POMC; the Physiological Power of Hormone Processing" 2 3 4 5 Erika Harno1, Thanuja Gali Ramamoorthy1, Anthony P

Total Page:16

File Type:pdf, Size:1020Kb

POMC; the Physiological Power of Hormone Processing 1 Title: "POMC; the physiological power of hormone processing" 2 3 4 5 Erika Harno1, Thanuja Gali Ramamoorthy1, Anthony P. Coll 2 and Anne White1 6 7 8 9 1Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of 10 Biology, Medicine and Health, University of Manchester, Manchester, UK and 11 2MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic 12 Science, Cambridge, UK 13 14 15 16 17 18 Correspondence to: 19 Professor A. White, 20 Division of Diabetes, Endocrinology and Gastroenterology, 21 School of Medical Sciences, 22 Faculty of Biology, Medicine and Health, University of Manchester, 23 Manchester Academic Health Sciences Centre, 24 3.016 AV Hill Building, 25 Manchester, 26 M13 9PT, 27 UK. 28 Tel.: +44 (0)161 275 5178 29 E-mail address: [email protected] 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 1 50 TABLE OF CONTENTS 51 52 I. INTRODUCTION 53 II. OVERVIEW OF POMC PROCESSING 54 III. ENZYMES INVOLVED IN PROCESSING POMC TO DIFFERENT PEPTIDES 55 IV. THE CELLULAR PATHWAY TO SECRETION 56 V. RECEPTORS BINDING POMC-DERIVED PEPTIDES 57 VI. ROLES OF THE COMPONENT PEPTIDES OF POMC 58 VII. DISORDERED PROCESSING IN THE HYPOTHALAMUS; CHILDREN WITH 59 OBESITY 60 VIII. DISORDERED PROCESSING IN THE HYPOTHALAMUS; MICE WITH 61 OBESITY 62 IX. POMC PROCESSING IN THE SKIN 63 X. PITUITARY PROCESSING OF POMC: A KEY FACET IN REGULATION OF 64 THE HPA AXIS 65 XI. POMC PROCESSING BY TUMORS 66 XII. ASSAYS FOR POMC DERIVED PEPTIDES – WHAT ARE YOU REALLY 67 MEASURING? 68 XIII. BIOACTIVITY OF POMC AND DERIVED PEPTIDES 69 XIV. CONUNDRUMS AND FUTURE PERSEPECTIVES 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 2 99 ABSTRACT 100 101 Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of 102 hormones and neuropeptides. In this review, we examine the variability in the 103 individual peptides produced in different tissues and the impact of the 104 simultaneous presence of their precursors or fragments. We also discuss the 105 problems inherent in accurately measuring which of the precursors and their 106 derived peptides are present in biological samples. We address how not being 107 able to measure all the combinations of precursors and fragments quantitatively 108 has affected our understanding of the pathophysiology associated with POMC 109 processing. To understand how different ratios of peptides arise, we describe the 110 role of the pro-hormone convertases (PCs) and their tissue specificities and 111 consider the cellular processing pathways which enable regulated secretion of 112 different peptides that play crucial roles in integrating a range of vital 113 physiological functions. In the pituitary, correct processing of POMC peptides is 114 essential to maintain the hypothalamic-pituitary-adrenal axis and this processing 115 can be disrupted in POMC expressing tumours. In hypothalamic neurons 116 expressing POMC, abnormalities in processing critically impact on the regulation 117 of appetite, energy homeostasis and body composition. More work is needed to 118 understand whether expression of the POMC gene in a tissue equates to release 119 of bioactive peptides. We suggest that this comprehensive view of POMC 120 processing, with a focus on gaining a better understanding of the combination of 121 peptides produced and their relative bioactivity, is a necessity for all involved in 122 studying this fascinating physiological regulatory phenomenon. 