The Spectrum of Fungal Pathogens of Sorghum Bicolor X Sorghum Sudanense

Total Page:16

File Type:pdf, Size:1020Kb

The Spectrum of Fungal Pathogens of Sorghum Bicolor X Sorghum Sudanense 6–71RYHPEHU 2019, Brno, Czech Republic The spectrum of fungal pathogens of Sorghum bicolor x Sorghum sudanense Eliska Novakova, Ivana Safrankova Department of Crop Science, Breeding and Plant Medicine Mendel University in Brno Zemedelska 1, 613 00 Brno CZECH REPUBLIC [email protected] Abstract: Sorghum belongs to the most cultivated cereals in the world. The biggest producers for food industry are Africa and Asia. In Europe it is mostly used as animal´s feed. The sorghum is a minority crop in the Czech Republic, it is cultivated mainly for silage as a forage crop for livestock production systems or for biogas production. Five evaluations were performed in 2019 (June–July) under the field condition on sorghum variety ´KWS Tarzan´. The occurrence of fungal pathogens on sorghum were observed and evaluated in the field experimental station in Žabčice. Leaves which were affected by fungal pathogens were photographed and collected for their determination. The fungal pathogens were identified according to morphological and microscopic characteristics which appeared on a leaves surface (spots, mycelium, and spores) on the field or after laboratory ´wet-cell´ cultivation. The sorghum plants were infected by pathogens from the group of leaves and stalks spots (Colletotrichum sublineola, Cercospora sorghi, Exserohilum turcicum, Bipolaris cookei) and sorghum rust (Puccinia sorghi). Key Words: Colletotrichum sublineola, Cercospora sorghi, Exserohilum turcicum, field monitoring, Sudan grass INTRODUCTION Due to the climatic changes crops with specific attributes have to be included into the rotation in the Czech Republic. Such crops have to be able to provide good and high crop yields at high temperatures during the summer months and droughts. The crop which meets the requirements is sorghum (Sorghum bicolor × Sorghum sudanense). It is also known as Sudan grass and is suitable for feed and biogas stations. The limiting factor for its cultivation is low temperatures during sowing and early emergence (Adamčík and Tomášek 2016). This problem can manifest as low coverage growth, high degree of weed infestation or lower resistance to harmful organisms. These factors can have negative influence on the quantity and quality of production (Das 2018). Fungal pathogens of sorghum can be sorted into three groups according to parts of plants which are infected. There is an occurrence of inflorescence and seed pathogens (smuts and Fusarium spp.), foliar and stalk pathogens (leaves spot and rusts), and the root and root disc pathogens (Macrophomina phaseolina). Every pathogen which is mentioned above should make a lower biological value of feed → lower photosynthetic activities, lower digestibility for cattle as a consequence of lower content of saccharides and mycotoxin production (Nedělník et al. 2011). The most important sorghum pathogens in Europe are Colletotrichum sublineola, (Baroncelli et al. 2014, Das 2018), Ascochyta sorghi (Schuh et al. 1986), Bipolaris cookei (Jonar et al. 2011, Das 2018), Cercospora sorghi, Ramulispora sorghicola, Exserohilum turcicum (Kuthan 2010), so the aim of this study was to determine, if they are present in the Czech Republic, nowadays. MATERIAL AND METHODS The small-plot experiment was established at the field trial station in Žabčice 49°00'57.614" N, 16°5'92.1042 E" in Southern Moravia (Figure 1a–b). The average annual temperature is 9.5 °C, and average annual precipitation is 480 mm. The course of weather in the year 2019 is given 87 6–71RYHPEHU 2019, Brno, Czech Republic in Figure 2. The soil of experiment field is sandy. One plot area was 30 m2. Sorghum seeds were sown on 25. 4. 2019 (25 germinative seeds/m2), without pre-crop. The effect of nitrogen and sulphur fertilization was observed. The fertilizer with nitrogen (N) and sulphur (S) applied 7 days after plant emergence (27 May 2019), zinc foliar application (Zinkosol Forte) was made in 8–leaf growth stage (26 June 2019). The fertilizer with nitrogen (N) → ALZON neo-N (N = 115 kg/ha), fertilizer with nitrogen and sulphur (N+S) → ENSIN (N = 117 kg/ha, S = 58.5 kg/ha), fertilizer with nitrogen and zinc (N+Zn) → ALZON neo-N + ZINKOSOL forte (N = 115 kg/ha, Zn = 450 g/ha), fertilizer with nitrogen and sulphur and zinc → ENSIN + ZINKOSOL forte (N = 115 kg/ha, S = 58.5 kg/ha, Zn = 450 g/ha) were applied in particular variants. These plots were observed and evaluated separately from phytopathologic perspective. Figure 1 Experimental field with Sorghum bicolor × Sorghum sudanense, (https://www.google.com/maps, 2019) Figure 2 Climate diagram, Žabčice (Meteorological station in Žabčice, Department of Agrosystems and Bioclimatology, Mendel University in Brno, 2019) Evaluation of the occurrence of pathogens during vegetation The total health condition of growth and occurrence of sorghum pathogens was evaluated in June–July 2019 [10. 