SASO-ISO-80000-11-2020-E.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Laws of Similarity in Fluid Mechanics 21
Laws of similarity in fluid mechanics B. Weigand1 & V. Simon2 1Institut für Thermodynamik der Luft- und Raumfahrt (ITLR), Universität Stuttgart, Germany. 2Isringhausen GmbH & Co KG, Lemgo, Germany. Abstract All processes, in nature as well as in technical systems, can be described by fundamental equations—the conservation equations. These equations can be derived using conservation princi- ples and have to be solved for the situation under consideration. This can be done without explicitly investigating the dimensions of the quantities involved. However, an important consideration in all equations used in fluid mechanics and thermodynamics is dimensional homogeneity. One can use the idea of dimensional consistency in order to group variables together into dimensionless parameters which are less numerous than the original variables. This method is known as dimen- sional analysis. This paper starts with a discussion on dimensions and about the pi theorem of Buckingham. This theorem relates the number of quantities with dimensions to the number of dimensionless groups needed to describe a situation. After establishing this basic relationship between quantities with dimensions and dimensionless groups, the conservation equations for processes in fluid mechanics (Cauchy and Navier–Stokes equations, continuity equation, energy equation) are explained. By non-dimensionalizing these equations, certain dimensionless groups appear (e.g. Reynolds number, Froude number, Grashof number, Weber number, Prandtl number). The physical significance and importance of these groups are explained and the simplifications of the underlying equations for large or small dimensionless parameters are described. Finally, some examples for selected processes in nature and engineering are given to illustrate the method. 1 Introduction If we compare a small leaf with a large one, or a child with its parents, we have the feeling that a ‘similarity’ of some sort exists. -
Collisional Granular Flows with and Without Gas Interactions in Microgravity
COLLISIONAL GRANULAR FLOWS WITH AND WITHOUT GAS INTERACTIONS IN MICROGRAVITY A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Ful¯llment of the Requirements for the Degree of Doctor of Philosophy by Haitao Xu August 2003 c 2003 Haitao Xu ° ALL RIGHTS RESERVED COLLISIONAL GRANULAR FLOWS WITH AND WITHOUT GAS INTERACTIONS IN MICROGRAVITY Haitao Xu, Ph.D. Cornell University 2003 We studied flows of agitated spherical grains in a gas. When the grains have large enough inertia and when collisions constitute the dominant mechanism for momentum transfer among them, the particle velocity distribution is determined by collisional rather than by hydrodynamic interactions, and the granular flow is governed by equations derived from the kinetic theory. To solve these equations, we determined boundary conditions for agitated grains at solid walls of practical interest by considering the change of momentum and fluctuation energy of the grains in collisions with the wall. Using these condi- tions, solutions of the governing equations captured granular flows in microgravity experiments and in event-driven simulations. We extended the theory to gas-particle flows with moderately large grain in- ertia, in which the viscous gas introduces an additional dissipation mechanism of particle fluctuation energy. When there is also a mean relative velocity between the gas and the particles, the gas gives rise to particle fluctuation energy and to mean drag. Solutions of the resulting equations compared well with Lattice- Boltzmann simulations at large to moderate Stokes numbers. However, theoretical predictions deviated from simulations at small Stokes number or at large particle Reynolds number. -
Static Mixing Spacers for Spiral Wound Modules
Desalination and Water Purification Research and Development Program Report No. 161 Static Mixing Spacers for Spiral Wound Modules U.S. Department of the Interior Bureau of Reclamation Technical Service Center Denver, Colorado November 2012 Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) November 2012 Final 2010-2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Static Mixing Spacers for Spiral Wound Modules Agreement No.R10AP81213 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Glenn Lipscomb 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Chemical Engineering Task Identification Number University of Toledo Task IV: Expanding Scientific 3048 Nitschke Hall (MS 305) Understanding of Desalination Processes 1610 N Westwood Ave Subtask: Increase of rates of mass transfer Toledo, OH 43607 to membrane or to heat transfer surfaces. -
Capillarity and Dynamic Wetting Andreas Carlson
