60 YEARS of POMC: Biosynthesis, Trafficking, and Secretion of Pro
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Neuroendocrine Control of Atrial Natriuretic Peptide Release J Antunes-Rodrigues1, ALV Favaretto1, J Gutkowska2 and SM Mccann3
Molecular Psychiatry (1997) 2, 359–367 1997 Stockton Press All rights reserved 1359–4184/97 $12.00 REVIEW ARTICLE: A TRIBUTE TO SM McCANN The neuroendocrine control of atrial natriuretic peptide release J Antunes-Rodrigues1, ALV Favaretto1, J Gutkowska2 and SM McCann3 1Department of Physiology, School of Medicine, University of Sao Paulo, 14049 Ribeirao Preto, SP, Brazil; 2Laboratory of Biochemistry of Hypertension, Clinical Research Institute, University of Montreal, Montreal, Quebec, H2W 1R7 Canada; 3Pennington Biomedical Research Center (LSU), 6400 Perkins Road, Baton Rouge, LA 70808–4124, USA In the initial experiments reviewed here, we show that atrial natriuretic peptide (ANP) plays an important inhibitory role in the control of sodium chloride and water intake since injections of ANP into the third ventricle (3V) caused a reduction in dehydration-induced drinking and also the drinking of salt in salt-depleted rats. Attention was then turned to the possible role of the brain ANP neurons in producing natriuresis which had earlier been shown to be caused by stimulations within the anterior ventral third ventricular region (AV3V). Stimulation in this region by carbachol produced natriuresis accompanied by a dramatic increase in plasma ANP concentrations and increased content of the peptide in medial basal hypothalamus (MBH), neurohypophysis (NH) and anterior pituitary gland (AP), without alterations in the content of ANP in lungs or atria. This suggested that the natriuresis resulting from the stimulation is brought about, at least in part, by the release of ANP from the brain. Conversely, there was a dramatic decline in plasma ANP at both 24 and 128 h after AV3V lesions had been placed. -
Effect of Atrial Natriuretic Peptide on the Release of 19-Endorphin from Rat Hypothalamo- Neurohypophysial Complex
Endocrinol. Jappon. 1989,36 (5),647-653 Effect of Atrial Natriuretic Peptide on the Release of 19-Endorphin from Rat Hypothalamo- Neurohypophysial Complex YUKIHIRO IKEDA1*, ISSEI TANAKA1, YUTAKA OKI1, YOSHIO IKEDA2 AND TERUYA YOSHIMII 1Second Department of Internal Medcine, Hamamatsu Uniyersity School of Medicine, Hamamatsu 431-31 and 2Department of Neuro-Psychiatry, Fujita Gakuen Health University School of Medicine, Toyoake 470-11, Japan Abstract The aim of this study was to determine whether atrial natriuretic peptide (ANP) alters 13-endorphin (ƒÀ-END) secretion from rat intermediate pituitary and whether this effect is a direct action on the intermediate pituitary or an indirect one mediated by hypothalamic factor(s). We studied the release of β-END from rat neuro-intermediate lobes of the pituitary(NIL)and from the hypothalamo-neurohypophysial complex (HNC), which consists of the hypo- thalamus, pituitary stalk, intermediate and posterior lobes of the pituitary, by means of an in vitro perifusion system. NIL and HNC were prepared from male Wistar rats and individually perifused for 30 min with perifusion medium followed by 20 min perifusion with medium containing a-rat ANP and/or dopamine (DA). Samples of perifusion medium were collected every 5 min and subjected to RIA for n-END. The basal release of ƒÀ-END from NIL was 180% of that from HNC (p<0.01), which provides further support for the presence of hypothalamic factors that inhibit (ƒÀ-END release from the intermediate pituitary. The perifusion of HNC with ANP at 10-7 and 10-6M increased the ƒÀ-END concentration by 25 and 50%, respectively (p<0.01). -
A Role for Natriuretic Peptides in the Central Control of Energy Balance? Kathryn E