5., 20. 6., 10.7, 20. 7., and 31.7.; (Figure 3)]. Leaves which showed symptoms of the disease were photographed and collected to a paper bag and they were labelled according to a field number and fertilizer variant. These samples were used for microscopic identification of the pathogen according to morphological characteristic. The small-plot experiment was harvested by hands 1. 8. 2019. 88 6–71RYHPEHU 2019, Brno, Czech Republic Figure 3 Growth of Sorghum bicolor × Sorghum sudanense ´KWS Tarzan´ Legend: 3a field of sorghum – Žabčice 20. 6. 2019; 3b fielf of sorghum – Žabčice 10. 7. 2019 Determination of sorghum pathogens in the lab conditions The infected leaves were cut to pieces and the surface was disinfected with 0.2% sodium hypochloride followed by 3 minutes of soaking. Then the leaves were washed by distilled water for 3 minutes, dried in sterile conditions (flow-box, sterile filtration papers, 5 minutes) and placed on Petri dish (Ø 15 cm) with two-tier filtrate paper which was moisten by distilled water. The cultivation was conducted under standard laboratory conditions (temperature 20/25 °C, light mode 14/10 hour) for 7 days. Pathogens were identified under microscope (Olympus BX12, Olympus BX41) by their morphological characteristics (size of spots on the leaves, size of spores etc.). If it was not possible to identify the pathogen directly from the leaves, cultivation of the pathogen had to be done in cultured dirt of Potato Dextrose Agar (PDA), Sabouraud agar (SA), Malt extract agar (MEA), cultivation lasted for 7–10 days, (23/20 °C, 14/10 hours light mode) RESULTS AND DISCUSSION Monitoring and detection of sorghum pathogens in field conditions The vegetation beginning was very slow, because in May the weather was cold and wet (Figure 2), this not was suitable for sorghum growth. The sorghum stand was sparse and weedy. The first occurrence of fungal pathogens Colletotrichum sublineolum (Figure 4 a–b) and Cercospora sorghi on sorghum plants was noticed in the first half of July (Table 1). In the next observation (the second half of July) another three pathogens were determinated: Exserohilum turcicum, Bipolaris cookei (Figure 4g–h) and Puccinia sorghi (Figure 4e–f). Any differences in rate of infected plants between particular small-plot plots were not observed. Anthracnose caused by Colletotrichum sublineolum was disease with the highest occurrence on the sorghum plants in the small-plot experiment. Typical anthracnose symptoms are circular- elliptical dark spots 2–6 cm diam., with a red pigmentation on leaves and stalks (Figure 4 a–b). The centre of mature lesions is straw-colored and contains numerous acervuli with black seta (Figure 4c–d). According to Thakur et al. (2007) grey/cream/salmon-colored spore masses are produced under humid conditions. In many instances leaves can be entirely blighted, and when the blight attacks the stalks it is known as 'stalk rot'. The optimal conditions for anthracnose occurrence are when dry and moisture period take turns. Another fungal pathogen Cercospora sorghi causes very similar symptoms. The lesions are mostly isolated but can grow continuously to give long stripes. They are dark purple with a brown centre. Leaf spots which enlarge to become rectangular lesions (Odvody 1986, Cuevas 2016 et al.). 