Lipotropin, Melanotropin and Endorphin: in Vivo Catabolism and Entry Into Cerebrospinal Fluid

Total Page:16

File Type:pdf, Size:1020Kb

Lipotropin, Melanotropin and Endorphin: in Vivo Catabolism and Entry Into Cerebrospinal Fluid LE JOURNAL CANAD1EN DES SCIENCES NEUROLOGIQUES Lipotropin, Melanotropin and Endorphin: In Vivo Catabolism and Entry into Cerebrospinal Fluid P. D. PEZALLA, M. LIS, N. G. SEIDAH AND M. CHRETIEN SUMMARY: Anesthetized rabbits were INTRODUCTION (Rudman et al., 1974). These findings given intravenous injections of either Beta-lipotropin (beta-LPH) is a suggest, albeit weakly, that the pep­ beta-lipotropin (beta-LPH), beta- peptide of 91 amino acids that was tide might cross the blood-brain bar­ melanotropin (beta-MSH) or beta- first isolated from ovine pituitary rier. In the case of beta-endorphin, endorphin. The postinjection concentra­ glands (Li et al., 1965). Although there are physiological studies both tions of these peptides in plasma and cerebrospinal fluid (CSF) were measured beta-LPH has a number of physiologi­ supporting and negating the possibil­ by radioimmunoassay (RIA). The plasma cal actions including the stimulation ity that beta-endorphin crosses the disappearance half-times were 13.7 min of lipolysis and melanophore disper­ blood-brain barrier. The study of for beta-LPH, 5.1 min for beta-MSH, and sion, it is believed to function princi­ Tseng et al. (1976) supports this pos­ 4.8 min for beta-endorphin. Circulating pally as a prohormone for beta- sibility since they observed analgesia beta-LPH is cleaved to peptides tenta­ melanotropin (beta-MSH) and beta- in mice following intravenous injec­ tively identified as gamma-LPH and endorphin. Beta-MSH, which com­ tion of beta-endorphin. However, beta-endorphin. Each of these peptides prises the sequence 41-58 of beta- Pert et al. (1976) were unable to elicit appeared in the CSF within 2 min postin­ LPH, is considerably more potent central effects in rats by intravenous jection. The maximum CSF to plasma than beta-LPH in either lipolytic or injection of the smaller, proteolytic ratios were 0.08 for beta-LPH, 1.48 for enzyme resistant analogue beta-MSH, and 0.23 for beta-endorphin. melanophore stimulating assays (Chretien, 1973). In addition, the ac­ (D-Ala2)-Met-enkepa!inamide and RESUME: Les lupins anesthesies tive heptapeptide core of beta-MSH surmised that it did not cross the recurent des injections intraveineuses, exhibits both behavioral and elec- blood-brain barrier. soil de beta-lipotropine (beta-LPH), de troencephalographic actions in the The goals of this study were (a) to beta-melanotropine (beta-MSH) ou de rat and man (Kastin et al., 1976c). determine if beta-LPH, beta-MSH beta-endorphine. Les concentrations de The second peptide for which beta- and beta-endorphin could cross the ces peptides dans le plasma et le liquide LPH is believed to be the prohor­ blood-brain barrier of the rabbit, (b) cephalorachidien (LCR) a la suite de ces mone is beta-endorphin. This injections furent mesurees par des essais to estimate their half-lives in the radioimmunologiques (RIA). Les demi- peptide corresponds to the sequence circulation and (c) to determine if the temps plasmatiques de disparition furent 61-91 of beta-LPH and, like beta- prohormone, beta-LPH, is cleaved in de 13.7 min pour la beta-LPH, 5.1 min MSH, has both central and vivo to one or both of its constituent pour la beta-MSH, et 4.8 min pour la peripheral actions. Beta-endorphin is hormones. beta-endorphine. La beta-LPH cir- produced in the pars intermedia culante est degrade e et les produite de (LaBella et al., 1976; Queen et al, MATERIALS AND METHODS degradation initials sont tentativement 1976; LaBella et al., 1977; Crine et Animals: Male New Zealand white identifies comme etant le al., 1977) and is well known for rabbits (2-3 kg) were anesthetized by beta-endorphine et la gamma-LPH. Chacun de ces peptides apparait dans le its potent opiate-like actions on the intraperitoneal injection of 5-7 g of LCR dans les 2 minutes qui suivent central nervous system and on peri­ urethane in 10-14 ml of 0.9% NaCI. I'injection. Le rapport maximum de con­ pheral neuromuscular transmission After anesthesia had been induced, centration dans le LCR par rapport aux (reviewed by Goldstein, 1976; Gold­ blood and CSF samples were taken les taux plasmatiques etait de 0.08 pour la stein and Cox, 1977; Scherrer et al., simultaneously. Blood (0.5-1 ml) was beta-LPH, 1.48 pour la beta-MSH et 0.23 1977). allowed to drop from a small cut in a pour la beta-endorphine. An important question that has not marginal ear vein into a tube contain­ been directly addressed is whether ing EDTA. The blood was im­ beta-MSH and beta-endorphin can mediately cooled on