea ........................... 12 2.7 Molecular mechanisms of pathogenicity (effectors in ABPFP) ..................... 13 2.8 Phytoalexin detoxification is associated to virulence .................................... 15 2.9 Suppressors interfere with host defence via the jasmonic acid signalling pathway .................................................................................................. 17 2.10 Phytotoxic metabolites in ascochyta blight pathogens of field pea ........... 18 3. Genome Sequencing and Comparative Analysis of Peyronellaea pinodes, P. pinodella, Ph. koolunga and Ascochyta pisi ........................................ 22 3.1 Introduction .................................................................................................. 22 3.2 Materials and Methods ................................................................................. 25 3.2.1 Genome data acquisition and genome assembling ................................... 25 3.2.2 Repeat identification and repeat-induced point mutation (RIP) analysis .. 29 3.2.3 Gene finding ........................................................................................... 29 3.2.4 Functional annotation.............................................................................. 30 3.2.5 Comparative genomic analysis ................................................................ 30 3.2.5.1 Synteny and read mapping analysis ......................................................... 30 3.2.5.2 Analysis of secondary metabolite gene clusters ....................................... 31 3.2.5.3 Carbohydrate active enzyme (CAZymes) annotation ............................... 32 3.3 Results and Discussion ................................................................................. 33 3.3.1 Phylogenetic relatedness of ascochyta blight pathogens of field pea ........ 33 iii 3.3.2 Genome sequence assembly statistics ...................................................... 35 3.3.3 Repeat content of the genome assembly .................................................. 36 3.3.4 Gene content of genome assemblies ........................................................ 40 3.3.5 Comparative genomics ............................................................................ 41 3.3.5.1 RIP like activities are unusual in ascochyta blight pathogens of field pea 41 3.3.5.2 Synteny relationship between P. pinodes and other pathogens................. 44 3.3.5.3 Defining core protein sequences in Didymellaceae.................................. 51 3.3.5.4 Functional annotation abundance in P. pinodes ....................................... 53 3.3.5.5 Secondary metabolite gene clusters in ascochyta blight pathogens of field pea ................................................................................................... 55 3.3.5.6 Genomes of Didymellaceae, pathogens of field pea are enriched with carbohydrate activnzyme ........................................................................ 61 3.3.5.7 Pectin degradation is a common host adaptation mechanism in ascochyta blight pathogens of field pea ................................................................... 63 3.4 Conclusion ..................................................................................................
Recommended publications
  • Phaeoseptaceae, Pleosporales) from China
    Mycosphere 10(1): 757–775 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/17 Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China Liu NG1,2,3,4,5, Hyde KD4,5, Bhat DJ6, Jumpathong J3 and Liu JK1*,2 1 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China 2 Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, P.R. China 3 Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 5 Mushroom Research Foundation, Chiang Rai 57100, Thailand 6 No. 128/1-J, Azad Housing Society, Curca, P.O., Goa Velha 403108, India Liu NG, Hyde KD, Bhat DJ, Jumpathong J, Liu JK 2019 – Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China. Mycosphere 10(1), 757–775, Doi 10.5943/mycosphere/10/1/17 Abstract A new hyphomycete genus, Pleopunctum, is introduced to accommodate two new species, P. ellipsoideum sp. nov. (type species) and P. pseudoellipsoideum sp. nov., collected from decaying wood in Guizhou Province, China. The genus is characterized by macronematous, mononematous conidiophores, monoblastic conidiogenous cells and muriform, oval to ellipsoidal conidia often with a hyaline, elliptical to globose basal cell. Phylogenetic analyses of combined LSU, SSU, ITS and TEF1α sequence data of 55 taxa were carried out to infer their phylogenetic relationships. The new taxa formed a well-supported subclade in the family Phaeoseptaceae and basal to Lignosphaeria and Thyridaria macrostomoides.
    [Show full text]
  • Ascochyta Pisi, a Disease of Seed Peas
    April, 1906.} Ascoehytapisi—Disease of Seed Peas. 507 ASCOCHYTA PISI,—A DISEASE OF SEED PEAS.1 J. M. VAN HOOK. During the season of 1904 and 1905, there was an exceptional blighting2 of peas from Ascochyta pisi Lib. The disease was general throughout the state and occasioned loss especially where peas are grown in large areas for canning purposes. My attention was first called to this trouble June 24, 1904, on French June field peas, which had been sown with oats as a for- age crop. Most of the peas at this time, were about two feet high and just beginning to bloom. The lower leaves were, for the most part, dead. A few plants were wilting after several days of sunshine following continuous wet weather. Other stunted peas grew among these, some of which never attained a height greater than a few inches. Appearance on stems, leaves, pods and seed.—A close examina- tion of the plants showed that the stems had been attacked at many points, frequently as high as one and one-half feet from the ground, though most severely near the ground where the disease starts. In the beginning, dead areas were formed on the stem in the form of oval or elongated lesions. At a point, from the top of the ground to two or three inches above the ground, these lesions were so numerous and had spread so rapidly as to become continuous, leaving the stem encircled by a dead area. In some cases, the woody part of the stem was also dead, though the greater number of such plants still remained green above.