89 6–71RYHPEHU 2019, Brno, Czech Republic Under our field conditions the same spots as Cuevas et al. (2016) described were observed → long stripes on the leaves blades, stromata were observed in a lab condition by microscopic methods. The pathogens determination was carried out on the grounds of Crous et al. (2006) study. Figure 4 Fungal pathogens of Sorghum bicolor × Sorghum sudanense Legend: 4a–d Colletotrichum sublineolum on infected stalk (a) and infected leaf (b), setae emerging from acervuli (c–d); Puccinia sorghi on infected leaf (e) and urediniospore (f); 4g–h Bipolaris cookei conidia Bipolaris cookei causes similar symptoms as Cercospora sorghi, but the lesions are redder, but in a field conditions it is not possible to determine differences. The typical brown elliptical conidies (Figure 4g–h) were observed in lab conditions. These same symptoms and microscopic structures were described by Manamgoda et al. (2014). The last mentioned pathogen, Exserohilum turcicum has small spots that enlarge and coalesce resulting in the wilting of the young leaves. On adult plants long, elliptical, reddish purple or yellowish lesions develop, first on lower leaves and later progresses to upper leaves and stem as well. In humid weather numerous greyish black spores produced in the lesions in concentric zones. This description is with conformity with Thakur´s et al. (2007). Table 1 The particular occurrence of sorghum pathogens during a monitoring in 2019 date 10. 5. 20. 6. 10. 7. 20. 7. 31. 7. 2019 2019 2019 2019 2019 pathogen Colletotrichum sublineola - - + + + Cercospora sorghi - - + + + Exserohilum turcicum - - - + + Puccinia sorghi - - - + + Bipolaris cookei - - - + + Legend: - negative occurrence; + positive occurrence The last observed pathogen was Puccinia sorghi which was identified by urediniospore (Figure 4f), because teliospores are generally produced late in the season or not at all. Microscopic structures were developing on both the upper and lower leaf surfaces.
Recommended publications
  • Phaeoseptaceae, Pleosporales) from China
    Mycosphere 10(1): 757–775 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/17 Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China Liu NG1,2,3,4,5, Hyde KD4,5, Bhat DJ6, Jumpathong J3 and Liu JK1*,2 1 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China 2 Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, P.R. China 3 Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 5 Mushroom Research Foundation, Chiang Rai 57100, Thailand 6 No. 128/1-J, Azad Housing Society, Curca, P.O., Goa Velha 403108, India Liu NG, Hyde KD, Bhat DJ, Jumpathong J, Liu JK 2019 – Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China. Mycosphere 10(1), 757–775, Doi 10.5943/mycosphere/10/1/17 Abstract A new hyphomycete genus, Pleopunctum, is introduced to accommodate two new species, P. ellipsoideum sp. nov. (type species) and P. pseudoellipsoideum sp. nov., collected from decaying wood in Guizhou Province, China. The genus is characterized by macronematous, mononematous conidiophores, monoblastic conidiogenous cells and muriform, oval to ellipsoidal conidia often with a hyaline, elliptical to globose basal cell. Phylogenetic analyses of combined LSU, SSU, ITS and TEF1α sequence data of 55 taxa were carried out to infer their phylogenetic relationships. The new taxa formed a well-supported subclade in the family Phaeoseptaceae and basal to Lignosphaeria and Thyridaria macrostomoides.
    [Show full text]
  • Ascochyta Pisi, a Disease of Seed Peas
    April, 1906.} Ascoehytapisi—Disease of Seed Peas. 507 ASCOCHYTA PISI,—A DISEASE OF SEED PEAS.1 J. M. VAN HOOK. During the season of 1904 and 1905, there was an exceptional blighting2 of peas from Ascochyta pisi Lib. The disease was general throughout the state and occasioned loss especially where peas are grown in large areas for canning purposes. My attention was first called to this trouble June 24, 1904, on French June field peas, which had been sown with oats as a for- age crop. Most of the peas at this time, were about two feet high and just beginning to bloom. The lower leaves were, for the most part, dead. A few plants were wilting after several days of sunshine following continuous wet weather. Other stunted peas grew among these, some of which never attained a height greater than a few inches. Appearance on stems, leaves, pods and seed.—A close examina- tion of the plants showed that the stems had been attacked at many points, frequently as high as one and one-half feet from the ground, though most severely near the ground where the disease starts. In the beginning, dead areas were formed on the stem in the form of oval or elongated lesions. At a point, from the top of the ground to two or three inches above the ground, these lesions were so numerous and had spread so rapidly as to become continuous, leaving the stem encircled by a dead area. In some cases, the woody part of the stem was also dead, though the greater number of such plants still remained green above.
