Staphylococcus Aureus Clpxp

Total Page:16

File Type:pdf, Size:1020Kb

Staphylococcus Aureus Clpxp TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR CHEMIE LEHRSTUHL FÜR ORGANISCHE CHEMIE II VIRULENCE ATTENUATION THROUGH CHEMICAL AND GENETIC MANIPULATION OF THE STAPHYLOCOCCUS AUREUS CLPXP PROTEASE DISSERTATION ZUR ERLANGUNG DES AKADEMISCHEN GRADES EINES DOKTORS DER NATURWISSENSCHAFTEN VON CHRISTIAN FETZER MÜNCHEN 2018 TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR CHEMIE LEHRSTUHL FÜR ORGANISCHE CHEMIE II Virulence Attenuation through Chemical and Genetic Manipulation of the Staphylococcus aureus ClpXP Protease Christian Fetzer Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Michael Groll Prüfer der Dissertation: 1. Prof. Dr. Stephan A. Sieber 2. Prof. Dr. Matthias Feige Die Dissertation wurde am 07.11.2017 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 06.12.2017 angenommen. “… I am still confused - but on a higher level.” Enrico Fermi Danksagung An allererster Stelle möchte ich mich herzlich bei Prof. Dr. Stephan A. Sieber für die Möglichkeit bedanken, sowohl meine Master-, als auch meine Doktorarbeit an seinem Lehrstuhl angefertigt haben zu können. Sowohl die Themengebiete, als auch die große Freiheit bei der Bearbeitung empfand ich als sehr positiv. Durch die Forschung in sehr unterschiedlichen Bereichen habe ich ein sehr breites Spektrum an Methoden, Techniken und Denkweisen erlernen können, worüber ich sehr dankbar bin. Mein Dank gilt den Mitgliedern der Prüfungskommission für ihre Zeit und ihren Bemühungen bei der Bewertung der Dissertation. Tamara, Franjo, Markus und Matthias danke ich für die Korrektur der Arbeit. Dem alten AVIRU-Team, Dr. Kathrin Lorenz-Baath, Dr. Franziska Weinandy, Dr. Bianca Schwanhäußer, Heike Hofmann, Dr. Axel Pahl, Dr. Vadim Korotkov, Dr. Jan Vomacka und Ernst Bernges, möchte ich für den leichten Übergang von Studium zu Forschung und dem immer angenehmen Arbeitsklima danken. Sehr viele Ergebnisse und Experimente kommen von Kooperationspartnern aus ganz Deutschland. Ich danke Marie-Theres Vielberg und Prof. Dr. Michael Groll für die Durchführung der Kristallisationsexperimente. Dr. Katharina Rox, Dr. Jennifer Herrmann, Dr. Robert Thänert und Prof. Dr. Eva Medina vom Helmholtz-Zentrum für Infektionsforschung in Saarbrücken und Braunschweig danke ich für ihren Einsatz bei der Erstellung diverser biologischer Daten. Ein sehr großer Dank geht an Carola Seyffarth, Dr. Martin Neuenschwander und Dr. Jens Peter von Kries vom Leibniz- Forschungsinstitut für Molekulare Pharmakologie in Berlin für die Betreuung und Durchführung des HTS. Katja Bäuml und Mona Wolff bin ich sehr dankbar, dass sie nicht nur mit Studenten und Doktoranden auskommen müssen, sondern auch noch das Labor und alle Geräte am Leben halten. Bei allen meinen Praktikanten, Johanna Brüggenthies, Maximilian Biebl, Carolin Berner, Melina Vollmer und Theresa Rauh bedanke ich mich für die experimentelle Hilfe. Das wichtigste im Labor sind nette Kollegen. Viele lustige Momente, unzählige schlechte Witze, lange Abende und fachliche und außerfachliche Diskussionen haben die vergangenen vier Jahre zu einer unvergesslichen Zeit gemacht. Mein Dank gilt meinen Exil-Kollegen Kyu Myung Lee, Vadim Korotkov und Igor Pavlović, sowohl allen derzeitigen Mitglieder des AK Siebers, namentlich Nina Bach, Christina Brumer, Pavel Kielkowski, Franziska Mandl, Weining Zhao, Patrick Allihn, Dóra Balogh, Jonas Drechsel, Anja Fux, Carolin Gleißner, Thomas Gronauer, Mathias Hackl, Annabelle Hoegl, Barbara Hofbauer, Ines Hübner, Volker Kirsch, Philipp Kleiner, Elena Kunold, Markus Lakemeyer, Robert Macsics, Matthias Stahl, Stephan Hacker, Patrick Zanon, Martin Pfanzelt, Theresa Rauh und Angela Weigert Muñoz, die den Arbeitskreis zu dem machen, was er ist. Nicht zu vergessen ist die „Alte Garde“, die während meiner Zeit aus dem Arbeitskreis ausgeschieden ist, Roman Kolb, Martin Kunzmann, Johannes Kreuzer, Max Koch, Maria Dahmen, Megan Wright, Wolfgang Heydenreuter und Johannes Lehmann. Zuletzt gilt mein größter Dank meiner Familie und Tamara für die Unterstützung auf meinem Weg! Besonders Tamara danke ich für den ständigen Rückhalt. TABLE OF CONTENTS Table of Contents Table of Contents .............................................................................................................. I Summary ........................................................................................................................... V Zusammenfassung .......................................................................................................... VII Introductory Remarks ...................................................................................................... IX Introduction ...................................................................................................................... 