    [Show full text]
  • Taxonomy and Multigene Phylogenetic Evaluation of Novel Species in Boeremia and Epicoccum with New Records of Ascochyta and Didymella (Didymellaceae)
    Mycosphere 8(8): 1080–1101 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/8/9 Copyright © Guizhou Academy of Agricultural Sciences Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae) Jayasiri SC1,2, Hyde KD2,3, Jones EBG4, Jeewon R5, Ariyawansa HA6, Bhat JD7, Camporesi E8 and Kang JC1 1 Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou Province 550025, P.R. China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3World Agro forestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201, P. R. China 4Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 1145, Saudi Arabia 5Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 6Department of Plant Pathology and Microbiology, College of BioResources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei 106, Taiwan, ROC. 7No. 128/1-J, Azad Housing Society, Curca, P.O. Goa Velha, 403108, India 89A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. CircoloMicologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gliStudiNaturalisticidella Romagna, C.P. 144, Bagnacavallo (RA), Italy *Correspondence: [email protected] Jayasiri SC, Hyde KD, Jones EBG, Jeewon R, Ariyawansa HA, Bhat JD, Camporesi E, Kang JC 2017 – Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae).
    [Show full text]
  • Draft Genome Sequencing and Secretome Analysis of Fungal
    www.nature.com/scientificreports OPEN Draft genome sequencing and secretome analysis of fungal phytopathogen Ascochyta Received: 28 October 2015 Accepted: 04 April 2016 rabiei provides insight into the Published: 19 April 2016 necrotrophic effector repertoire Sandhya Verma, Rajesh Kumar Gazara, Shadab Nizam, Sabiha Parween, Debasis Chattopadhyay & Praveen Kumar Verma Constant evolutionary pressure acting on pathogens refines their molecular strategies to attain successful pathogenesis. Recent studies have shown that pathogenicity mechanisms of necrotrophic fungi are far more intricate than earlier evaluated. However, only a few studies have explored necrotrophic fungal pathogens. Ascochyta rabiei is a necrotrophic fungus that causes devastating blight disease of chickpea (Cicer arietinum). Here, we report a 34.6 megabase draft genome assembly of A. rabiei. The genome assembly covered more than 99% of the gene space and 4,259 simple sequence repeats were identified in the assembly. A total of 10,596 high confidence protein-coding genes were predicted which includes a large and diverse inventory of secretory proteins, transporters and primary and secondary metabolism enzymes reflecting the necrotrophic lifestyle ofA. rabiei. A wide range of genes encoding carbohydrate- active enzymes capable for degradation of complex polysaccharides were also identified. Comprehensive analysis predicted a set of 758 secretory proteins including both classical and non-classical secreted proteins. Several of these predicted secretory proteins showed high cysteine content and numerous tandem repeats. Together, our analyses would broadly expand our knowledge and offer insights into the pathogenesis and necrotrophic lifestyle of fungal phytopathogens. Chickpea (Cicer arietinum L.), an important high-protein source, is an annual legume crop grown worldwide.