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 3 148 I. INTRODUCTION 149 150 A. The Discovery of POMC as a Precursor 151 The phenomena of POMC as a hormone precursor emerged gradually over time 152 as observations slowly filled in pieces of the puzzle. Long before the concept of 153 hormone precursors was realized, the bronzed skin color described by Addison 154 in his patient with adrenal insufficiency (“melasma suprarenale”) gave perhaps 155 the first hints of a connection between the hypothalamic, pituitary, adrenal 156 (HPA) axis and skin colour. A similar link between the pituitary and 157 pigmentation came from the studies of Allen and Smith (5, 376) who both noted 158 that immersing tadpoles in pituitary extract made their skins darker. In humans 159 too, large doses of porcine pituitary extract also appeared to cause pigmentation 160 (218), with this active extract of the pars intermedia of the pituitary henceforth 161 termed “melanocyte stimulating hormone” or MSH. 162 163 In 1932, Cushing extended his clinical reports of a polyglandular syndrome 164 caused by basophilic adenomas of the pituitary by linking this finding with 165 adrenal hyperactivity. In the 1930’s work by Ingle and Kendall (177) showed 166 that administration of large amounts of “cortin” , a purified adrenal extract, 167 produced atrophy of the adrenal cortex in rats. Importantly they found that 168 administration of the “adrenotropic principle” of the anterior pituitary was 169 effective in preventing adrenal cortical regression following treatment with 170 cortin. The first hints of a behavioural angle to pro-opiomelanocortin (POMC) 171 biology came from studies by Ferrari in the 1950s, when “stretching-yawning 172 syndrome” – a bizarre crisis of muscular tone - occurred following central 173 administration of MSH. Many other studies assessing the effects of central -MSH 174 on motivational processes followed but it was not until 1976 that Panskepp 175 observed for the first time that this peptide decreased food intake (294). 176 177 Viewed from the comfort and assured knowledge of the modern molecular world 178 these observations and interventions could be considered overtly simplistic. 179 However we believe that these classic observations should be regarded as 180 essential building blocks not only for our understanding of POMC peptide 181 processing but also for the work which subsequently tied together these 182 seemingly diverse peptides. 183 184 B. The emergence of the precursor paradigm 185 186 It is likely that POMC arose over 500 million years ago by an insertion of the 187 melanocortin sequences into a prepro-endorphin gene. Evidence for this comes 188 from structural identities with other opioid precursors in both the N- and C- 189 terminal regions of POMC (266). The common opioid gene was thought to arise 190 during chordate evolution. There are four opioid genes which are on three 191 chromosomes in the vertebrate genome. An intragenic duplication event in 192 tetrapods is thought to have led to the presence of -MSH, -MSH and γ-MSH 193 (265). The -MSH sequence is not present in teleosts and is found as a vestige in 194 non-teleosts, whereas an additional melanocortin peptide, termed δ-MSH has 195 been found in cartilaginous fish. This suggests a divergence in MSH sequences in 196 cartilaginous, ray and lobe-finned fish (266). 4 197 198 The golden age for the precursor paradigm came in the 1960s and 1970s 199 particularly when the first evidence for a precursor of insulin was unearthed by 200 Don Steiner and his team (382, 383). Sequencing confirmed the existence of pro- 201 insulin in 1968 (60) and subsequently pro-insulin was shown to be relatively 202 less active compared to insulin (202). This inspiring work by Don Steiner paved 203 the way for a much greater understanding of a whole range of pro-hormones 204 particularly in relation to their processing. 