1 1. The Antibiotic Crisis .............................................................................................. 1 2. Staphylococcus aureus.......................................................................................... 5 3. Antivirulence ......................................................................................................... 8 4. The ClpXP Protease of Staphylococcus aureus ................................................... 10 Chapter I – A Chemical Disruptor of the ClpX Chaperone Complex Attenuates the Virulence of Multidrug-Resistant Staphylococcus aureus .............................................. 15 1. Introduction ........................................................................................................ 16 2. Results and Discussion ........................................................................................ 16 2.1. High-Throughput Screen .......................................................................... 16 2.2. In vitro Characterization ........................................................................... 18 2.3. Structure-Activity Relationship Studies .................................................... 20 2.4. Efforts for in vivo/in vitro Target Validation ............................................. 22 2.4.1. Affinity-Based Protein Profiling ............................................................ 22 2.4.2. Affinity Pull-Down ................................................................................. 28 2.5. Phenotypic Effects .................................................................................... 29 3. Summary and Outlook ........................................................................................ 32 Chapter II – Small Molecule Inhibition of the Staphylococcus aureus ClpXP Complex .. 35 1. Introduction ........................................................................................................ 36 2. Results and Discussion ........................................................................................ 36 2.1. In vitro Characterization ........................................................................... 36 2.2. Structure-Activity Relationship Studies .................................................... 39 2.3. Effects on Production of α-Hemolysin ...................................................... 40 3. Summary and Outlook ........................................................................................ 42 Chapter III – Genetic Modifications of the clpP Gene in Staphylococcus aureus........... 43 1. Introduction ........................................................................................................ 44 2. Results and Discussion ........................................................................................ 44 I TABLE OF CONTENTS 2.1. Cloning of clpP-Shuttle Vectors ................................................................ 44 2.2. Generation and Selection of Genetically Modified S. aureus .................. 47 2.3. Phenotypic Studies ................................................................................... 50 2.3.1. Growth Characteristics ......................................................................... 50 2.3.2. Hemolysis .............................................................................................. 51 2.3.3. Whole-Proteome Analysis .................................................................... 52 3. Summary and Outlook ........................................................................................ 56 Experimental Section ...................................................................................................... 57 1. Biochemical and Microbiological Procedures .................................................... 57 1.1. Media ........................................................................................................ 57 1.2. Overexpression of Recombinant Proteins ................................................ 58 1.2.1. Oligonucleotides for Cloning of Expression Vectors ............................. 58 1.2.2. Expression of ClpP ................................................................................. 58 1.2.3. Expression of GFP-SsrA ......................................................................... 58 1.2.4. Expression of ClpX ................................................................................. 59 1.2.5. Expression of ClpC and MecA ............................................................... 60 1.3. High-Throughput Screen .........................................................................