ice, centrifuged cross the blood-brain barrier to reach and the plasma stored at —20°C. CSF their putative site of action, the cen­ (0.1-0.2 ml) was taken from the cis- From the Clinical Research Institute of Montreal, tral nervous system. Beta-MSH has terna magna with a 23-gauge 3*/2 inch Affiliated to the Universite de Montreal and the Hotel-Dieu de Montreal. been found in CSF (Smith and Shus- spinal needle inserted percutane- ter, 1976) and peripherally adminis­ ously. The needle was equipped with Reprint requests to: Dr. P. D. Pezalla, Clinical Research Institute of Montreal, 110 avenue des Pins tered beta-MSH can increase pro­ an occluding stylet that was kept in ouest, Montreal, Quebec H2W IR7, Canada. tein synthesis in certain brain regions place between samplings. The CSF Vol. 5, No. 2 MAY 1978 - 183 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.14, on 28 Sep 2021 at 05:53:33, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0317167100024537 THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES was frozen in a dry ice-ethanol bath previously described (Chretien et al., as tracer and standard. Under these immediately after withdrawal. CSF 1976; Li et al., 1965; Pezaila et al., in conditions, beta-LPH and gamma- samples were judged to be free of press). The peptides for injection as LPH cross react 46% and 79% while contamination by blood if they were well as for RIA iodination and stan­ beta-MSH does not cross react. The clear and colorless. Injections of the dardization were purified to anti-beta-endorphin serum cross test substances were made 15 min homogeneity as determined by elec­ reacts 58% with beat-LPH and not after the first sample was taken. trophoresis and amino acid analysis. at all with gamma-LPH or beta- Twenty nmoles of either beta-LPH, RIA: The details of our procedure MSH. More complete characteriza­ beta-MSH or beta-endorphin in 0.5 for RIA have been described (Pezaila tions of the antisera can be found ml of 0.9% NaCl were injected into et al., In Press). Antisera against in Guillemin et al (1977) and the marginal vein of the ear not used beta-MSH and beta-LPH were raised Pezaila et al (in press). for blood sampling. The injections in this laboratory. Antiserum against Chromatography: Gel filtration took about 1 min. Four rabbits re­ beta-endorphin was generously sup­ chromatography was done at 4°C on 1 ceived each peptide and an additional plied by Dr. Roger Guillemin. The x 42 cm columns of Sephadex G-50 four received saline alone. Each rab­ anti-beta-MSH serum cross reacts superfine (Pharmacia). The columns bit was used only once. with both beta- and gamma-LPH were equilibrated and eluted with pH Peptides: Ovine beta-LPH, (47% and 31% respectively on a 7.6 phosphate buffered saline con­ beta-LPH 1-47 and beta-endorphin and molar basis). The anti-beta-LPH taining 25 mM EDTA and 1% (w/v) porcine beta-MSH were purified as serum was used with beta-LPH 1-47 bovine serum albumin (Pezaila et al., in press). One ml fractions were col­ lected and stored frozen. The col­ umns were calibrated with 125I-labelled beta-LPH, beta-MSH and beta-endorphin. RESULTS Concentrations of immunoreactive beta-endorphin in the preinjection samples of plasma and CSF were near or below the limits of detectabil- ity. For those animals which had measurable beta-endorphin in both CSF and plasma, the concentration ratios were between 0.43 and 2.70. No 0 15 30 TIME (mfti) apparent correlation between the levels in the two fluids was seen, Figure I—The fate of exogenous beta-endorphin in vivo. a. Disappearance rate of possibly because of the error in plasma beta-endorphin. The dashed line is the least squares regression from which a measuring such low concentrations. half-life of 4.8 min was calculated, b. Concentration of beta-endorphin in CSF after intravenous injection of beta-endorphin or beta-MSH. c. CSF to plasma ratios of The mean half-time of disappearance beta-endorphin. Data expresses as mean ± standard error of the mean. from the plasma was 4.8 min (Fig. la). t> Beta-endorphin appears in the 100 10 - CSF within 2 min after injection. The 50 5 . concentration (0.5 nM) is nearly ten 0-MSH wjEcrto times the preinjection level. The z 2 c 1 concentration is maximal and does I / L_ J not change significantly between 15 ^ T T 05 - and 45 min (Fig. lb). The stability of beta-endorphin in CSF as opposed to plasma is responsible for the con­ 0.1 \[ tinued rise in the CSF to plasma 0.5 0.05 SdllNE concentration ratio. The maximum INJECTED ratio (0.23 ± 0.06) was seen at 45 min NO NO (Fig. lc). Beta-endorphin in the CSF ' 1 0 15 30 30 45 of control (beta-MSH injected) rab­ TIME (min) bits remained low or undetectable Figure 2—The fate of exogenous beta-MSH in vivo.