205 206 High molecular weight forms of ACTH and -LPH: Although 207 adrenocorticotropic hormone (ACTH) and -lipotropin (-LPH) had been 208 characterized separately, the concept that they were produced as part of a 209 common precursor had not been considered and only emerged after a number of 210 different approaches suggested the sequences for these different peptides in the 211 same molecule (Figure 1) (reviewed in (66, 280)). Elegant studies by Yalow and 212 Berson (433) using normal human pituitary extracts and an ectopic ACTH 213 producing thymoma, indicated that ACTH was present in a high molecular 214 weight form. These high molecular weight forms of ACTH were also identified in 215 the mouse pituitary tumor cell line, AtT20 (119, 232). Lowry et al. (230) went on 216 to use human pituitary extracts and precipitated a single pro-hormone using 217 antibodies to the different peptides (228). This was made possible because 218 previous work by Chrétien and Li (65) had discovered that the -LPH sequence 219 was found within -LPH and that it had the -MSH sequence at its C-terminal. 220 This led them to propose a pro-hormone theory (reviewed in (66)). The presence 221 of an opioid peptide at the C-terminal of -LPH was a serendipitous finding by 222 Hughes et al. (173) when they identified the met-enkephalin sequence at the N- 223 terminal of -endorphin in the -LPH molecule. This was confirmed by the 224 sequencing of -endorphin (154). 225 226 Figure 1: Processing of POMC in different tissues 227 228 In 1978, the concept that POMC was a pro-hormone for ACTH and -LPH was 229 confirmed in studies with the ACTH-secreting AtT20 cell line. Mains et al. 230 radiolabeled amino acids in the cells and then used immunoprecipitation and 231 SDS gel electrophoresis, enabling them to identify a 31Kd peptide recognized by 232 antibodies to both ACTH and -LPH (234). Roberts and Herbert utilized a similar 233 approach but with cell-free translation and antisera to both peptides and 234 reported similar results (329). 235 236 The emergence of the full structure of POMC: Not long after these studies, the 237 precursor peptide was purified from rat pituitaries (335) and (rather strangely) 238 from camel pituitaries (200).
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0346364 A1 BRUNS Et Al
    US 2016.0346364A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0346364 A1 BRUNS et al. (43) Pub. Date: Dec. 1, 2016 (54) MEDICAMENT AND METHOD FOR (52) U.S. Cl. TREATING INNATE IMMUNE RESPONSE CPC ........... A61K 38/488 (2013.01); A61K 38/482 DISEASES (2013.01); C12Y 304/23019 (2013.01); C12Y 304/21026 (2013.01); C12Y 304/23018 (71) Applicant: DSM IPASSETS B.V., Heerlen (NL) (2013.01); A61K 9/0053 (2013.01); C12N 9/62 (2013.01); A23L 29/06 (2016.08); A2ID 8/042 (72) Inventors: Maaike Johanna BRUINS, Kaiseraugst (2013.01); A23L 5/25 (2016.08); A23V (CH); Luppo EDENS, Kaiseraugst 2002/00 (2013.01) (CH); Lenneke NAN, Kaiseraugst (CH) (57) ABSTRACT (21) Appl. No.: 15/101,630 This invention relates to a medicament or a dietary Supple (22) PCT Filed: Dec. 11, 2014 ment comprising the Aspergillus niger aspergilloglutamic peptidase that is capable of hydrolyzing plant food allergens, (86). PCT No.: PCT/EP2014/077355 and more particularly, alpha-amylase/trypsin inhibitors, thereby treating diseases due to an innate immune response S 371 (c)(1), in humans, and/or allowing to delay the onset of said (2) Date: Jun. 3, 2016 diseases. The present invention relates to the discovery that (30) Foreign Application Priority Data the Aspergillus niger aspergilloglutamic peptidase is capable of hydrolyzing alpha-amylase/trypsin inhibitors that are Dec. 11, 2013 (EP) .................................. 13196580.8 present in wheat and related cereals said inhibitors being strong inducers of innate immune response. Furthermore, Publication Classification the present invention relates to a method for hydrolyzing alpha-amylase/trypsin inhibitors comprising incubating a (51) Int.