Recommended publications
  • The Food Poisoning Toxins of Bacillus Cereus
    toxins Review The Food Poisoning Toxins of Bacillus cereus Richard Dietrich 1,†, Nadja Jessberger 1,*,†, Monika Ehling-Schulz 2 , Erwin Märtlbauer 1 and Per Einar Granum 3 1 Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; [email protected] (R.D.); [email protected] (E.M.) 2 Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] 3 Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway; [email protected] * Correspondence: [email protected] † These authors have contributed equally to this work. Abstract: Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease.
    [Show full text]
  • Evaluation of the Individual and Combined Toxicity of Fumonisin Mycotoxins in Human Gastric Epithelial Cells
    International Journal of Molecular Sciences Article Evaluation of the Individual and Combined Toxicity of Fumonisin Mycotoxins in Human Gastric Epithelial Cells Song Yu, Bingxuan Jia, Na Liu, Dianzhen Yu and Aibo Wu * SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; [email protected] (S.Y.); [email protected] (B.J.); [email protected] (N.L.); [email protected] (D.Y.) * Correspondence: [email protected]; Tel.: +86-21-54920716 Received: 23 July 2020; Accepted: 14 August 2020; Published: 18 August 2020 Abstract: Fumonisin contaminates food and feed extensively throughout the world, causing chronic and acute toxicity in human and animals. Currently, studies on the toxicology of fumonisins mainly focus on fumonisin B1 (FB1). Considering that FB1, fumonisin B2 (FB2) and fumonisin B3 (FB3) could coexist in food and feed, a study regarding a single toxin, FB1, may not completely reflect the toxicity of fumonisin. The gastrointestinal tract is usually exposed to these dietary toxins. In our study, the human gastric epithelial cell line (GES-1) was used as in vitro model to evaluate the toxicity of fumonisin. Firstly, we found that they could cause a decrease in cell viability, and increase in membrane leakage, cell death and the induction of expression of markers for endoplasmic reticulum (ER) stress. Their toxicity potency rank is FB1 > FB2 >> FB3. The results also showed that the synergistic effect appeared in the combinations of FB1 + FB2 and FB1 + FB3.
    [Show full text]
  • Single Kernel Analysis of Fumonisins and Other Fungal Metabolites In
    Single kernel analysis of fumonisins and other fungal metabolites in maize from South African subsistence farmers Jesper Mølgaard Mogensen, Stine Mørcholdt Sørensen, Michael Sulyok, Liana van der Westhuizen, Gordon Shephard, Jens Christian Frisvad, Ulf Thrane, Rudolf Krska, Kristian Fog Nielsen To cite this version: Jesper Mølgaard Mogensen, Stine Mørcholdt Sørensen, Michael Sulyok, Liana van der Westhuizen, Gordon Shephard, et al.. Single kernel analysis of fumonisins and other fungal metabolites in maize from South African subsistence farmers. Food Additives and Contaminants, 2011, pp.1. 10.1080/19440049.2011.611823. hal-00744827 HAL Id: hal-00744827 https://hal.archives-ouvertes.fr/hal-00744827 Submitted on 24 Oct 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Food Additives and Contaminants For Peer Review Only Single kernel analysis of fumonisins and other fungal metabolites in maize from South African subsistence farmers Journal: Food Additives and Contaminants Manuscript ID: TFAC-2011-122.R2 Manuscript Type: Original Research Paper Date
    [Show full text]
  • Aflatoxin, Fumonisin and Shiga Toxin-Producing Escherichia Coli
    Toxins 2013, 5, 1872-1895; doi:10.3390/toxins5101872 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Aflatoxin, Fumonisin and Shiga Toxin-Producing Escherichia coli Infections in Calves and the Effectiveness of Celmanax®/Dairyman’s Choice™ Applications to Eliminate Morbidity and Mortality Losses Danica Baines 1,*, Mark Sumarah 2, Gretchen Kuldau 3, Jean Juba 4, Alberto Mazza 5 and Luke Masson 5 1 Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403 1 Avenue South, Lethbridge, AB T1J 4B1, Canada 2 Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; E-Mail: [email protected] 3 PENNSTATE, 321 Buckhout Laboratory, University Park, PA 16802, USA; E-Mail: [email protected] 4 PENNSTATE, Fusarium Research Center, 216 Buckhout Laboratory, University Park, PA 16802, USA; E-Mail: [email protected] 5 National Research Council of Canada, Montréal, QC H4P 2R2, Canada; E-Mails: [email protected] (A.M.); [email protected] (L.M.