Recommended publications
  • Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
    Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain.
    [Show full text]
  • Effects of Β-Lipotropin and Β-Lipotropin-Derived Peptides on Aldosterone Production in the Rat Adrenal Gland
    Effects of β-Lipotropin and β-Lipotropin-derived Peptides on Aldosterone Production in the Rat Adrenal Gland Hiroaki Matsuoka, … , Patrick J. Mulrow, Roberto Franco-Saenz J Clin Invest. 1981;68(3):752-759. https://doi.org/10.1172/JCI110311. Research Article To investigate the role of non-ACTH pituitary peptides on steroidogenesis, we studied the effects of synthetic β-lipotropin, β-melanotropin, and β-endorphin on aldosterone and corticosterone stimulation using rat adrenal collagenase-dispersed capsular and decapsular cells. β-lipotropin induced a significant aldosterone stimulation in a dose-dependent fashion (10 nM-1 μM). β-endorphin, which is the carboxyterminal fragment of β-lipotropin, did not stimulate aldosterone production at the doses used (3 nM-6 μM). β-melanotropin, which is the middle fragment of β-lipotropin, showed comparable effects on aldosterone stimulation. β-lipotropin and β-melanotropin did not affect corticosterone production in decapsular cells. Although ACTH1-24 caused a significant increase in cyclic AMP production in capsular cells in a dose-dependent fashion (1 nM-1 μM), β-lipotropin and β-melanotropin did not induce an increase in cyclic AMP production at the doses used (1 nM-1 μM). The β-melanotropin analogue (glycine[Gly]10-β-melanotropin) inhibited aldosterone production induced by β- lipotropin or β-melanotropin, but did not inhibit aldosterone production induced by ACTH1-24 or angiotensin II. Corticotropin-inhibiting peptide (ACTH7-38) inhibited not only ACTH1-24 action but also β-lipotropin or β-melanotropin action; however it did not affect angiotensin II-induced aldosterone production. (saralasin [Sar]1; alanine [Ala]8)- Angiotensin II inhibited the actions of β-lipotropin and β-melanotropin as well as angiotensin II.
    [Show full text]
  • I AMYLIN MEDIATES BRAINSTEM
    AMYLIN MEDIATES BRAINSTEM CONTROL OF HEART RATE IN THE DIVING REFLEX A Dissertation Submitted to The Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy By Fan Yang May, 2012 Examination committee members: Dr. Nae J Dun (advisor), Dept. of Pharmacology, Temple University Dr. Alan Cowan, Dept. of Pharmacology, Temple University Dr. Lee-Yuan Liu-Chen, Dept. of Pharmacology, Temple University Dr. Gabriela Cristina Brailoiu, Dept. of Pharmacology, Temple University Dr. Parkson Lee-Gau Chong, Dept. of Biochemistry, Temple University Dr. Hreday Sapru (external examiner), Depts. of Neurosciences, Neurosurgery & Pharmacology/Physiology, UMDNJ-NJMS. i © 2012 By Fan Yang All Rights Reserved ii ABSTRACT AMYLIN’S ROLE AS A NEUROPEPTIDE IN THE BRAINSTEM Fan Yang Doctor of Philosophy Temple University, 2012 Doctoral Advisory Committee Chair: Nae J Dun, Ph.D. Amylin, or islet amyloid polypeptide is a 37-amino acid member of the calcitonin peptide family. Amylin role in the brainstem and its function in regulating heart rates is unknown. The diving reflex is a powerful autonomic reflex, however no neuropeptides have been described to modulate its function. In this thesis study, amylin expression in the brainstem involving pathways between the trigeminal ganglion and the nucleus ambiguus was visualized and characterized using immunohistochemistry. Its functional role in slowing heart rate and also its involvement in the diving reflex were elucidated using stereotaxic microinjection, whole-cel patch-clamp, and a rat diving model. Immunohistochemical and tract tracing studies in rats revealed amylin expression in trigeminal ganglion cells, which also contained vesicular glutamate transporter 2 positive.