COMMENTARY A Role for Natriuretic Peptides in the Central Control of Energy Balance? Kathryn E. Berkseth, Ellen Schur, and Michael W. Schwartz Extending this observation, the authors also found that, like leptin, intracerebroventricular CNP activates POMC he natriuretic peptide (NP) family is comprised cells (based on induction of c-Fos) (8). These findings of atrial NP, brain NP, and c-type NP (CNP). imply a role for the melanocortin system in the effect of These peptides play diverse physiological roles CNP on food intake and, together with evidence that both T(1–5) by binding to one of two receptors: NP CNP and NPR-B are concentrated in the ARC (7), raise the receptor (NPR)-A (for atrial NP and brain NP) or NPR-B possibility that CNP-containing ARC neurons synapse onto (for CNP), both of which signal through the guanylyl and activate adjacent POMC neurons (Fig. 1B). Alterna- cyclase-cyclic GMP (cGMP) pathway (6). Among the tively, CNP neurons could conceivably activate POMC physiological systems involving NPs are those controlling cells via an indirect mechanism involving an intermediary circulating blood volume, vascular tone, electrolyte bal- neuronal subpopulation. These untested possibilities are of ance, skeletal growth, and whole-body energy expenditure interest because, although the anorectic effects of both (1–5). In addition to actions in peripheral tissues, NPs are leptin (11) and serotonin (12) involve activation of POMC present in brain (7). In the current issue of Diabetes, cells, neither leptin receptors (which signal via Janus Yamada-Goto et al. (8) report that central (but not pe- kinase–signal transducer and activator of transcription and ripheral) administration of CNP reduces food intake and phosphatidylinositol-3-kinase pathways) nor serotonin body weight. -
Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain. -
CCK-8S) of Protein Phosphorylation in the Neostriatum (Forskonln/N-Methyl-D-Aspartic Acid/Glutamate) GRETCHEN L
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 11277-11281, December 1993 Neurobiology Regulation by the neuropeptide cholecystokinin (CCK-8S) of protein phosphorylation in the neostriatum (forskonln/N-methyl-D-aspartic acid/glutamate) GRETCHEN L. SNYDER*, GILBERTO FISONE*, PATRIZIA MORINOt, VIDAR GUNDERSEN*, OLE PETTER OTTERSEN*, TOMAS HOKFELTt, AND PAUL GREENGARD*§ *Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10021; tDepartment of Histology and Neurobiology, Karolinska Institute, S-10401, Stockholm, Sweden; and *Department of Anatomy, University of Oslo, Blindern, N-0317 Oslo, Norway Contributed by Tomas Hokfelt, August 16, 1993 ABSTRACT Despite physiological evidence that cholecys- rons, apparently through a mechanism that involves the tokinin (CCK) is an excitatory neurotransmitter in the brain, release of an excitatory neurotransmitter and activation of little is known about its mechanism of action. CCK immuno- NMDA receptors. reactivity in the brain, including projections to the striatum, is primarily attributable to the sulfated octapeptide CCK-8S. We report here that CCK-8S abolishes cAMP-dependent phos- MATERIALS AND METHODS phorylation ofa dopamine- and cAMP-regulated 32-kDa phos- Materials. RPMI 1640 balanced salt solution, bovine serum phoprotein (DARPP-32) in striatal neurons. The effect of albumin, and 3-isobutylmethylxanthine were obtained from CCK-8S is prevented by antagonists of CCKB and N-methyl- Sigma; forskolin was from Calbiochem; NMDA and (+)-MK- D-aspartate receptors. Our results support a model in which 801 hydrogen maleate (MK-801) were from Research Bio- CCK-8S, originating from CCK or CCK/glutamate cortico- chemicals; CCK-8S was from Bachem; CI-988 was from J. striatal neurons, promotes the release of an excitatory neuro- Hughes; cAMP, RIA, and ECL Western blotting detection transmitter that causes the dephosphorylation and inactivation kits were from Amersham; and goat anti-mouse horseradish of DARPP-32, a potent protein phosphatase inhibitor, thereby peroxidase-linked antibody was from Pierce. -
Effects of Β-Lipotropin and Β-Lipotropin-Derived Peptides on Aldosterone Production in the Rat Adrenal Gland