    [Show full text]
  • Efficacy and Safety of the MC4R Agonist Setmelanotide in POMC Deficiency Obesity: a Phase 3 Trial
    Efficacy and Safety of the MC4R Agonist Setmelanotide in POMC Deficiency Obesity: A Phase 3 Trial Karine Clément,1,2 Jesús Argente,3 Allison Bahm,4 Hillori Connors,5 Kathleen De Waele,6 Sadaf Farooqi,7 Greg Gordon,5 James Swain,8 Guojun Yuan,5 Peter Kühnen9 1Sorbonne Université, INSERM, Nutrition and Obesities Research Unit, Paris, France; 2Assistance Publique Hôpitaux de Paris, Pitié- Salpêtrière Hospital, Nutrition Department, Paris, France; 3Department of Pediatrics & Pediatric Endocrinology Universidad Autónoma de Madrid University, Madrid, Spain; 4Peel Memorial Hospital, Toronto, Canada; 5Rhythm Pharmaceuticals, Inc., Boston, MA; 6Ghent University Hospital, Ghent, Belgium; 7Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; 8HonorHealth Bariatric Center, Scottsdale, AZ; 9Institute for Experimental Pediatric Endocrinology Charité Universitätsmedizin Berlin, Berlin, Germany Melanocortin Signaling Is Crucial for Regulation of Body Weight1,2 • Body weight is regulated by the hypothalamic central melanocortin pathway • In response to leptin signaling, POMC is produced in POMC neurons and is cleaved by protein convertase subtilisin/kexin type 1 into α-MSH and β-MSH • α-MSH and β-MSH bind to the MC4R, which decreases food intake and increases energy expenditure, thereby promoting a reduction in body weight Hypothalamus AgRP/NPY Neuron LEPR Hunger AgRP Food Intake ADIPOSE Weight TISSUE MC4R- Energy Expressing Expenditure MC4R Neuron LEPTIN PCSK1 BLOOD-BRAIN BARRIER POMC α-MSH LEPR POMC Neuron AgRP, agouti-related protein; LEPR, leptin receptor; MC4R, melanocortin 4 receptor; MSH, melanocyte-stimulating hormone; NPY, neuropeptide Y; PCSK1, proprotein convertase subtilisin/kexin type 1; POMC, proopiomelanocortin. 2 1. Yazdi et al.
    [Show full text]
  • Steroid-Dependent Regulation of the Oviduct: a Cross-Species Transcriptomal Analysis
    University of Kentucky UKnowledge Theses and Dissertations--Animal and Food Sciences Animal and Food Sciences 2015 Steroid-dependent regulation of the oviduct: A cross-species transcriptomal analysis Katheryn L. Cerny University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Cerny, Katheryn L., "Steroid-dependent regulation of the oviduct: A cross-species transcriptomal analysis" (2015). Theses and Dissertations--Animal and Food Sciences. 49. https://uknowledge.uky.edu/animalsci_etds/49 This Doctoral Dissertation is brought to you for free and open access by the Animal and Food Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Animal and Food Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Clinical Study High Complement Factor I Activity in the Plasma of Children with Autism Spectrum Disorders
    Hindawi Publishing Corporation Autism Research and Treatment Volume 2012, Article ID 868576, 6 pages doi:10.1155/2012/868576 Clinical Study High Complement Factor I Activity in the Plasma of Children with Autism Spectrum Disorders Naghi Momeni,1 Lars Brudin,2 Fatemeh Behnia,3 Berit Nordstrom,¨ 4 Ali Yosefi-Oudarji,5 Bengt Sivberg,4 Mohammad T. Joghataei,5 and Bengt L. Persson1 1 School of Natural Sciences, Linnaeus University, 39182 Kalmar, Sweden 2 Department of Clinical Physiology, Kalmar County Hospital, 39185 Kalmar, Sweden 3 Department of Occupational Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran 4 Department of Health Sciences, Autism Research, Faculty of Medicine, Lund University, Box 157, 22100 Lund, Sweden 5 Cellular and Molecular Research Centre, Tehran University of Medical Sciences (TUMS), Tehran, Iran Correspondence should be addressed to Bengt Sivberg, [email protected] Received 17 June 2011; Revised 22 August 2011; Accepted 22 August 2011 Academic Editor: Judy Van de Water Copyright © 2012 Naghi Momeni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Autism spectrum disorders (ASDs) are neurodevelopmental and behavioural syndromes affecting social orientation, behaviour, and communication that can be classified as developmental disorders. ASD is also associated with immune system abnormality. Im- mune system abnormalities may be caused partly by complement system factor I deficiency. Complement factor I is a serine pro- tease present in human plasma that is involved in the degradation of complement protein C3b, which is a major opsonin of the complement system.