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-403-320-8690; Fax: +1-403-382-3156. Received: 9 September 2013; in revised form: 8 October 2013 / Accepted: 11 October 2013 / Published: 23 October 2013 Abstract: Mycotoxin mixtures are associated with Shiga toxin-producing Escherichia coli (STEC) infections in mature cattle. STEC are considered commensal bacteria in mature cattle suggesting that mycotoxins provide a mechanism that converts this bacterium to an opportunistic pathogen. In this study, we assessed the mycotoxin content of hemorrhaged mucosa in dairy calves during natural disease outbreaks, compared the virulence genes of the STECs, evaluated the effect of the mucosal mycotoxins on STEC toxin expression and evaluated a Celmanax®/Dairyman’s Choice™ application to alleviate disease.
    [Show full text]
  • Fumonisin Content in Conventional Versus Bt Maize and Implications Of
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2013 Fumonisin content in conventional versus Bt maize and implications of fumonisin contamination on fuel ethanol yield and DDGS quality Erin Louise Bowers Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, and the Toxicology Commons Recommended Citation Bowers, Erin Louise, "Fumonisin content in conventional versus Bt maize and implications of fumonisin contamination on fuel ethanol yield and DDGS quality" (2013). Graduate Theses and Dissertations. 13596. https://lib.dr.iastate.edu/etd/13596 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Fumonisin content in conventional versus Bt maize and implications of fumonisin contamination on fuel ethanol yield and DDGS quality by Erin Louise Bowers A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Toxicology Program of Study Committee: Gary P. Munkvold, Major Professor Patricia A. Murphy Richard L. Hellmich Steve M. Ensley Lawrence A. Johnson Felicia Wu Anthony L. Pometto III Iowa State University Ames, Iowa 2013 Copyright
    [Show full text]
  • The Effects of Fumonisin B1 Toxicity Upon Neuronal Tissue
    THE EFFECTS OF FUMONISIN B1 TOXICITY UPON NEURONAL TISSUE by MARCIN FILIP OSUCHOWSKI (Under the Direction of Raghubir P. Sharma) ABSTRACT Fumonisin B1 (FB1) is mycotoxin produced by Fusarium verticillioides (formerly F. moniliforme), a fungal contaminant of corn and other cereals found worldwide. Fumonisin B1 causes number of diseases in farm animals including the species-specific disorder, equine leukoencephalomalacia (ELEM). FB1 inhibits ceramide synthase and as a consequence disrupts metabolism of sphingolipids. Deregulation of sphingolipid metabolism results in accumulation of free sphingoid bases, activation of cytokine expression and depletion of complex sphingolipids. We hypothesized that lack of neurotoxic effects in species other than equine following systemic administration of FB1 is due to the restricted availability of this mycotoxin in the brain. The pre-exposure to the lipopolysaccharide (LPS) resulted in the disruption of blood brain barrier (BBB). When mice were treated concurrently with FB1 an accumulation of sphinganine, a biomarker for FB1 availability to the tissue, was observed in brain. The combined administration of LPS and FB1 caused modulation of proinflammatory cytokines in brain and liver after repeated FB1 treatment. These results indicate that sphingolipid metabolism in the adult brain is vulnerable to the exposure of FB1 when accompanied by the endotoxin-related damage to the BBB. The intracerebroventricular (icv) infusion of FB1 led to the neuronal degeneration in cortex. The icv treatment caused regional accumulation of free sphingoid bases but sphingomyelin and complex sphingolipids were not depleted. Potent FB1-induced activation of proinflammatory signaling was observed in cortex. These results show that adult murine brain is vulnerable to the direct exposure of FB1 when the protective BBB barrier is bypassed.