Effects of β-Lipotropin and β-Lipotropin-derived Peptides on Aldosterone Production in the Rat Adrenal Gland Hiroaki Matsuoka, … , Patrick J. Mulrow, Roberto Franco-Saenz J Clin Invest. 1981;68(3):752-759. https://doi.org/10.1172/JCI110311. Research Article To investigate the role of non-ACTH pituitary peptides on steroidogenesis, we studied the effects of synthetic β-lipotropin, β-melanotropin, and β-endorphin on aldosterone and corticosterone stimulation using rat adrenal collagenase-dispersed capsular and decapsular cells. β-lipotropin induced a significant aldosterone stimulation in a dose-dependent fashion (10 nM-1 μM). β-endorphin, which is the carboxyterminal fragment of β-lipotropin, did not stimulate aldosterone production at the doses used (3 nM-6 μM). β-melanotropin, which is the middle fragment of β-lipotropin, showed comparable effects on aldosterone stimulation. β-lipotropin and β-melanotropin did not affect corticosterone production in decapsular cells. Although ACTH1-24 caused a significant increase in cyclic AMP production in capsular cells in a dose-dependent fashion (1 nM-1 μM), β-lipotropin and β-melanotropin did not induce an increase in cyclic AMP production at the doses used (1 nM-1 μM). The β-melanotropin analogue (glycine[Gly]10-β-melanotropin) inhibited aldosterone production induced by β- lipotropin or β-melanotropin, but did not inhibit aldosterone production induced by ACTH1-24 or angiotensin II. Corticotropin-inhibiting peptide (ACTH7-38) inhibited not only ACTH1-24 action but also β-lipotropin or β-melanotropin action; however it did not affect angiotensin II-induced aldosterone production. (saralasin [Sar]1; alanine [Ala]8)- Angiotensin II inhibited the actions of β-lipotropin and β-melanotropin as well as angiotensin II. -
Lipotropin, Melanotropin and Endorphin: in Vivo Catabolism and Entry Into Cerebrospinal Fluid
LE JOURNAL CANAD1EN DES SCIENCES NEUROLOGIQUES Lipotropin, Melanotropin and Endorphin: In Vivo Catabolism and Entry into Cerebrospinal Fluid P. D. PEZALLA, M. LIS, N. G. SEIDAH AND M. CHRETIEN SUMMARY: Anesthetized rabbits were INTRODUCTION (Rudman et al., 1974). These findings given intravenous injections of either Beta-lipotropin (beta-LPH) is a suggest, albeit weakly, that the pep beta-lipotropin (beta-LPH), beta- peptide of 91 amino acids that was tide might cross the blood-brain bar melanotropin (beta-MSH) or beta- first isolated from ovine pituitary rier. In the case of beta-endorphin, endorphin. The postinjection concentra glands (Li et al., 1965). Although there are physiological studies both tions of these peptides in plasma and cerebrospinal fluid (CSF) were measured beta-LPH has a number of physiologi supporting and negating the possibil by radioimmunoassay (RIA). The plasma cal actions including the stimulation ity that beta-endorphin crosses the disappearance half-times were 13.7 min of lipolysis and melanophore disper blood-brain barrier. The study of for beta-LPH, 5.1 min for beta-MSH, and sion, it is believed to function princi Tseng et al. (1976) supports this pos 4.8 min for beta-endorphin. Circulating pally as a prohormone for beta- sibility since they observed analgesia beta-LPH is cleaved to peptides tenta melanotropin (beta-MSH) and beta- in mice following intravenous injec tively identified as gamma-LPH and endorphin. Beta-MSH, which com tion of beta-endorphin. However, beta-endorphin. Each of these peptides prises the sequence 41-58 of beta- Pert et al. (1976) were unable to elicit appeared in the CSF within 2 min postin LPH, is considerably more potent central effects in rats by intravenous jection. -
I AMYLIN MEDIATES BRAINSTEM