    [Show full text]
  • The Susceptibility of Pea (Pisum Sativum L.) to Ascochyta Blight Under Lithuanian Conditions
    ISSN 1392-3196 Zemdirbyste-Agriculture Vol. 100, No. 3 (2013) 283 ISSN 1392-3196 / e-ISSN 2335-8947 Zemdirbyste-Agriculture, vol. 100, No. 3 (2013), p. 283‒288 DOI 10.13080/z-a.2013.100.036 The susceptibility of pea (Pisum sativum L.) to ascochyta blight under Lithuanian conditions Irena GAURILČIKIENĖ1, Rūta ČEsNULEvIČIENĖ2 1Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry Instituto 1, Akademija, Kėdainiai distr., Lithuania E-mail: [email protected] 2Perloja Experimental station, Lithuanian Research Centre for Agriculture and Forestry sodo 12, Perloja, varėna distr., Lithuania Abstract During the period 2008–2010, experiments were conducted to investigate the severity of ascochyta blight in the crops of semi-leafless field pea (Pisum sativum L.) cultivars ‘Profi’, ‘Eiffel’, ‘simona’, ‘Tinker’, ‘Mascara’ and ‘Pinochio’ in different soil and climate conditions of Lithuania: 1) on a southeast Luvisol (LV) in Perloja, 2) on a Middle Lowland’s Cambisol (CM) in Dotnuva. The study was aimed to identify the susceptibility of various field pea cultivars to ascochyta blight under different agro-ecological conditions and to establish the effects of meteorological factors on the disease severity and to determine the composition of Ascochyta complex on pea plants. In all experimental years, the values of area under disease progress curve (AUDPC) of ascochyta blight were higher in Perloja than in Dotnuva. Among the tested pea cultivars, ‘Tinker’ demonstrated the highest susceptibility to ascochyta blight, while ‘simona’ and ‘Pinochio’ were less susceptible irrespective of the disease infection level. In Perloja, a significant moderate or strong correlation was identified between the AUDPC values of ascochyta blight and the amount of precipitation and sum of effective temperatures (∑ ≥ 5°C) for all field pea cultivars tested.
    [Show full text]
  • Reference Genome Assembly for Australian Ascochyta Rabiei Isolate Arme14
    GENOME REPORT Reference Genome Assembly for Australian Ascochyta rabiei Isolate ArME14 Ramisah Mohd Shah,†,1 Angela H. Williams,†,‡ James K. Hane,*,† Julie A. Lawrence,* Lina M. Farfan-Caceres,* Johannes W. Debler,* Richard P. Oliver,†,‡ and Robert C. Lee*,2 *Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia, †Murdoch University, Murdoch, WA, Australia, and ‡Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia ORCID IDs: 0000-0003-0196-0022 (A.H.W.); 0000-0002-7651-0977 (J.K.H.); 0000-0002-3604-051X (J.W.D.); 0000-0001-7290-4154 (R.P.O.); 0000-0002-4174-7042 (R.C.L.) ABSTRACT Ascochyta rabiei is the causal organism of ascochyta blight of chickpea and is present in KEYWORDS chickpea crops worldwide. Here we report the release of a high-quality PacBio genome assembly for the PacBio Australian A. rabiei isolate ArME14. We compare the ArME14 genome assembly with an Illumina assembly for Pleosporales Indian A. rabiei isolate, ArD2. The ArME14 assembly has gapless sequences for nine chromosomes with Dothideomycetes telomere sequences at both ends and 13 large contig sequences that extend to one telomere. The total plant pathogen length of the ArME14 assembly was 40,927,385 bp, which was 6.26 Mb longer than the ArD2 assembly. chickpea Division of the genome by OcculterCut into GC-balanced and AT-dominant segments reveals 21% of the genome contains gene-sparse, AT-rich isochores. Transposable elements and repetitive DNA sequences in the ArME14 assembly made up 15% of the genome. A total of 11,257 protein-coding genes were predicted compared with 10,596 for ArD2.
    [Show full text]
  • Morphological and Genotypic Characterization of Fungi Associated with the Ascochyta Blight Complex in Western Regions of Algeria
    CORE Metadata, citation and similar papers at core.ac.uk Provided by European Scientific Journal (European Scientific Institute) European Scientific Journal March 2018 edition Vol.14, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 Morphological and Genotypic Characterization of Fungi Associated with the Ascochyta Blight Complex in Western Regions of Algeria A. Tadja Laboratory of Plant Protection, Department of Agronomy, University Abdelhamid IbnBadis (UMAB), Mostaganem, Algeria Doi: 10.19044/esj.2018.v14n9p276 URL:http://dx.doi.org/10.19044/esj.2018.v14n9p276 Abstract The study is conducted in two growing areas of garden pea (Pisum sativum L.) in northwestern Algeria. Damages caused by Ascochyta sp complex are important in particular for the variety of Kelvedon Wonder. Observations carried out on the infected plants for several years, indicate the presence of superimposed necrosis of different sizes on all aerial organs. However, these observations do not differentiate symptoms by species. The results of morphological and molecular characterization with sequencing in internal transcribed spacer (ITS) regions and inoculation tests on 32 isolates in the laboratory of symbiosis and plant pathology from Toulouse (France), show a reconciliation of the sequencing by polymerase chain reaction (PCR) products and size necrosis for all Ascochyta pinodes and pinodella. Alone, Ascochyta pisi is distinguished by a smaller size necrosis. On the molecular level, all isolates whose ITS regions were amplified by PCR, expresses similar size products (550 bp). This molecular weight is found on a large set of pathogenic fungi. The three species of Ascochyta sp complex do not exhibit polymorphism for Pisum sativum species and have an identical molecular weight.