    [Show full text]
  • A 0.70% E 0.80% Is 0.90%
    US 20080317666A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0317666 A1 Fattal et al. (43) Pub. Date: Dec. 25, 2008 (54) COLONIC DELIVERY OF ACTIVE AGENTS Publication Classification (51) Int. Cl. (76) Inventors: Elias Fattal, Paris (FR); Antoine A6IR 9/00 (2006.01) Andremont, Malakoff (FR); A61R 49/00 (2006.01) Patrick Couvreur, A6II 5L/12 (2006.01) Villebon-sur-Yvette (FR); Sandrine A6IPI/00 (2006.01) Bourgeois, Lyon (FR) (52) U.S. Cl. .......................... 424/1.11; 424/423; 424/9.1 (57) ABSTRACT Correspondence Address: Drug delivery devices that are orally administered, and that David S. Bradlin release active ingredients in the colon, are disclosed. In one Womble Carlyle Sandridge & Rice embodiment, the active ingredients are those that inactivate P.O.BOX 7037 antibiotics, such as macrollides, quinolones and beta-lactam Atlanta, GA 30359-0037 (US) containing antibiotics. One example of a Suitable active agent is an enzyme Such as beta-lactamases. In another embodi ment, the active agents are those that specifically treat colonic (21) Appl. No.: 11/628,832 disorders, such as Chrohn's Disease, irritable bowel syn drome, ulcerative colitis, colorectal cancer or constipation. (22) PCT Filed: Feb. 9, 2006 The drug delivery devices are in the form of beads of pectin, crosslinked with calcium and reticulated with polyethylene imine. The high crosslink density of the polyethyleneimine is (86). PCT No.: PCT/GBO6/OO448 believed to stabilize the pectin beads for a sufficient amount of time such that a Substantial amount of the active ingredi S371 (c)(1), ents can be administered directly to the colon.
    [Show full text]
  • Evolution of the Neuropeptide Y and Opioid Systems and Their Genomic
    It's time to try Defying gravity I think I'll try Defying gravity And you can't pull me down Wicked List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Sundström G, Larsson TA, Brenner S, Venkatesh B, Larham- mar D. (2008) Evolution of the neuropeptide Y family: new genes by chromosome duplications in early vertebrates and in teleost fishes. General and Comparative Endocrinology Feb 1;155(3):705-16. II Sundström G, Larsson TA, Xu B, Heldin J, Lundell I, Lar- hammar D. (2010) Interactions of zebrafish peptide YYb with the neuropeptide Y-family receptors Y4, Y7, Y8a and Y8b. Manuscript III Sundström G, Xu B, Larsson TA, Heldin J, Bergqvist CA, Fredriksson R, Conlon JM, Lundell I, Denver RJ, Larhammar D. (2010) Characterization of the neuropeptide Y system's three peptides and six receptors in the frog Silurana tropicalis. Manu- script IV Dreborg S, Sundström G, Larsson TA, Larhammar D. (2008) Evolution of vertebrate opioid receptors. Proc Natl Acad Sci USA Oct 7;105(40):15487-92. V Sundström G, Dreborg S, Larhammar D. (2010) Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS One May 6;5(5):e10512. VI Sundström G, Larsson TA, Larhammar D. (2008) Phylogenet- ic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters. BMC Evolutionary Biology Sep 19;8:254. VII Widmark J, Sundström G, Ocampo Daza D, Larhammar D. (2010) Differential evolution of voltage-gated sodium channels in tetrapods and teleost fishes.