Capillarity and dynamic wetting by Andreas Carlson March 2012 Technical Reports Royal Institute of Technology Department of Mechanics SE-100 44 Stockholm, Sweden Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stockholm framl¨agges till offentlig granskning f¨or avl¨aggande av teknologie doktorsexamen fredagen den 23 mars 2012 kl 10.00 i Salongen, Biblioteket, Kungliga Tekniska H¨ogskolan, Osquars Backe 25, Stockholm. c Andreas Carlson 2012 E-PRINT, Stockholm 2012 iii Capillarity and dynamic wetting Andreas Carlson 2012 Linn´eFLOW Centre, KTH Mechanics SE-100 44 Stockholm, Sweden Abstract In this thesis capillary dominated two{phase flow is studied by means of nu- merical simulations and experiments. The theoretical basis for the simulations consists of a phase field model, which is derived from the system's thermody- namics, and coupled with the Navier Stokes equations. Two types of interfacial flow are investigated, droplet dynamics in a bifurcating channel and sponta- neous capillary driven spreading of drops. Microfluidic and biomedical applications often rely on a precise control of droplets as they traverse through complicated networks of bifurcating channels. Three{dimensional simulations of droplet dynamics in a bifurcating channel are performed for a set of parameters, to describe their influence on the resulting droplet dynamics. Two distinct flow regimes are identified as the droplet in- teracts with the tip of the channel junction, namely, droplet splitting and non- splitting. A flow map based on droplet size and Capillary number is proposed to predict whether the droplet splits or not in such a geometry. A commonly occurring flow is the dynamic wetting of a dry solid substrate. -
Experimental Heat Transfer and Friction Factor of Fe3o4 Magnetic Nanofluids Flow in a Tube Under Laminar Flow at High Prandtl Numbers
International Journal of Heat and Technology Vol. 38, No. 2, June, 2020, pp. 301-313 Journal homepage: http://iieta.org/journals/ijht Experimental Heat Transfer and Friction Factor of Fe3O4 Magnetic Nanofluids Flow in a Tube under Laminar Flow at High Prandtl Numbers Lingala Syam Sundar1*, Hailu Misganaw Abebaw2, Manoj K. Singh3, António M.B. Pereira1, António C.M. Sousa1 1 Centre for Mechanical Technology and Automation (TEMA–UA), Department of Mechanical Engineering, University of Aveiro, Aveiro 3810-131, Portugal 2 Department of Mechanical Engineering, University of Gondar, Gondar, Ethiopia 3 Department of Physics – School of Engineering and Technology (SOET), Central University of Haryana, Haryana 123031, India Corresponding Author Email: [email protected] https://doi.org/10.18280/ijht.380204 ABSTRACT Received: 15 February 2020 The work is focused on the estimation of convective heat transfer and friction factor of Accepted: 23 April 2020 vacuum pump oil/Fe3O4 magnetic nanofluids flow in a tube under laminar flow at high Prandtl numbers experimentally. The thermophysical properties also studied Keywords: experimentally at different particle concentrations and temperatures. The Fe3O4 heat transfer enhancement, friction factor, nanoparticles were synthesized using the chemical reaction method and characterized using laminar flow, high Prandtl number, magnetic X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM) techniques. nanofluid The experiments were conducted at mass flow rate from 0.04 kg/s to 0.208 kg/s, volume concentration from 0.05% to 0.5%, Prandtl numbers from 440 to 2534 and Graetz numbers from 500 to 3000. The results reveal that, the thermal conductivity and viscosity enhancements are 9% and 1.75-times for 0.5 vol. -
A Two-Layer Turbulence Model for Simulating Indoor Airflow Part I
Energy and Buildings 33 +2001) 613±625 A two-layer turbulence model for simulating indoor air¯ow Part I. Model development Weiran Xu, Qingyan Chen* Department of Architecture, Massachusetts Institute of Technology, 77 Massachusetts Avenue, MA 02139, USA Received 2 August 2000; accepted 7 October 2000 Abstract Energy ef®cient buildings should provide a thermally comfortable and healthy indoor environment. Most indoor air¯ows involve combined forced and natural convection +mixed convection). In order to simulate the ¯ows accurately and ef®ciently, this paper proposes a two-layer turbulence model for predicting forced, natural and mixed convection. The model combines a near-wall one-equation model [J. Fluid Eng. 115 +1993) 196] and a near-wall natural convection model [Int. J. Heat Mass Transfer 41 +1998) 3161] with the aid of direct numerical simulation +DNS) data [Int. J. Heat Fluid Flow 18 +1997) 88]. # 2001 Published by Elsevier Science B.V. Keywords: Two-layer turbulence model; Low-Reynolds-number +LRN); k±e Model +KEM) 1. Introduction This paper presents a new two-layer turbulence model that performs two tasks: 1.1. Objectives 1. It can accurately predict flows under various conditions, i.e. from purely forced to purely natural convection. This Energy ef®cient buildings should provide a thermally model allows building ventilation designers to use one comfortable and healthy indoor environment. The comfort single model to calculate flows instead of selecting and health parameters in indoor environment include the different turbulence models empirically from many distributions of velocity, air temperature, relative humidity, available models. and contaminant concentrations. These parameters can be 2. -
Chapter 5 Dimensional Analysis and Similarity