    [Show full text]
  • Taxonomy and Multigene Phylogenetic Evaluation of Novel Species in Boeremia and Epicoccum with New Records of Ascochyta and Didymella (Didymellaceae)
    Mycosphere 8(8): 1080–1101 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/8/9 Copyright © Guizhou Academy of Agricultural Sciences Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae) Jayasiri SC1,2, Hyde KD2,3, Jones EBG4, Jeewon R5, Ariyawansa HA6, Bhat JD7, Camporesi E8 and Kang JC1 1 Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou Province 550025, P.R. China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3World Agro forestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201, P. R. China 4Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 1145, Saudi Arabia 5Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 6Department of Plant Pathology and Microbiology, College of BioResources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei 106, Taiwan, ROC. 7No. 128/1-J, Azad Housing Society, Curca, P.O. Goa Velha, 403108, India 89A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. CircoloMicologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gliStudiNaturalisticidella Romagna, C.P. 144, Bagnacavallo (RA), Italy *Correspondence: [email protected] Jayasiri SC, Hyde KD, Jones EBG, Jeewon R, Ariyawansa HA, Bhat JD, Camporesi E, Kang JC 2017 – Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae).
    [Show full text]
  • Draft Genome Sequencing and Secretome Analysis of Fungal
    www.nature.com/scientificreports OPEN Draft genome sequencing and secretome analysis of fungal phytopathogen Ascochyta Received: 28 October 2015 Accepted: 04 April 2016 rabiei provides insight into the Published: 19 April 2016 necrotrophic effector repertoire Sandhya Verma, Rajesh Kumar Gazara, Shadab Nizam, Sabiha Parween, Debasis Chattopadhyay & Praveen Kumar Verma Constant evolutionary pressure acting on pathogens refines their molecular strategies to attain successful pathogenesis. Recent studies have shown that pathogenicity mechanisms of necrotrophic fungi are far more intricate than earlier evaluated. However, only a few studies have explored necrotrophic fungal pathogens. Ascochyta rabiei is a necrotrophic fungus that causes devastating blight disease of chickpea (Cicer arietinum). Here, we report a 34.6 megabase draft genome assembly of A. rabiei. The genome assembly covered more than 99% of the gene space and 4,259 simple sequence repeats were identified in the assembly. A total of 10,596 high confidence protein-coding genes were predicted which includes a large and diverse inventory of secretory proteins, transporters and primary and secondary metabolism enzymes reflecting the necrotrophic lifestyle ofA. rabiei. A wide range of genes encoding carbohydrate- active enzymes capable for degradation of complex polysaccharides were also identified. Comprehensive analysis predicted a set of 758 secretory proteins including both classical and non-classical secreted proteins. Several of these predicted secretory proteins showed high cysteine content and numerous tandem repeats. Together, our analyses would broadly expand our knowledge and offer insights into the pathogenesis and necrotrophic lifestyle of fungal phytopathogens. Chickpea (Cicer arietinum L.), an important high-protein source, is an annual legume crop grown worldwide.
