Velocity Measurement Using ADV
Total Page:16
File Type:pdf, Size:1020Kb
National Library Bibliothèque nationale 1+1 of,,, du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue Wellington Ottawa ON KIA ON4 Ottawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or seil reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la fome de microfiche/fh, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d' auteur qui protège cette thèse. thesis nor substantial extracts f?om it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. A theoretical and experimental investigation of intense bedload transport in non-uniform flow has been carried out. nie study includes the process of shear stress transfer fkom fluid to carpet; the effect of conveaive acceleration induced pressure field on the carpet flow; efficiency factor of intense bedload transport; the profiles of sediment and fluid velocities; and fictionai behavior of carpet flow. The theoretical study considers two aspects of carpet flow: The first deals with the dynamics of flat-bed carpet flow and the second de& with the eEkt of the convective acceleration of the fluid produced by flow over a bedwave. Employing Bagnold's (1954) semi-theoretical relationships, based on his rotating-drum experirnents, the theoretical analysis gave two results: 1) velocity profiles for the grains and fluid; and 2) the trend of shear stress transfer fkom the fluid to the grains. These flat-bed relationships were then extended to the bedwave situation which deals with the effect of the pressure gradient produced by convective acceleration on a carpet flow. Control volume anaiysis shows that an additional shear stress, other than fluid induced turbulent shear stress, acts to mobiüze the sedirnents. This is confirmeci in two ways f?om the experimental measurements: 1) fiom the sedirnent transport kinematics; and 2) fiom the weight of sediment supported within the carpet layer. Experiments were carried out to ver@ the theory and to establish the relative importance of the various stress mechanism. The experiments were conducted using a re-circulating closed conduit, which avoided the effect of surface waves and ahproduced the necessary high shear stress and other flow parameters. The sediment concentration and velocity pronles were measured by using a high-speed digital camera that was able to record 1000 &es per second. The velocity profile of the overlaying fluid was measured by using an acoustic doppler velocimeter. Pressure measurernents at various points were made by using pressure transducers that logged data to a computer. A relationship for estimating fictional behavior of intense bedload on flat bed is given. It was found that the amount of resistance depends on the Shields parameter, the critical value being close to 0.8. This theory indicates that for flows with intense bedload and Shields parameter above this critical value, the fictional resistance is higher than an equivalent clear-water and rougti-surface flow, and lower for vdues below the critical. Identicaliy shaped dunes were observeci for a range of discharges which indicated that the fluid induced shear stress, both fiom fiction and convective acceleration, scde almost similarly for a aven range of flow. Moreover, the geometry of the dunes are possibly influenced by the scale of the experirnents. A reasonably good matching of the grain velocity profile was obtained between the theoreticai and experimentai results. And it appears that carpet sediment transport under die in£iuence of convective acceleration is more efficient than the flat bed case, because the additional force on sediments fiom the pressure gradient is transmitted directly with less energy loss. TABLE OF CONTENTS ABSTRACT LIST OF TABLES LIST OF FTGURES LIST OF SYMBOLS ACKNOWLEDGMENT 1. INTRODUCTION 1 1.1 General Introduction ........................................................................................... 1 1.2 Research Objectives ............................................................................................ -2 1.3 Thesis Outline ..................................................................................................... 4 2. LITERATURE REWEW Introduction ........................................................................................................ 5 Channel Resistance ............................................................................................. 6 Stream-Power Approach ..................................................................................... 7 2.3.1 Introduction ........................................................................................... 7 2.3 -2 Bagnold's approach ................................................................................ 8 Review of Work by ûther Researchers ........................ ... ............................... 11 2.4.1 du Boys analysis ................................................................................... 11 2.4.2 Wdson et a1.k approach ................... ..... ........................................... 12 2.4.2.1 Wdson's analysis ..................................................................... 12 2.4.2.2 Nnadi and Wilson's analysis ................................................. 15 2.4.3 Wang and Qian's approach ................................................................. 15 2.4.4 Hanes Bowen's approach ...................................................................... 17 2.4.4.1 Hanes analysis of the fictional resistance .............................. 19 2.4.4.2 Comments on Hanes' analysis ................................................ 21 2.4.5 Sumer et a1.k approach .......................................................................... 22 2.5 Bedwave Sediment Transport .............................................................................23 2.6 Summary ............................................................................................................ 23 3. CARPET FLOW ANALYSE Introduction ........................................................................................................ 27 3.1.1 Stress within the carpet .......................................................................... 30 Constitutive Equations ........................................................................................ 31 3 .2.1 Theoretical approach ............................................................................... 31 3.2.1.1 Assumptions made in Bagnold's equations ............................... 32 3.2.1-2 Derivation of equations ........................................................... 33 Analysis .............................................................................................................. 37 Defmition of the problem ................................................................... 37 Basic assumptions and approaches utilized ............................................. -39 Carpet fiow with no pressure gradient ..................................................... 41 Simplifieci approach ........................... .. ............................................... 44 3.3 .4.1 Carpet flow with uniform sediment concentration ................... 44 3 -3.4.2 Carpet flow with a linear concentration profile ........................ 45 Numerical andysis ....................................................................... 46 Fluid velocity ........................................................................................ -48 Solution method ..................................................................................... 49 3.4 Power and Efficiency within the Carpet ............................................................. 49 3 .4.1 Power and efficiency concepts ................................................................ 50 3 .4.2 Flow resistance ........................................................................................ 52 3 .4.3 Analysis of power transfer to the carpet ............................................. 53 3.4.4 Andysis of power transfer within the carpet ...................................... 54 3 -6 Conclusions ......................................................................................................... 56 4 . CONVECTIVE ACCELERATION AND INENSE BEDLOAD 67 Introduction ........................................................................................................ 67 Theoretical Development ...............................~.................................................... 68 4.2.1 Ongin of carpet shear stress .........................~........................................68 4.2.2 Transmission of shear stress in the carpet ............................................. 69 Dunes and Intense Bedload ................................................................................ 71 4.4.3 Kinematics of dunes ....................................~.......................................... 71 Control Volume Analysis of Fluid and Carpet Flow .........................................