AMYLIN MEDIATES BRAINSTEM CONTROL OF HEART RATE IN THE DIVING REFLEX A Dissertation Submitted to The Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy By Fan Yang May, 2012 Examination committee members: Dr. Nae J Dun (advisor), Dept. of Pharmacology, Temple University Dr. Alan Cowan, Dept. of Pharmacology, Temple University Dr. Lee-Yuan Liu-Chen, Dept. of Pharmacology, Temple University Dr. Gabriela Cristina Brailoiu, Dept. of Pharmacology, Temple University Dr. Parkson Lee-Gau Chong, Dept. of Biochemistry, Temple University Dr. Hreday Sapru (external examiner), Depts. of Neurosciences, Neurosurgery & Pharmacology/Physiology, UMDNJ-NJMS. i © 2012 By Fan Yang All Rights Reserved ii ABSTRACT AMYLIN’S ROLE AS A NEUROPEPTIDE IN THE BRAINSTEM Fan Yang Doctor of Philosophy Temple University, 2012 Doctoral Advisory Committee Chair: Nae J Dun, Ph.D. Amylin, or islet amyloid polypeptide is a 37-amino acid member of the calcitonin peptide family. Amylin role in the brainstem and its function in regulating heart rates is unknown. The diving reflex is a powerful autonomic reflex, however no neuropeptides have been described to modulate its function. In this thesis study, amylin expression in the brainstem involving pathways between the trigeminal ganglion and the nucleus ambiguus was visualized and characterized using immunohistochemistry. Its functional role in slowing heart rate and also its involvement in the diving reflex were elucidated using stereotaxic microinjection, whole-cel patch-clamp, and a rat diving model. Immunohistochemical and tract tracing studies in rats revealed amylin expression in trigeminal ganglion cells, which also contained vesicular glutamate transporter 2 positive. -
A 0.70% E 0.80% Is 0.90%
US 20080317666A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0317666 A1 Fattal et al. (43) Pub. Date: Dec. 25, 2008 (54) COLONIC DELIVERY OF ACTIVE AGENTS Publication Classification (51) Int. Cl. (76) Inventors: Elias Fattal, Paris (FR); Antoine A6IR 9/00 (2006.01) Andremont, Malakoff (FR); A61R 49/00 (2006.01) Patrick Couvreur, A6II 5L/12 (2006.01) Villebon-sur-Yvette (FR); Sandrine A6IPI/00 (2006.01) Bourgeois, Lyon (FR) (52) U.S. Cl. .......................... 424/1.11; 424/423; 424/9.1 (57) ABSTRACT Correspondence Address: Drug delivery devices that are orally administered, and that David S. Bradlin release active ingredients in the colon, are disclosed. In one Womble Carlyle Sandridge & Rice embodiment, the active ingredients are those that inactivate P.O.BOX 7037 antibiotics, such as macrollides, quinolones and beta-lactam Atlanta, GA 30359-0037 (US) containing antibiotics. One example of a Suitable active agent is an enzyme Such as beta-lactamases. In another embodi ment, the active agents are those that specifically treat colonic (21) Appl. No.: 11/628,832 disorders, such as Chrohn's Disease, irritable bowel syn drome, ulcerative colitis, colorectal cancer or constipation. (22) PCT Filed: Feb. 9, 2006 The drug delivery devices are in the form of beads of pectin, crosslinked with calcium and reticulated with polyethylene imine. The high crosslink density of the polyethyleneimine is (86). PCT No.: PCT/GBO6/OO448 believed to stabilize the pectin beads for a sufficient amount of time such that a Substantial amount of the active ingredi S371 (c)(1), ents can be administered directly to the colon. -
Elevated MR-Proanp Plasma Concentrations Are Associated With
Yagmur et al. J Transl Med (2019) 17:415 https://doi.org/10.1186/s12967-019-02165-2 Journal of Translational Medicine RESEARCH Open Access Elevated MR-proANP plasma concentrations are associated with sepsis and predict mortality in critically ill patients Eray Yagmur1* , Johanna Hermine Sckaer2, Ger H. Koek3, Ralf Weiskirchen4 , Christian Trautwein2, Alexander Koch2† and Frank Tacke2,5† Abstract Background and aims: Mid-regional pro atrial natriuretic peptide (MR-proANP) is an established biomarker for heart failure, based on its key role in regulating homeostasis of water balance and blood pressure. The aim of the study was to determine the value of MR-proANP as a clinical biomarker in critical illness and/or sepsis. Upon admission to the medical intensive care unit (ICU), we investigated MR-proANP plasma concentrations in 217 critically ill patients (144 with sepsis, 73 without sepsis). Results were compared with 65 healthy controls. Results: MR-proANP plasma levels were signifcantly