    [Show full text]
  • Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
    Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain.
    [Show full text]
  • Mouse Prolyl Endopeptidase / PREP Protein (His Tag)
    Mouse Prolyl endopeptidase / PREP Protein (His Tag) Catalog Number: 50288-M07B General Information SDS-PAGE: Gene Name Synonym: AI047692; AI450383; D10Wsu136e; PEP; Pop Protein Construction: A DNA sequence encoding the mature form of mouse PREP (Q9QUR6) (Leu2-Gln710) was expressed, with a polyhistidine tag at the N-terminus. Source: Mouse Expression Host: Baculovirus-Insect Cells QC Testing Purity: > 95 % as determined by SDS-PAGE Endotoxin: Protein Description < 1.0 EU per μg of the protein as determined by the LAL method Prolyl endopeptidase, also known as PREP, belongs to a distinct class of Stability: serine peptidases. It is a large cytosolic enzyme which was first described in the cytosol of rabbit brain as an oligopeptidase. Prolyl endopeptidase ℃ Samples are stable for up to twelve months from date of receipt at -70 degrades the nonapeptide bradykinin at the Pro-Phe bond. It is involved in the maturation and degradation of peptide hormones and neuropeptides His Predicted N terminal: such as alpha-melanocyte-stimulating hormone, luteinizing hormone- Molecular Mass: releasing hormone (LH-RH), thyrotropin-releasing hormone, angiotensin, neurotensin, oxytocin, substance P and vasopressin. Prolyl The recombinant mouse PREP consists of 727 amino acids and predicts a endopeptidase's activity is confined to action on oligopeptides of less than molecular mass of 82.9 KDa. It migrates as an approximately 79-83 KDa 10 kD and it has an absolute requirement for the trans-configuration of the band in SDS-PAGE under reducing conditions. peptide bond preceding proline. It cleaves peptide bonds at the C-terminal side of proline residues. Formulation: References Lyophilized from sterile 20mM Tris, 500mM NaCl, pH 7.4, 10% glycerol, 3mM DTT 1.Oliveira EB, et al.
    [Show full text]
  • Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases
    International Journal of Molecular Sciences Review Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases Peter Goettig Structural Biology Group, Faculty of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria; [email protected]; Tel.: +43-662-8044-7283; Fax: +43-662-8044-7209 Academic Editor: Cheorl-Ho Kim Received: 30 July 2016; Accepted: 10 November 2016; Published: 25 November 2016 Abstract: Posttranslational modifications are an important feature of most proteases in higher organisms, such as the conversion of inactive zymogens into active proteases. To date, little information is available on the role of glycosylation and functional implications for secreted proteases. Besides a stabilizing effect and protection against proteolysis, several proteases show a significant influence of glycosylation on the catalytic activity. Glycans can alter the substrate recognition, the specificity and binding affinity, as well as the turnover rates. However, there is currently no known general pattern, since glycosylation can have both stimulating and inhibiting effects on activity. Thus, a comparative analysis of individual cases with sufficient enzyme kinetic and structural data is a first approach to describe mechanistic principles that govern the effects of glycosylation on the function of proteases. The understanding of glycan functions becomes highly significant in proteomic and glycomic studies, which demonstrated that cancer-associated proteases, such as kallikrein-related peptidase 3, exhibit strongly altered glycosylation patterns in pathological cases. Such findings can contribute to a variety of future biomedical applications. Keywords: secreted protease; sequon; N-glycosylation; O-glycosylation; core glycan; enzyme kinetics; substrate recognition; flexible loops; Michaelis constant; turnover number 1.