    [Show full text]
  • The Susceptibility of Pea (Pisum Sativum L.) to Ascochyta Blight Under Lithuanian Conditions
    ISSN 1392-3196 Zemdirbyste-Agriculture Vol. 100, No. 3 (2013) 283 ISSN 1392-3196 / e-ISSN 2335-8947 Zemdirbyste-Agriculture, vol. 100, No. 3 (2013), p. 283‒288 DOI 10.13080/z-a.2013.100.036 The susceptibility of pea (Pisum sativum L.) to ascochyta blight under Lithuanian conditions Irena GAURILČIKIENĖ1, Rūta ČEsNULEvIČIENĖ2 1Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry Instituto 1, Akademija, Kėdainiai distr., Lithuania E-mail: [email protected] 2Perloja Experimental station, Lithuanian Research Centre for Agriculture and Forestry sodo 12, Perloja, varėna distr., Lithuania Abstract During the period 2008–2010, experiments were conducted to investigate the severity of ascochyta blight in the crops of semi-leafless field pea (Pisum sativum L.) cultivars ‘Profi’, ‘Eiffel’, ‘simona’, ‘Tinker’, ‘Mascara’ and ‘Pinochio’ in different soil and climate conditions of Lithuania: 1) on a southeast Luvisol (LV) in Perloja, 2) on a Middle Lowland’s Cambisol (CM) in Dotnuva. The study was aimed to identify the susceptibility of various field pea cultivars to ascochyta blight under different agro-ecological conditions and to establish the effects of meteorological factors on the disease severity and to determine the composition of Ascochyta complex on pea plants. In all experimental years, the values of area under disease progress curve (AUDPC) of ascochyta blight were higher in Perloja than in Dotnuva. Among the tested pea cultivars, ‘Tinker’ demonstrated the highest susceptibility to ascochyta blight, while ‘simona’ and ‘Pinochio’ were less susceptible irrespective of the disease infection level. In Perloja, a significant moderate or strong correlation was identified between the AUDPC values of ascochyta blight and the amount of precipitation and sum of effective temperatures (∑ ≥ 5°C) for all field pea cultivars tested.
    [Show full text]
  • Reference Genome Assembly for Australian Ascochyta Rabiei Isolate Arme14
    GENOME REPORT Reference Genome Assembly for Australian Ascochyta rabiei Isolate ArME14 Ramisah Mohd Shah,†,1 Angela H. Williams,†,‡ James K. Hane,*,† Julie A. Lawrence,* Lina M. Farfan-Caceres,* Johannes W. Debler,* Richard P. Oliver,†,‡ and Robert C. Lee*,2 *Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia, †Murdoch University, Murdoch, WA, Australia, and ‡Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia ORCID IDs: 0000-0003-0196-0022 (A.H.W.); 0000-0002-7651-0977 (J.K.H.); 0000-0002-3604-051X (J.W.D.); 0000-0001-7290-4154 (R.P.O.); 0000-0002-4174-7042 (R.C.L.) ABSTRACT Ascochyta rabiei is the causal organism of ascochyta blight of chickpea and is present in KEYWORDS chickpea crops worldwide. Here we report the release of a high-quality PacBio genome assembly for the PacBio Australian A. rabiei isolate ArME14. We compare the ArME14 genome assembly with an Illumina assembly for Pleosporales Indian A. rabiei isolate, ArD2. The ArME14 assembly has gapless sequences for nine chromosomes with Dothideomycetes telomere sequences at both ends and 13 large contig sequences that extend to one telomere. The total plant pathogen length of the ArME14 assembly was 40,927,385 bp, which was 6.26 Mb longer than the ArD2 assembly. chickpea Division of the genome by OcculterCut into GC-balanced and AT-dominant segments reveals 21% of the genome contains gene-sparse, AT-rich isochores. Transposable elements and repetitive DNA sequences in the ArME14 assembly made up 15% of the genome. A total of 11,257 protein-coding genes were predicted compared with 10,596 for ArD2.
    [Show full text]
  • Morphological and Genotypic Characterization of Fungi Associated with the Ascochyta Blight Complex in Western Regions of Algeria
    CORE Metadata, citation and similar papers at core.ac.uk Provided by European Scientific Journal (European Scientific Institute) European Scientific Journal March 2018 edition Vol.14, No.9 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 Morphological and Genotypic Characterization of Fungi Associated with the Ascochyta Blight Complex in Western Regions of Algeria A. Tadja Laboratory of Plant Protection, Department of Agronomy, University Abdelhamid IbnBadis (UMAB), Mostaganem, Algeria Doi: 10.19044/esj.2018.v14n9p276 URL:http://dx.doi.org/10.19044/esj.2018.v14n9p276 Abstract The study is conducted in two growing areas of garden pea (Pisum sativum L.) in northwestern Algeria. Damages caused by Ascochyta sp complex are important in particular for the variety of Kelvedon Wonder. Observations carried out on the infected plants for several years, indicate the presence of superimposed necrosis of different sizes on all aerial organs. However, these observations do not differentiate symptoms by species. The results of morphological and molecular characterization with sequencing in internal transcribed spacer (ITS) regions and inoculation tests on 32 isolates in the laboratory of symbiosis and plant pathology from Toulouse (France), show a reconciliation of the sequencing by polymerase chain reaction (PCR) products and size necrosis for all Ascochyta pinodes and pinodella. Alone, Ascochyta pisi is distinguished by a smaller size necrosis. On the molecular level, all isolates whose ITS regions were amplified by PCR, expresses similar size products (550 bp). This molecular weight is found on a large set of pathogenic fungi. The three species of Ascochyta sp complex do not exhibit polymorphism for Pisum sativum species and have an identical molecular weight.