elevated in critically ill patients, when compared to healthy controls. Notably, MR-proANP levels were signifcantly higher in ICU patients with sepsis. MR-proANP levels were not associated with metabolic comorbidities like diabetes or obesity. In critically ill patients, MR-proANP plasma concen- trations correlated with infammatory cytokines, markers of organ dysfunction and several adipocytokines, such as resistin, retinol-binding protein 4 (RBP4) and adiponectin. Importantly, high MR-proANP plasma levels were associ- ated with mortality, as MR-proANP levels above 227.0 pmol/l indicated a particularly increased mortality risk in ICU patients. The association between MR-proANP and mortality was independent of single organ failure and infamma- tion markers. -
Evolution of the Neuropeptide Y and Opioid Systems and Their Genomic
It's time to try Defying gravity I think I'll try Defying gravity And you can't pull me down Wicked List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Sundström G, Larsson TA, Brenner S, Venkatesh B, Larham- mar D. (2008) Evolution of the neuropeptide Y family: new genes by chromosome duplications in early vertebrates and in teleost fishes. General and Comparative Endocrinology Feb 1;155(3):705-16. II Sundström G, Larsson TA, Xu B, Heldin J, Lundell I, Lar- hammar D. (2010) Interactions of zebrafish peptide YYb with the neuropeptide Y-family receptors Y4, Y7, Y8a and Y8b. Manuscript III Sundström G, Xu B, Larsson TA, Heldin J, Bergqvist CA, Fredriksson R, Conlon JM, Lundell I, Denver RJ, Larhammar D. (2010) Characterization of the neuropeptide Y system's three peptides and six receptors in the frog Silurana tropicalis. Manu- script IV Dreborg S, Sundström G, Larsson TA, Larhammar D. (2008) Evolution of vertebrate opioid receptors. Proc Natl Acad Sci USA Oct 7;105(40):15487-92. V Sundström G, Dreborg S, Larhammar D. (2010) Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS One May 6;5(5):e10512. VI Sundström G, Larsson TA, Larhammar D. (2008) Phylogenet- ic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters. BMC Evolutionary Biology Sep 19;8:254. VII Widmark J, Sundström G, Ocampo Daza D, Larhammar D. (2010) Differential evolution of voltage-gated sodium channels in tetrapods and teleost fishes. -
Rfamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential
Pharmaceuticals 2011, 4, 1248-1280; doi:10.3390/ph4091248 OPEN ACCESS Pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review RFamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential Maria Findeisen †, Daniel Rathmann † and Annette G. Beck-Sickinger * Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany; E-Mails: [email protected] (M.F.); [email protected] (D.R.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-341-9736900; Fax: +49-341-9736909. Received: 29 August 2011; in revised form: 9 September 2011 / Accepted: 15 September 2011 / Published: 21 September 2011 Abstract: Different neuropeptides, all containing a common carboxy-terminal RFamide sequence, have been characterized as ligands of the RFamide peptide receptor family. Currently, five subgroups have been characterized with respect to their N-terminal sequence and hence cover a wide pattern of biological functions, like important neuroendocrine, behavioral, sensory and automatic functions. The RFamide peptide receptor family represents a multiligand/multireceptor system, as many ligands are recognized by several GPCR subtypes within one family. Multireceptor systems are often susceptible to cross-reactions, as their numerous ligands are frequently closely related. In this review we focus on recent results in the field of structure-activity studies as well as mutational exploration of crucial positions within this GPCR system. The review summarizes the reported peptide analogs and recently developed small molecule ligands (agonists and antagonists) to highlight the current understanding of the pharmacophoric elements, required for affinity and activity at the receptor family.