    [Show full text]
  • Effects of Β-Lipotropin and Β-Lipotropin-Derived Peptides on Aldosterone Production in the Rat Adrenal Gland
    Effects of β-Lipotropin and β-Lipotropin-derived Peptides on Aldosterone Production in the Rat Adrenal Gland Hiroaki Matsuoka, … , Patrick J. Mulrow, Roberto Franco-Saenz J Clin Invest. 1981;68(3):752-759. https://doi.org/10.1172/JCI110311. Research Article To investigate the role of non-ACTH pituitary peptides on steroidogenesis, we studied the effects of synthetic β-lipotropin, β-melanotropin, and β-endorphin on aldosterone and corticosterone stimulation using rat adrenal collagenase-dispersed capsular and decapsular cells. β-lipotropin induced a significant aldosterone stimulation in a dose-dependent fashion (10 nM-1 μM). β-endorphin, which is the carboxyterminal fragment of β-lipotropin, did not stimulate aldosterone production at the doses used (3 nM-6 μM). β-melanotropin, which is the middle fragment of β-lipotropin, showed comparable effects on aldosterone stimulation. β-lipotropin and β-melanotropin did not affect corticosterone production in decapsular cells. Although ACTH1-24 caused a significant increase in cyclic AMP production in capsular cells in a dose-dependent fashion (1 nM-1 μM), β-lipotropin and β-melanotropin did not induce an increase in cyclic AMP production at the doses used (1 nM-1 μM). The β-melanotropin analogue (glycine[Gly]10-β-melanotropin) inhibited aldosterone production induced by β- lipotropin or β-melanotropin, but did not inhibit aldosterone production induced by ACTH1-24 or angiotensin II. Corticotropin-inhibiting peptide (ACTH7-38) inhibited not only ACTH1-24 action but also β-lipotropin or β-melanotropin action; however it did not affect angiotensin II-induced aldosterone production. (saralasin [Sar]1; alanine [Ala]8)- Angiotensin II inhibited the actions of β-lipotropin and β-melanotropin as well as angiotensin II.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Lipotropin, Melanotropin and Endorphin: in Vivo Catabolism and Entry Into Cerebrospinal Fluid
    LE JOURNAL CANAD1EN DES SCIENCES NEUROLOGIQUES Lipotropin, Melanotropin and Endorphin: In Vivo Catabolism and Entry into Cerebrospinal Fluid P. D. PEZALLA, M. LIS, N. G. SEIDAH AND M. CHRETIEN SUMMARY: Anesthetized rabbits were INTRODUCTION (Rudman et al., 1974). These findings given intravenous injections of either Beta-lipotropin (beta-LPH) is a suggest, albeit weakly, that the pep­ beta-lipotropin (beta-LPH), beta- peptide of 91 amino acids that was tide might cross the blood-brain bar­ melanotropin (beta-MSH) or beta- first isolated from ovine pituitary rier. In the case of beta-endorphin, endorphin. The postinjection concentra­ glands (Li et al., 1965). Although there are physiological studies both tions of these peptides in plasma and cerebrospinal fluid (CSF) were measured beta-LPH has a number of physiologi­ supporting and negating the possibil­ by radioimmunoassay (RIA). The plasma cal actions including the stimulation ity that beta-endorphin crosses the disappearance half-times were 13.7 min of lipolysis and melanophore disper­ blood-brain barrier. The study of for beta-LPH, 5.1 min for beta-MSH, and sion, it is believed to function princi­ Tseng et al. (1976) supports this pos­ 4.8 min for beta-endorphin. Circulating pally as a prohormone for beta- sibility since they observed analgesia beta-LPH is cleaved to peptides tenta­ melanotropin (beta-MSH) and beta- in mice following intravenous injec­ tively identified as gamma-LPH and endorphin. Beta-MSH, which com­ tion of beta-endorphin. However, beta-endorphin. Each of these peptides prises the sequence 41-58 of beta- Pert et al. (1976) were unable to elicit appeared in the CSF within 2 min postin­ LPH, is considerably more potent central effects in rats by intravenous jection.