    [Show full text]
  • Five Decades of Research on Opioid Peptides: Current Knowledge and Unanswered Questions
    Molecular Pharmacology Fast Forward. Published on June 2, 2020 as DOI: 10.1124/mol.120.119388 This article has not been copyedited and formatted. The final version may differ from this version. File name: Opioid peptides v45 Date: 5/28/20 Review for Mol Pharm Special Issue celebrating 50 years of INRC Five decades of research on opioid peptides: Current knowledge and unanswered questions Lloyd D. Fricker1, Elyssa B. Margolis2, Ivone Gomes3, Lakshmi A. Devi3 1Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; E-mail: [email protected] 2Department of Neurology, UCSF Weill Institute for Neurosciences, 675 Nelson Rising Lane, San Francisco, CA 94143, USA; E-mail: [email protected] 3Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Downloaded from Building, One Gustave L. Levy Place, New York, NY 10029, USA; E-mail: [email protected] Running Title: Opioid peptides molpharm.aspetjournals.org Contact info for corresponding author(s): Lloyd Fricker, Ph.D. Department of Molecular Pharmacology Albert Einstein College of Medicine 1300 Morris Park Ave Bronx, NY 10461 Office: 718-430-4225 FAX: 718-430-8922 at ASPET Journals on October 1, 2021 Email: [email protected] Footnotes: The writing of the manuscript was funded in part by NIH grants DA008863 and NS026880 (to LAD) and AA026609 (to EBM). List of nonstandard abbreviations: ACTH Adrenocorticotrophic hormone AgRP Agouti-related peptide (AgRP) α-MSH Alpha-melanocyte stimulating hormone CART Cocaine- and amphetamine-regulated transcript CLIP Corticotropin-like intermediate lobe peptide DAMGO D-Ala2, N-MePhe4, Gly-ol]-enkephalin DOR Delta opioid receptor DPDPE [D-Pen2,D- Pen5]-enkephalin KOR Kappa opioid receptor MOR Mu opioid receptor PDYN Prodynorphin PENK Proenkephalin PET Positron-emission tomography PNOC Pronociceptin POMC Proopiomelanocortin 1 Molecular Pharmacology Fast Forward.
    [Show full text]
  • Anorexia Nervosa: a Unified Neurological Perspective Tasneem Fatema Hasan, Hunaid Hasan 
    Int. J. Med. Sci. 2011, 8 679 Ivyspring International Publisher International Journal of Medical Sciences 2011; 8(8):679-703 Review Anorexia Nervosa: A Unified Neurological Perspective Tasneem Fatema Hasan, Hunaid Hasan Mahatma Gandhi Mission’s Medical College, Aurangabad, Maharashtra, India Corresponding author: [email protected] or [email protected]. 1345 Daniel Creek Road, Mississau- ga, Ontario, L5V1V3, Canada. © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/ licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2011.05.03; Accepted: 2011.09.19; Published: 2011.10.22 Abstract The roles of corticotrophin-releasing factor (CRF), opioid peptides, leptin and ghrelin in anorexia nervosa (AN) were discussed in this paper. CRF is the key mediator of the hypo- thalamo-pituitary-adrenal (HPA) axis and also acts at various other parts of the brain, such as the limbic system and the peripheral nervous system. CRF action is mediated through the CRF1 and CRF2 receptors, with both HPA axis-dependent and HPA axis-independent ac- tions, where the latter shows nil involvement of the autonomic nervous system. CRF1 re- ceptors mediate both the HPA axis-dependent and independent pathways through CRF, while the CRF2 receptors exclusively mediate the HPA axis-independent pathways through uro- cortin. Opioid peptides are involved in the adaptation and regulation of energy intake and utilization through reward-related behavior. Opioids play a role in the addictive component of AN, as described by the “auto-addiction opioids theory”.