Chapter 5 Dimensional Analysis and Similarity Motivation. In this chapter we discuss the planning, presentation, and interpretation of experimental data. We shall try to convince you that such data are best presented in dimensionless form. Experiments which might result in tables of output, or even mul- tiple volumes of tables, might be reduced to a single set of curves—or even a single curve—when suitably nondimensionalized. The technique for doing this is dimensional analysis. Chapter 3 presented gross control-volume balances of mass, momentum, and en- ergy which led to estimates of global parameters: mass flow, force, torque, total heat transfer. Chapter 4 presented infinitesimal balances which led to the basic partial dif- ferential equations of fluid flow and some particular solutions. These two chapters cov- ered analytical techniques, which are limited to fairly simple geometries and well- defined boundary conditions. Probably one-third of fluid-flow problems can be attacked in this analytical or theoretical manner. The other two-thirds of all fluid problems are too complex, both geometrically and physically, to be solved analytically. They must be tested by experiment. Their behav- ior is reported as experimental data. Such data are much more useful if they are ex- pressed in compact, economic form. Graphs are especially useful, since tabulated data cannot be absorbed, nor can the trends and rates of change be observed, by most en- gineering eyes. These are the motivations for dimensional analysis. The technique is traditional in fluid mechanics and is useful in all engineering and physical sciences, with notable uses also seen in the biological and social sciences. -
1.2 Porous Media Flow
Research Collection Doctoral Thesis Experimental and numerical investigation of porous media flow with regard to the emulsion process Author(s): Benedikt Hövekamp, Tobias Publication Date: 2002 Permanent Link: https://doi.org/10.3929/ethz-a-004511272 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH No. 14836 Experimental and Numerical Investigation of Porous Media Flow with regard to the Emulsion Process A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH¨ for the degree of Doctor of Technical Sciences presented by Tobias Benedikt Hov¨ ekamp Dipl.-Ing. born June 18, 1970 citizen of Germany accepted on the recommendation of Prof. Dr.-Ing. E. Windhab, examiner Prof. Dr. K. Feigl, co-examiner. 2002 c 2002 Tobias Hov¨ ekamp Laboratory of Food Process Engineering (ETH Zurich)¨ All rights reserved. Experimental and Numerical Investigation of Porous Media Flow with regard to the Emulsion Process ISBN: 3-905609-17-7 LMVT Volume: 16 Published and distributed by: Laboratory of Food Process Engineering Swiss Federal Institute of Technology (ETH) Zurich¨ ETH Zentrum, LFO CH-8092 Zurich Switzerland http://www.vt.ilw.agrl.ethz.ch Printed in Switzerland by: bokos druck GmbH Badenerstrasse 123a CH-8004 Zurich¨ Rien n’est plus fort qu’une idee´ dont l’heure est venue Victor Hugo To Barbara Danksagung Die vorliegende Dissertation wurde erst durch die Mithilfe und Unterstutzung¨ vieler Men- schen moglich.¨ Gerne mochte¨ ich mich an dieser Stelle bei allen bedanken, die zum Gelingen dieser Arbeit beigetragen haben. -
Entropy Generation in Mhd Flow of Viscoelastic Nanofluids with Homogeneous-Heterogeneous Reaction, Partial Slip and Nonlinear Thermal Radiation
Journal of Thermal Engineering, Vol. 6, No. 3, pp. 327-345, April, 2020 Yildiz Technical University Press, Istanbul, Turkey ENTROPY GENERATION IN MHD FLOW OF VISCOELASTIC NANOFLUIDS WITH HOMOGENEOUS-HETEROGENEOUS REACTION, PARTIAL SLIP AND NONLINEAR THERMAL RADIATION M. Almakki1, H. Mondal2*, P. Sibanda3 ABSTRACT We investigate the combined effects of homogeneous and heterogeneous reactions in the boundary layer flow of a viscoelastic nanofluid over a stretching sheet with nonlinear thermal radiation. The incompressible fluid is electrically conducting with an applied a transverse magnetic field. The conservation equations are solved using the spectral quasi-linearization method. This analysis is carried out in order to enhance the system performance, with the source of entropy generation and the impact of Bejan number on viscoelastic nanofluid due to a partial slip in homogeneous and heterogeneous reactions flow using the spectral quasi-linearization method. Various fluid parameters of interest such as entropy generation, Bejan number, fluid velocity, shear stress heat and mass transfer rates are studied quantitatively, and their behaviors are depicted graphically. A comparison of the entropy generation due to the heat transfer and the fluid friction is made with the help of the Bejan number. Among the findings reported in this study is that the entropy generation has a significant impact in controlling the rate of heat transfer in the boundary layer region. Keywords: Nanofluids, Viscoelastic Fluid, Homogeneous—Heterogeneous Reactions, Nonlinear Thermal Radiation. INTRODUCTION In recent years, nanofluids have attracted a considerable amount of interest due to their novel properties that make them potentially useful in a number of industrial applications including transportation, power generation, micro manufacturing, thermal therapy for cancer treatment, chemical and metallurgical sectors, heating, cooling, ventilation, and air-conditioning. -