    [Show full text]
  • Co-Option of Membrane Wounding Enables Virus Penetration Into Cells
    Co-option of Membrane Wounding Enables Virus Penetration into Cells Stefania Luisoni 1, 2, Maarit Suomalainen 1, Karin Boucke 1, Lukas B. Tanner 3, 8, Markus R. Wenk 3, Xue Li Guan 4, Michal Grzybek 5,6, Ünal Coskun 5,6 and Urs F. Greber1,7 1 Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland 2 Molecular Life Sciences Graduate School, ETH and University of Zurich, CH-8057 Zurich, Switzerland 3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore 4 Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, and University of Basel, CH-4000 Basel, Switzerland 5 Paul Langerhans Institute Dresden of the Helmholtz Centre Munich at the University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany 6 German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany 7 corresponding author: E-mail: [email protected], Telephone: +41 44 635 48 41, Fax: +41 44 635 68 17 8 present address: Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Road, Princeton, NJ 08544, USA Running title: Co-option of Membrane Wounding for Virus Entry 1 Summary During cell entry, non-enveloped viruses undergo partial uncoating to expose membrane-lytic proteins for gaining access to the cytoplasm. We report that adenovirus uses membrane piercing to induce and hijack cellular wound removal processes that facilitate further membrane disruption and infection. Incoming adenovirus stimulates calcium influx and lysosomal exocytosis, a membrane repair mechanism resulting in release of acid sphingomyelinase (ASMase) and degradation of sphingomyelin to ceramide lipids in the plasma membrane.
    [Show full text]
  • Particularly Hazardous Substances (Phs)
    PARTICULARLY HAZARDOUS SUBSTANCES (PHS) This list contains examples of chemicals that may be used at the University of Nebraska Medical Center (UNMC). The list is not all-inclusive. This lists contains examples of Particularly Hazardous Substances (PHS) which are a special subset of OSHA Hazardous Chemicals. PHS include chemicals that are known or suspect carcinogens, reproductive toxins, and/or highly toxic materials. Before working with any PHS, please determine if you have any of these and evaluate if additional protective work practices are needed. You should utilize the PHS Assessment Form to help in this evaluation. Abbreviations Used in List Headings CARC NTP National Toxicology Program listed carcinogen - National Toxicology Program K = known carcinogen S = suspect carcinogen CARC IARC International Association for Research on Cancer listed carcinogen - IARC 1= known human carcinogen 2A = probable human carcinogen 2B = possible human carcinogen CARC OSHA OSHA regulated carcinogen - OSHA-regulated carcinogens X = regulated carcinogen REPRO SHEP Included in Catalog of Teratogenic Agents, T.H. Shepard, 6th Edition, Johns Hopkins Press, 1989 X = listed teratogen REPRO CALIF Listed by the State of California ‘Safe Drinking Water Act, 1986’ http://www.oehha.ca.gov/prop65/prop65_list/Newlist.html F = female reproductive hazard M = male reproductive hazard HTX Highly toxic, included in EPA’s list ‘Acutely Toxic Hazardous Waste’, P-listed waste 40 CFR 261.33, or Included in OSHA’s list of highly hazardous chemicals with a threshold £200
    [Show full text]
  • Particularly Hazardous Substances Human Reproductive Page 1 of 25 March 2011 Carcinogen Hazard