    [Show full text]
  • Lipotropin, Melanotropin and Endorphin: in Vivo Catabolism and Entry Into Cerebrospinal Fluid
    LE JOURNAL CANAD1EN DES SCIENCES NEUROLOGIQUES Lipotropin, Melanotropin and Endorphin: In Vivo Catabolism and Entry into Cerebrospinal Fluid P. D. PEZALLA, M. LIS, N. G. SEIDAH AND M. CHRETIEN SUMMARY: Anesthetized rabbits were INTRODUCTION (Rudman et al., 1974). These findings given intravenous injections of either Beta-lipotropin (beta-LPH) is a suggest, albeit weakly, that the pep­ beta-lipotropin (beta-LPH), beta- peptide of 91 amino acids that was tide might cross the blood-brain bar­ melanotropin (beta-MSH) or beta- first isolated from ovine pituitary rier. In the case of beta-endorphin, endorphin. The postinjection concentra­ glands (Li et al., 1965). Although there are physiological studies both tions of these peptides in plasma and cerebrospinal fluid (CSF) were measured beta-LPH has a number of physiologi­ supporting and negating the possibil­ by radioimmunoassay (RIA). The plasma cal actions including the stimulation ity that beta-endorphin crosses the disappearance half-times were 13.7 min of lipolysis and melanophore disper­ blood-brain barrier. The study of for beta-LPH, 5.1 min for beta-MSH, and sion, it is believed to function princi­ Tseng et al. (1976) supports this pos­ 4.8 min for beta-endorphin. Circulating pally as a prohormone for beta- sibility since they observed analgesia beta-LPH is cleaved to peptides tenta­ melanotropin (beta-MSH) and beta- in mice following intravenous injec­ tively identified as gamma-LPH and endorphin. Beta-MSH, which com­ tion of beta-endorphin. However, beta-endorphin. Each of these peptides prises the sequence 41-58 of beta- Pert et al. (1976) were unable to elicit appeared in the CSF within 2 min postin­ LPH, is considerably more potent central effects in rats by intravenous jection.
    [Show full text]
  • Direct Effects of Thyrotropin-Releasing Hormone, Cyproheptadine, and Dopamine on Adrenocorticotropin Secretion from Human Corticotroph Adenoma Cells in Vitro
    Direct effects of thyrotropin-releasing hormone, cyproheptadine, and dopamine on adrenocorticotropin secretion from human corticotroph adenoma cells in vitro. M Ishibashi, T Yamaji J Clin Invest. 1981;68(4):1018-1027. https://doi.org/10.1172/JCI110324. Research Article In an attempt to delineate the mechanism and the site of action of cyproheptadine and dopaminergic agonists as well as hormones including thyrotropin-releasing hormone (TRH) and hydrocortisone, the effects of these substances on ACTH secretion from corticotroph adenoma cells in culture were examined. Dispersed cells of pituitary adenomas obtained at surgery from four patients with Nelson's syndrome and one subject with Cushing's disease formed a monolayer and actively secreted ACTH into the medium. When TRH (0.1 microM) was added to the medium, a significant increase in ACTH secretion was demonstrated by adenoma cells from two patients who responded to TRH preoperatively. Moreover, a dose-response relationship between TRH concentrations and ACTH secretion was observed. Incubation of cells with cyproheptadine (1 or 0.1 microM) resulted in a significant decrease in ACTH release, and inhibited stimulation produced by TRH in one experiment. This effect of cyproheptadine was blocked when equimolar concentrations of serotonin was coincubated, whereas serotonin by itself did not affect ACTH secretion. Dopamine (0.1 microM) lowered ACTH accumulation in the medium, which was blocked by the addition of haloperidol. When hydrocortisone was added to the culture, dose-dependent suppression of ACTH secretion was demonstrated. TRH at an equimolar concentration reversed this effect, but, failed to overcome the inhibition induced by a higher concentration of hydrocortisone in cells from one adenoma studied.