    [Show full text]
  • Ascochyta Blight of Broad Beans-Didymella Fabae-Ascochyta Fabae Ascochyta Blight Is the Most Severe Disease of Cool-Season Pulses (Davidson and Kimber, 2007)
    U.S. Department of Agriculture, Agricultural Research Service Systematic Mycology and Microbiology Laboratory - Invasive Fungi Fact Sheets Ascochyta blight of broad beans-Didymella fabae-Ascochyta fabae Ascochyta blight is the most severe disease of cool-season pulses (Davidson and Kimber, 2007). The species Didymella fabae (anamorph Ascochyta fabae) that attacks Vicia faba can survive and reproduce in and spread from crop debris or be transported in infected seed. Introduction on infected seed occurred in Australia and Canada in the 1970s, and was probably the means for the pathogens original spread to countries outside of southwestern Asia. Ascospores are disseminated by wind from the debris as primary inoculum and secondary cycles are initiated by conidia spread by rain splash from plant lesions. The fungus is host-specific in causing disease but may be able to survive in non-host plants and reproduce on their debris. It is not treated as a phytosanitary risk or listed as an invasive pathogen by major organizations. Seed certification is the primary means of preventing its spread to new areas and the importation of new genotypes of the fungus to areas already infested. Didymella fabae G.J. Jellis & Punith. 1991 (Ascomycetes, Pleosporales) Colonies of Ascochyta fabae on PDA white to ash-white with sparse to abundant pycnidia; reverse cream to light brown. Colonies more yellow on oat agar. Mycelium abundant, velvety, composed of hyaline to yellowish, smooth, branched, septate hyphae. Pycnidia separate partially immersed, yellow to brown, subglobose to globose, 200-250 µm with usually one papillate ostiole. Conidogenous cells hyaline, short subglobose to cylindrical, arising from innermost layer of cells surrounding pycnidial cavity.
    [Show full text]
  • Ascochyta Blight Caused by Mycosphaerella Pinodes (Berk
    Joanna Marcinkowska, Lech Boros, Anna Wawer Re sponse of pea cultivars and lines to seed in fec tion by Ascochyta blight fungi Ed ward Arseniuk PLANT BREEDING AND SEED SCIENCE Volume 59 2009 DOI:10.2478/v10129-009-0006-6 Joanna Marcinkowska1, Lech Boros2, Anna Wawer2 1 Depart ment of Plant Pa thology of Warsaw Univer sity of Life Sciences , Warsaw, 02-870 Nowoursynowska 159, Poland, 2 Depart ment of Seed Sci ence and Tech nology of Plant Breeding and Acclimatisation In stitute, Radzików, 05-870 B³onie, Poland RESPONSE OF PEA (PISUM SATIVUM L.) CULTIVARS AND LINES TO SEED INFECTION BY ASCOCHYTA BLIGHT FUNGI ABSTRACT Seeds collect ed from 10 cultivars and lines of Pisum sativum of both 'afila' and normal foliage type, in oc u- lated in field by Mycosphaerella pinodes and Phoma pinodella, were eval u ated for inci dence of fungi respon - si ble for Ascochyta blight. Also seed ger mina tion and contam ina tion by other fungi were consid ere d. Sur face ster il ized seeds were plated on Coon agar me dium. A sam ple con tains 50 seeds. Data were taken af ter 8 days of incu ba tion. Fre quency of species occur renc e depended not only on charac ter s of cultivars and lines, weather con ditions dur ing 1998-2001, but on inoc u la tion treatm ent. Clear re sponse betwee n cultivars and lines to tested fac tors was noted. Seeds of norm al leaved line 344/87/3 and cv. Rubin were the most inhab ited by all fungi, and germ inated very poorly.