    [Show full text]
  • Reducing Immunoreactivity of Gliadins and Coeliac-Toxic Peptides Using Peptidases from L
    catalysts Article Reducing Immunoreactivity of Gliadins and Coeliac-Toxic Peptides Using Peptidases from L. acidophilus 5e2 and A. niger Bartosz Brzozowski *, Katarzyna Stasiewicz, Mateusz Ostolski and Marek Adamczak Department of Food Biotechnology, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; [email protected] (K.S.); [email protected] (M.O.); [email protected] (M.A.) * Correspondence: [email protected] Received: 21 July 2020; Accepted: 10 August 2020; Published: 11 August 2020 Abstract: Wheat storage proteins and products of their hydrolysis may cause coeliac sprue in genetically predisposed individuals with high expression of main histocompatibility complex HLA-DQ2 or DQ8, since by consuming wheat, they become exposed to proline- (P) and glutamine (Q)-rich gluten. In bread-making, the hydrolysis of gliadins and coeliac-toxic peptides occurs with varied efficiency depending on the fermentation pH and temperature. Degradation of gliadins catalysed by Lactobacillus acidophilus 5e2 peptidases and a commercial prolyl endopeptidase synthesised by A. niger, carried out at pH 4.0 and 37 ◦C, reduces the gliadin concentration over 110-fold and decreases the relative immunoreactivity of the hydrolysate to 0.9% of its initial value. Hydrolysis of coeliac-toxic peptides: LGQQQPFPPQQPY (P1) and PQPQLPYPQPQLP (P2) under the same conditions occurs with the highest efficiency, reaching 99.8 0.0% and 97.5 0.1%, respectively. ± ± The relative immunoreactivity of peptides P1 and P2 was 0.8 0.0% and 3.2 0.0%, respectively. ± ± A mixture of peptidases from L. acidophilus 5e2 and A. niger may be used in wheat sourdough fermentation to reduce the time needed for degradation of proteins and products of their hydrolysis.
    [Show full text]
  • A Plant-Based Meal Increases Gastrointestinal Hormones
    nutrients Article A Plant-Based Meal Increases Gastrointestinal Hormones and Satiety More Than an Energy- and Macronutrient-Matched Processed-Meat Meal in T2D, Obese, and Healthy Men: A Three-Group Randomized Crossover Study Marta Klementova 1, Lenka Thieme 1 , Martin Haluzik 1, Renata Pavlovicova 1, Martin Hill 2, Terezie Pelikanova 1 and Hana Kahleova 1,3,* 1 Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; [email protected] (M.K.); [email protected] (L.T.); [email protected] (M.H.); [email protected] (R.P.); [email protected] (T.P.) 2 Institute of Endocrinology, 113 94 Prague, Czech Republic; [email protected] 3 Physicians Committee for Responsible Medicine, Washington, DC 20016, USA * Correspondence: [email protected]; Tel.: +1-202-527-7379 Received: 6 December 2018; Accepted: 9 January 2019; Published: 12 January 2019 Abstract: Gastrointestinal hormones are involved in regulation of glucose metabolism and satiety. We tested the acute effect of meal composition on these hormones in three population groups. A randomized crossover design was used to examine the effects of two energy- and macronutrient-matched meals: a processed-meat and cheese (M-meal) and a vegan meal with tofu (V-meal) on gastrointestinal hormones, and satiety in men with type 2 diabetes (T2D, n = 20), obese men (O, n = 20), and healthy men (H, n = 20). Plasma concentrations of glucagon-like peptide -1 (GLP-1), amylin, and peptide YY (PYY) were determined at 0, 30, 60, 120 and 180 min. Visual analogue scale was used to assess satiety. We used repeated-measures Analysis of variance (ANOVA) for statistical analysis.
    [Show full text]