    [Show full text]
  • Ascochyta Blight of Broad Beans-Didymella Fabae-Ascochyta Fabae Ascochyta Blight Is the Most Severe Disease of Cool-Season Pulses (Davidson and Kimber, 2007)
    U.S. Department of Agriculture, Agricultural Research Service Systematic Mycology and Microbiology Laboratory - Invasive Fungi Fact Sheets Ascochyta blight of broad beans-Didymella fabae-Ascochyta fabae Ascochyta blight is the most severe disease of cool-season pulses (Davidson and Kimber, 2007). The species Didymella fabae (anamorph Ascochyta fabae) that attacks Vicia faba can survive and reproduce in and spread from crop debris or be transported in infected seed. Introduction on infected seed occurred in Australia and Canada in the 1970s, and was probably the means for the pathogens original spread to countries outside of southwestern Asia. Ascospores are disseminated by wind from the debris as primary inoculum and secondary cycles are initiated by conidia spread by rain splash from plant lesions. The fungus is host-specific in causing disease but may be able to survive in non-host plants and reproduce on their debris. It is not treated as a phytosanitary risk or listed as an invasive pathogen by major organizations. Seed certification is the primary means of preventing its spread to new areas and the importation of new genotypes of the fungus to areas already infested. Didymella fabae G.J. Jellis & Punith. 1991 (Ascomycetes, Pleosporales) Colonies of Ascochyta fabae on PDA white to ash-white with sparse to abundant pycnidia; reverse cream to light brown. Colonies more yellow on oat agar. Mycelium abundant, velvety, composed of hyaline to yellowish, smooth, branched, septate hyphae. Pycnidia separate partially immersed, yellow to brown, subglobose to globose, 200-250 µm with usually one papillate ostiole. Conidogenous cells hyaline, short subglobose to cylindrical, arising from innermost layer of cells surrounding pycnidial cavity.
    [Show full text]
  • In Vitro Growth of Some Species of Ascochyta Lib
    Cent. Eur. J. Biol. • 7(6) • 2012 • 1076-1083 DOI: 10.2478/s11535-012-0095-3 Central European Journal of Biology In vitro growth of some species of Ascochyta Lib. Research Article Tomasz Kosiada* Poznań University of Life Sciences, Department of Phytopathology, 60–594 Poznań, Poland Received 23 April 2012; Accepted 28 August 2012 Abstract: Fungi from the genus Ascochyta are generally facultative saprotrophs, which cause diseases in both monocots and dicots. Over 1 000 species belonging to this genus have been identified, 18 of which infect monocot plants from the family Poaceae. This study analyses the effects of temperature and light on the growth of selected fungi which infect monocots (A. agrostidis, A. avenae, A. brachypodii, A. desmazieri, A. digraphidis, A. ducis-aprutii, A. festucae, A. graminea, A. hordei, A. hordei var. americana, A. hordei var. europea, A. hordei var. hordei, A. melicae, A. phleina, A. skagwayensis, A. sorghi, A. stipae, A. zeicola), grown on three types of media; Potato Dextrose Agar (PDA), Coon’s agar (CN) and oatmeal agar (OMA). The fastest growth among the analyzed fungi at low temperatures was found in Ascochyta melicae, while at high temperatures it was A. zeicola. The fastest in vitro growth (average of all fungi) was observed on CN medium at 20ºC (3.4 mm/day), while the lowest on OM medium at 5ºC (1.0 mm/day). Radial mycelial growth in dark and the light conditions varied. On average, all isolates grew faster in the dark (3.1 mm/day) than in the light (1.9 mm/day). The greatest effect on the production of pycnidia was found for the isolates.