    [Show full text]
  • Effects of Corticotropin-Releasing Hormone and Dexamethasone on Proopiomelanocortin Messenger RNA Level in Human Corticotroph Adenoma Cells in Vitro
    Effects of corticotropin-releasing hormone and dexamethasone on proopiomelanocortin messenger RNA level in human corticotroph adenoma cells in vitro. T Suda, … , H Demura, K Shizume J Clin Invest. 1988;82(1):110-114. https://doi.org/10.1172/JCI113557. Research Article The effects of corticotropin-releasing hormone (CRH) and dexamethasone on proopiomelanocortin (POMC) mRNA levels in cultured pituitary adenoma cells were studied in 10 patients with Cushing's disease. As a control, POMC mRNA levels in cells from nonadenomatous tissues were examined in four patients. Human POMC mRNA in the cells was analyzed by Northern blot hybridization. Human POMC DNA probe hybridized with only a single size class of RNA (approximately 1,200 nucleotides) from the adenoma and nonadenoma cells of each patient. The size of POMC mRNA did not change through the culture or after incubation with CRH or dexamethasone. CRH increased POMC mRNA levels in these cells in a dose- and time-dependent manner. The minimum concentration of CRH required to elevate POMC mRNA levels in these cells exposed for 15 h was 0.1 nM. The minimum duration of 1 nM CRH treatment required to increase these levels was 3 h under our conditions. Inhibitory effects of 1 and 10 micrograms/dl dexamethasone on ACTH release and POMC mRNA levels in nonadenoma cells were greater than those in adenoma cells. These results suggest the following: (a) that the mRNA in cultured pituitary adenoma cells is qualitatively the same as that in vivo; (b) that responses of mRNA levels to CRH are time- and dose-dependent;
    [Show full text]
  • Growing up POMC: Pro-Opiomelanocortin in the Developing Brain
    Growing Up POMC: Pro-opiomelanocortin in the Developing Brain Stephanie Louise Padilla Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2011 © 2011 Stephanie Louise Padilla All Rights Reserved ABSTRACT Growing Up POMC: Pro-opiomelanocortin in the Developing Brain Stephanie Louise Padilla Neurons in the arcuate nucleus of the hypothalamus (ARH) play a central role in the regulation of body weight and energy homeostasis. ARH neurons directly sense nutrient and hormonal signals of energy availability from the periphery and relay this information to secondary nuclei targets, where signals of energy status are integrated to regulate behaviors related to food intake and energy expenditure. Transduction of signals related to energy status by Pro-opiomelanocortin (POMC) and neuropeptide-Y/agouti-related protein (NPY/AgRP) neurons in the ARH exert opposing influences on secondary neurons in central circuits regulating energy balance. My thesis research focused on the developmental events regulating the differentiation and specification of cell fates in the ARH. My first project was designed to characterize the ontogeny of Pomc- and Npy-expressing neurons in the developing mediobasal hypothalamus (Chapter 2). These experiments led to the unexpected finding that during mid-gestation, Pomc is broadly expressed in the majority of newly-born ARH neurons, but is subsequently down-regulated during later stages of development as cells acquire a terminal cell identity. Moreover, these studies demonstrated that most immature Pomc-expressing progenitors subsequently differentiate into non-POMC neurons, including a subset of functionally distinct NPY/AgRP neurons.
    [Show full text]
  • Fish Melanocortin System
    Fish melanocortin system José Miguel Cerdá-Reverter1*, Maria Josep Agulleiro1, Raúl Guillot R1, Elisa Sánchez1, Rosa Ceinos2, Josep Rotllant 2 1Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal (IATS), Consejo Superior de Investigaciones Científicas (CSIC), Castellón, SPAIN. 2Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, SPAIN * Corresponding author and reprint requests: Dr. J.M. Cerdá-Reverter, Department of Fish Reproductive Physiology, Instituto de Acuicultura de Torre de la Sal, 12595 Torre de la Sal, Ribera de Cabanes, Castellón, SPAIN. E-mail Address: [email protected], Phone Number: (+) 34 964319500, Fax: (+) 34 964319509. 1 Abstract Melanocortin signalling is mediated by binding to a family of G protein-coupled receptors that positively couple to adenylyl cyclase. Tetrapod species have five melanocortin (MC1-MC5) receptors. The number of receptors varies in fish, zebrafish, for example, having six melanocortin receptors, with two copies of the melanocortin MC5 receptor, while pufferfish have 4 receptors with no melanocortin MC3 receptor and one copy of melanocortin MC5 receptor. Fish genomes also exhibit orthologue genes for agouti-signalling protein (ASP) and -related protein (AGRP). AGRP expression is confined to a small area in the hypothalamus but ASP is expressed in the skin. Fish melanocortin MC2 receptor is specific for ACTH and requires the cooperation of accessory proteins (MRAP) to reach functional expression. The four other melanocortin MC receptors distinctively bind MSHs. The interaction of α-MSH and melanocortin MC1 receptor plays a key point in the control of the pigmentation and mutations of melanocortin MC1 receptor are responsible for reduced melanization. Both melanocortin MC4 and MC5 receptor are expressed in the hypothalamus, and central melanocortin MC4 receptor expression is thought to regulate the energy balance through the modulation of feeding behaviour.
    [Show full text]