    Particularly Hazardous Substances Human Reproductive Page 1 of 25 March 2011 Carcinogen Hazard CAS Number order Acutely Probable Reactive Female Known Toxic Male CAS Fetal Number Chemical 00–00–1 Nickel compounds 00–00–2 Chromium [VI] Compunds 00–00–3 Cadmium compounds 00–00–4 Chlorophenols (polychlorophenols) 00–00–5 Hexachlorocyclohexanes 00–00–6 Lead compounds, inorganic 00–00–7 Methyl and other organic mercury compounds 00–01–0 Polychlorinated biphenyls (PCBs) ‐ all forms 00–01–1 Organolithium compounds 00–01–3 Botulinum Toxins 00–01–4 Clostridium perfringens, epsilon toxin 00–01–5 Conotoxins 00–01–6 Ricin isolates 00–01–7 Saxitoxins 00–01–8 Staphylococcal enterotoxins 00–01–9 Tetrodotoxins 00–02–0 Tricothecene mycotoxins 50–00–0 Formaldehyde (Formalin) (Paraformaldeyde) 50–06–6 Phenobarbital 50–07–7 Mitomycin C 50–18–0 Cyclophosphamide 50–29–3 DDT [p,p'‐DDT] 50–32–8 Benzo[a]pyrene 50–35–1 Thalidomide 50–55–5 Reserpine 51–21–8 5‐Fluorouracil 51–28–5 Dinitrophenol Particularly Hazardous Substances Human Reproductive Page 2 of 25 March 2011 Carcinogen Hazard CAS Number order Acutely Probable Reactive Female Known Toxic Male CAS Fetal Number Chemical 51–52–5 Propylthiouracil 51–75–2 HN2 (nitrogen mustard‐2) 51–79–6 Ethyl carbamate (Urethane) 52–24–4 Thiotepa 52–67–5 Valine, 3‐mercapto‐, D‐ 53–70–3 Dibenz [a,h]anthracene 53–96–3 2‐acetylaminofluorene 54–62–6 Aminopterin 55–18–5 N‐Nitrosodiethylamine 55–63–0 Nitrogycerine 55–86–7 Nitrogen Mustard Hydrochloride 55–98–1 1,4‐Butanediol dimethanesulfonate (Busulfan; Myleran) 56–04–2 Methylthiouracil
    [Show full text]
  • FUMONISIN B1 1. Exposure Data
    FUMONISIN B1 This substance was considered by a previous working group in June 1992 (IARC, 1993). Since that time, new data have become available, and these have been incor- porated into the monograph and taken into consideration in the present evaluation. 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 116355-83-0 Chem. Abstr. Serv. Name: 1,2,3-Propanetricarboxylic acid, 1,1′-[1-(12-amino-4,9,11- trihydroxy-2-methyltridecyl)-2-(1-methylpentyl)-1,2-ethanediyl] ester Synonyms: FB1; macrofusine 1.1.2 Structural and molecular formulae and relative molecular mass O COOH O CCH2 CH CH2 COOH NH2 OH OH CH3 H3CCHCHCH2 CH (CH2)4 CH CH2 CH CH2 CH CH CH (CH2)3 CH3 OH CH3 HOOC CH2 CH CH2 C O COOH O C34H59NO15 Relative molecular mass: 721 1.1.3 Chemical and physical properties of the pure substance From WHO (2000) unless otherwise noted (a) Description: White hygroscopic powder (b) Melting-point: Not known (has not been crystallized) (c) Spectroscopy: Mass spectral and nuclear magnetic resonance spectroscopy data have been reported (Bezuidenhout et al., 1988; Laurent et al., 1989a; Plattner et al., 1990; Savard & Blackwell, 1994) –301– 302 IARC MONOGRAPHS VOLUME 82 (d ) Solubility: Soluble in water to at least to 20 g/L (National Toxicology Program, 2000); soluble in methanol, acetonitrile–water (e) Octanol/water partition coefficient (log P): 1.84 (Norred et al., 1997) (f ) Stability: Stable in acetonitrile–water (1:1) at 25 °C; unstable in methanol at 25 °C, forming monomethyl or dimethyl esters (Gelderblom et al., 1992a; Visconti et al., 1994); stable in methanol at –18 °C (Visconti et al., 1994); stable at 78 °C in buffer solutions at pH between 4.8 and 9 (Howard et al., 1998) 1.1.4 Analysis Methods for the analysis of fumonisins have been extensively reviewed (WHO, 2000).