Two-Phase Modeling of Granular Sediment for Sheet Flows and Scour
TWO-PHASE MODELING OF GRANULAR SEDIMENT FOR SHEET FLOWS AND SCOUR. A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Laurent Olivier Amoudry January 2008 c 2008 Laurent Olivier Amoudry ALL RIGHTS RESERVED TWO-PHASE MODELING OF GRANULAR SEDIMENT FOR SHEET FLOWS AND SCOUR. Laurent Olivier Amoudry, Ph.D. Cornell University 2008 Even though sediment transport has been studied extensively in the past decades, not all physical processes involved are yet well understood and repre- sented. This results in a modeling deficiency in that few models include complete and detailed descriptions of the necessary physical processes and in that mod- els that do usually focus on the specific case of sheet flows. We seek to address this modeling issue by developing a model that would describe appropriately the physics and would not only focus on sheet flows. To that end, we employ a two-phase approach, for which concentration- weighted averaged equations of motion are solved for a sediment and a fluid phase. The two phases are assumed to only interact through drag forces. The correlations between fluctuating quantities are modeled using the turbulent viscosity and the gradient diffusion hypotheses. The fluid turbulent stresses are calculated using a modified k−ε model that accounts for the two-way particle-turbulence interaction, and the sediment stresses are calculated using a collisional granular flow theory. This approach is used to study three different problems: dilute flow modeling, sheet flows and scouring. In dilute models sediment stresses are neglected. -
The Effects of Vertical and Horizontal Sources on Heat Transfer
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Online University of Wollongong Research Online Faculty of Engineering and Information Faculty of Engineering and Information Sciences - Papers: Part B Sciences 2019 The effects of vertical and horizontal sources on heat transfer and entropy generation in an inclined triangular enclosure filled with non-Newtonian fluid and subjected ot magnetic field Zhixiong Li University of Wollongong, [email protected] Amin Shahsavar Kavian Niazi Abdullah Al-Rashed Pouyan Talebizadehsardari Follow this and additional works at: https://ro.uow.edu.au/eispapers1 Part of the Engineering Commons, and the Science and Technology Studies Commons Recommended Citation Li, Zhixiong; Shahsavar, Amin; Niazi, Kavian; Al-Rashed, Abdullah; and Talebizadehsardari, Pouyan, "The effects of vertical and horizontal sources on heat transfer and entropy generation in an inclined triangular enclosure filled with non-Newtonian fluid and subjected ot magnetic field" (2019). Faculty of Engineering and Information Sciences - Papers: Part B. 3789. https://ro.uow.edu.au/eispapers1/3789 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] The effects of vertical and horizontal sources on heat transfer and entropy generation in an inclined triangular enclosure filled with non-Newtonian fluid and subjected to magnetic field Abstract 2019 Elsevier B.V. Natural convection and entropy generation of a power-law non-Newtonian fluid in a tilted triangular enclosure subjected to a magnetic field was investigated. A part of the enclosure's right or left wall is at a high temperature while the top wall is cold. -
Electrohydrodynamic Settling of Drop in Uniform Electric Field at Low and Moderate Reynolds Numbers
Electrohydrodynamic settling of drop in uniform electric field at low and moderate Reynolds numbers Nalinikanta Behera1, Shubhadeep Mandal2 and Suman Chakraborty1,a 1Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur,West Bengal- 721302, India 2Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 G¨ottingen, Germany Dynamics of a liquid drop falling through a quiescent medium of another liquid is investigated in external uniform electric field. The electrohydrodynamics of a drop is governed by inherent deformability of the drop (defined by capillary number), the electric field strength (defined by Masson number) and the surface charge convection (quantified by electric Reynolds number). Surface charge convection generates nonlinearilty in a electrohydrodynamics problem by coupling the electric field and flow field. In Stokes limit, most existing theoretical models either considered weak charge convection or weak electric field to solve the problem. In the present work, gravitational settling of the drop is investigated analytically and numerically in Stokes limit considering significant electric field strength and surface charge convection. Drop deformation accurate upto higher order is calculated analytically in small deformation regime. Our theoretical results show excellent agreement with the numerical and shows improvement over previous theoretical models. For drops falling with moderate Reynolds number, the effect of Masson number on transient drop dynamics is studied for (i) perfect dielectric drop in perfect dielectric medium (ii) leaky dielectric drop in the leaky dielectric medium. For the latter case transient deformation and velocity obtained for significant charge convection is compared with that of absence in charge convection which is the novelty of our study.