    [Show full text]
  • Multi-Locus Phylogeny of Pleosporales: a Taxonomic, Ecological and Evolutionary Re-Evaluation
    available online at www.studiesinmycology.org StudieS in Mycology 64: 85–102. 2009. doi:10.3114/sim.2009.64.04 Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation Y. Zhang1, C.L. Schoch2, J. Fournier3, P.W. Crous4, J. de Gruyter4, 5, J.H.C. Woudenberg4, K. Hirayama6, K. Tanaka6, S.B. Pointing1, J.W. Spatafora7 and K.D. Hyde8, 9* 1Division of Microbiology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P.R. China; 2National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 3Las Muros, Rimont, Ariège, F 09420, France; 4CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands; 5Plant Protection Service, P.O. Box 9102, 6700 HC Wageningen, The Netherlands; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan; 7Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 93133, U.S.A.; 8School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand; 9International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, Yunnan, P.R. China 650034 *Correspondence: Kevin D. Hyde, [email protected] Abstract: Five loci, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, are used for analysing 129 pleosporalean taxa representing 59 genera and 15 families in the current classification ofPleosporales . The suborder Pleosporineae is emended to include four families, viz. Didymellaceae, Leptosphaeriaceae, Phaeosphaeriaceae and Pleosporaceae. In addition, two new families are introduced, i.e.
    [Show full text]
  • Establishment of a Global Network for the in Situ Conservation of Crop Wild Relatives: Status and Needs
    THEMATIC BACKGROUND STUDY Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs Nigel Maxted and Shelagh Kell BACKGROUND STUDY PAPER NO. 39 October 2009 COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE ESTABLISHMENT OF A GLOBAL NETWORK FOR THE IN SITU CONSERVATION OF CROP WILD RELATIVES: STATUS AND NEEDS by By Nigel Maxted and Shelagh Kell1 The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO, or its Members. 2 1 School of Biosciences, University of Birmingham. Disclaimer The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the Food and Agriculture Organization of the United Nations (FAO), or its Members. The designations employed and the presentation of material do not imply the expression of any opinion whatsoever on the part of FAO concerning legal or development status of any country, territory, city or area or of its authorities or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed by FAO in preference to others of a similar nature that are not mentioned. CONTENTS SUMMARY 6 PART 1: INTRODUCTION 7 1.1 Background 7 1.2 The global and local importance of crop wild relatives 8 1.3 Definition of a crop wild relative 8 1.4 Global numbers of crop wild relatives 9 1.5 Threats to
    [Show full text]
  • Ascochyta Blight of Chickpeas Robert M
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Panhandle Research and Extension Center Agricultural Research Division of IANR 2010 Ascochyta Blight of Chickpeas Robert M. Harveson University of Nebraska-Lincoln, [email protected] Samuel G. Markell North Dakota State University, [email protected] Rubella Goswami North Dakota State University, [email protected] Carlos A. Urrea University of Nebraska-Lincoln, [email protected] Mary E. Burrows Montana State University, [email protected] See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/panhandleresext Harveson, Robert M.; Markell, Samuel G.; Goswami, Rubella; Urrea, Carlos A.; Burrows, Mary E.; Dugan, Frank; Chen, Weidong; and Skoglund, Linnea G., "Ascochyta Blight of Chickpeas" (2010). Panhandle Research and Extension Center. 87. http://digitalcommons.unl.edu/panhandleresext/87 This Article is brought to you for free and open access by the Agricultural Research Division of IANR at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Panhandle Research and Extension Center by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Robert M. Harveson, Samuel G. Markell, Rubella Goswami, Carlos A. Urrea, Mary E. Burrows, Frank Dugan, Weidong Chen, and Linnea G. Skoglund This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/panhandleresext/87 © 2011 Plant Management Network. Accepted for publication 17 November 2010. Published 3 January 2011. Ascochyta Blight of Chickpeas Robert M. Harveson, Panhandle REC, University of Nebraska- Lincoln, Scottsbluff, NE 69361; Samuel G. Markell and Rubella Goswami, Department of Plant Pathology, North Dakota State University, Fargo, ND 58108; Carlos A.
    [Show full text]