    [Show full text]
  • Functional Characterization of Polyketide-Derived
    FUNCTIONAL CHARACTERIZATION OF POLYKETIDE-DERIVED SECONDARY METABOLITES SOLANAPYRONES PRODUCED BY THE CHICKPEA BLIGHT PATHOGEN, ASCOCHYTA RABIEI: GENETICS AND CHEMICAL ECOLOGY By WONYONG KIM A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Plant Pathology AUGUST 2015 To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of WONYONG KIM find it satisfactory and recommend that it be accepted ___________________________________ Weidong Chen, Ph.D., Chair ___________________________________ Tobin L. Peever, Ph.D. ___________________________________ George J. Vandemark, Ph.D. ___________________________________ Lee A. Hadwiger, Ph.D. ___________________________________ Ming Xian, Ph.D. ii ACKNOWLEDGEMENTS I take this opportunity to thank my major advisor, Dr. Weidong Chen. I have learned a tremendous amount from him in framing hypothesis and critical thinking in science. He gave me every possible opportunity to attend conferences to present my research and interact with scientific communities. I would also like to thank my committee members Drs. Tobin L. Peever, George J. Va ndemark, Lee A. Hadwiger and Ming Xian for their open-door policy when questions arose and for giving me ideas and suggestions that helped develop this dissertation research. I am very fortunate to have such a nice group of committee members who are experts each in their own fields such as Systematics, Genetics, Molecular Biology and Chemistry. Without their expertise and helps the research presented in this dissertation could not have been carried out. I thank to Drs. Jeong-Jin Park and Chung-Min Park for long term collaboration during my doctoral study and being as good friends.
    [Show full text]
  • Phoma Koolunga Davidson, Hartley, Priest, Krysinska- Kaczmarek, Herdina, Mckay & Scott DEC09 Australia
    DEC09Pathogen of the month – December 2009 Fig. 1. Ascochyta blight symptoms on field peas artificially inoculated with conidia of Phoma koolunga (a); Culture of Phoma koolunga grown on PDA (b); Conidia of Phoma koolunga (c). Photo credits: Jenny Davidson, South Australia. Disease: Ascochyta blight complex of field peas Classification: K: Fungi, D: Ascomycota, C: Euascomycetes, O: Pleosporales, F: Pleosporaceae. Ascochyta blight (synonym: blackspot) is the most serious disease of field peas world wide and is caused by a complex of fungi. Phoma koolunga has recently been identified as part of this complex in South Australia. Major gene resistance has not been detected and fungicides are often uneconomic. Disease control is dependent on agronomic measures such as delayed sowing and wide rotations. The Pathogen: Phoma koolunga was first Host Range: Field peas (Pisum sativum) are the described by Davidson et al (2009) in South major host while in glasshouse conditions symptoms Australia, and causes typical ascochyta blight can be produced on some cultivars of Medicago symptoms on field peas. littoralis, M. scutella and Lens culinaris. On malt agar the colony has white to pale Impact: P. koolunga has been associated with gray aerial mycelium, or is occasionally dark Davidson, Hartley, Priest, Krysinska- severe ascochyta blight symptoms in naturally olivaceous with little or no aerial mycelium, infected peas in the field. In glasshouse inoculated reverse yellow-brown to olivaceous. Pycnidia trials the symptoms are indistinguishable from those (150–210 µm diameter) are scattered over the caused by M. pinodes. All the causal agents of agar or immersed. Conidia are hyaline, ascochyta blight on field peas can usually be ellipsoidal to oblong, 12.5–17x 5–7 µm, mostly detected within one paddock and are often all aseptate.
    [Show full text]
  • Sgt. Legume Science Joint Club Band Merging Knowledge on Diverse Legume Research Topics
    LEGUME PERSPECTIVES Sgt. Legume Science Joint Club Band Merging knowledge on diverse legume research topics The journal of the International Legume Society Issue 8 • July 2015 IMPRESSUM ISSN Publishing Director 2340-1559 (electronic issue) Diego Rubiales CSIC, Institute for Sustainable Agriculture Quarterly publication Córdoba, Spain January, April, July and October [email protected] (additional issues possible) Editor-in-Chief Published by Carlota Vaz Patto International Legume Society (ILS) Instituto de Tecnologia Química e Biológica António Xavier Co-published by (Universidade Nova de Lisboa) CSIC, Institute for Sustainable Agriculture, Córdoba, Spain Oeiras, Portugal Instituto de Tecnologia Química e Biológica António Xavier [email protected] (Universidade Nova de Lisboa), Oeiras, Portugal Technical Editor Institute of Field and Vegetable Crops, Novi Sad, Serbia Aleksandar Mikić Office and subscriptions Institute of Field and Vegetable Crops CSIC, Institute for Sustainable Agriculture Novi Sad, Serbia International Legume Society [email protected] Apdo. 4084, 14080 Córdoba, Spain Front cover art: Phone: +34957499215 • Fax: +34957499252 Sgt. Legume Science Joint Club Band [email protected] by Aleksandar MikićA Assistant Editors Mike Ambrose Ramakrishnan Nair John Innes Centre, Norwich, UK AVRDC - The World Vegetable Center, Shanhua, Taiwan Paolo Annicchiarico Pádraig O‟Kiely Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Teagasc, Grange, Ireland Centro di Ricerca per le Produzioni Foraggere
    [Show full text]