    [Show full text]
  • Cytotoxic Activity of Androctonus Australis Hector Venom and Its Toxic
    Béchohra et al. Journal of Venomous Animals and Toxins including Tropical Diseases (2016) 22:29 DOI 10.1186/s40409-016-0085-4 RESEARCH Open Access Cytotoxic activity of Androctonus australis hector venom and its toxic fractions on human lung cancer cell line Louisa Béchohra, Fatima Laraba-Djebari* and Djelila Hammoudi-Triki Abstract Background: Several studies have showed that animal venoms are a source of bioactive compounds that may inhibit the growth of cancer cells, which makes them useful agents for therapeutic applications. Recently, it was established that venom toxins from scorpions induced cytotoxic, antiproliferative and apoptogenic effects on cancer cells. Therefore, the present study aims to investigate the cytotoxic activity of Androctonus australis hector (Aah) scorpion venom and its toxic fractions (FtoxG-50 and F3) on NCI-H358 human lung cancer cells. Methods: The cytotoxic and antiproliferative activities were estimated using MTT assay, lactate dehydrogenase release and clonogenic assays. Apoptosis was evaluated by Hoechst 33258 staining, DNA fragmentation assay and caspase-3 activity. Oxidative stress was analyzed by reactive oxygen species, nitric oxide, malondialdehyde and protein carbonyl levels along with assessment of antioxidant status. In addition, alteration of mitochondrial membrane potential was analyzed by JC1 fluorescent dye. Results: The present findings showed that F3 fraction was more cytotoxic towards NCI-H358 lung cancer cells with an IC50 of 27.05 ± 0.70 μg/mL than venom alone (396.60 ± 1.33 μg/mL) and its toxic fraction FtoxG-50 (45.86 ± 0.91 μg/mL). Nevertheless, F3 fraction was not cytotoxic at these concentrations on normal human lung fibroblast MRC-5 cells.
    [Show full text]
  • Response of Fecal Bacterial Flora to the Exposure of Fumonisin B1 in BALB/C Mice
    toxins Article Response of Fecal Bacterial Flora to the Exposure of Fumonisin B1 in BALB/c Mice Fan Zhang, Zhiwei Chen, Lin Jiang, Zihan Chen and Hua Sun * State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Xiannongtan Street, Xicheng District, Beijing 100050, China; [email protected] (F.Z.); [email protected] (Z.C.); [email protected] (L.J.); [email protected] (Z.C.) * Correspondence: [email protected] Abstract: Fumonisins are a kind of mycotoxin that has harmful influence on the health of humans and animals. Although some research studies associated with fumonisins have been reported, the regulatory limits of fumonisins are imperfect, and the effects of fumonisins on fecal bacterial flora of mice have not been suggested. In this study, in order to investigate the effects of fumonisin B1 (FB1) on fecal bacterial flora, BALB/c mice were randomly divided into seven groups, which were fed intragastrically with 0 mg/kg, 0.018 mg/kg, 0.054 mg/kg, 0.162 mg/kg, 0.486 mg/kg, 1.458 mg/kg and 4.374 mg/kg of FB1 solutions, once a day for 8 weeks. Subsequently, feces were collected for analysis of microflora. The V3-V4 16S rRNA of fecal bacterial flora was sequenced using the Illumina MiSeq platform. The results revealed that fecal bacterial flora of mice treated with FB1 presented high diversity. Additionally, the composition of fecal bacterial flora of FB1 exposure groups showed marked differences from that of the control group, especially for the genus types including Alloprevotella, Prevotellaceae_NK3B31_group, Rikenellaceae_RC9_gut_group, Parabacteroides and phylum types including Cyanobacteria.
    [Show full text]