The Biology of Brassica Napus L. (Canola)

Total Page:16

File Type:pdf, Size:1020Kb

The Biology of Brassica Napus L. (Canola) The Biology of Brassica napus L. (canola) Version 2.1: August 2011 This document provides an overview of baseline biological information relevant to risk assessment of genetically modified forms of the species that may be released into the Australian environment. Cover photo courtesy of Brian Weir. Version 2 (February 2008) has been updated to include an appendix containing a weed risk assessment of canola and the sexually compatible species Indian mustard based on the National Post-Border Weed Risk Management Protocol. References to the new appendix have been added in the text. For information on the Australian Government Office of the Gene Technology Regulator visit <http://www.ogtr.gov.au> ii BIOLOGY OF BRASSICA NAPUS L. (CANOLA) Office of the Gene Technology Regulator TABLE OF CONTENTS Preamble ..........................................................................................................................................1 Section 1 Taxonomy........................................................................................................................1 Section 2 Origin and cultivation ....................................................................................................2 2.1 Centre of diversity and domestication.............................................................................2 2.2 Commercial uses .............................................................................................................3 2.3 Cultivation in Australia...................................................................................................3 2.3.1 Commercial propagation.............................................................................3 2.3.2 Scale of cultivation ......................................................................................4 2.3.3 Potential for expansion of the Canola growing region ...............................5 2.3.4 Cultivation practices ...................................................................................7 2.4 Crop Improvement ..........................................................................................................8 2.4.1 Breeding ......................................................................................................9 2.4.2 Genetic modification .................................................................................11 Section 3 Morphology...................................................................................................................13 3.1 Plant morphology..........................................................................................................13 3.2 Reproductive morphology.............................................................................................13 SECTION 4 DEVELOPMENT...............................................................................................................13 4.1 Reproduction.................................................................................................................13 4.2 Pollination and pollen dispersal ....................................................................................13 4.2.1 Pollen characteristics................................................................................13 4.2.2 Pollen movement .......................................................................................14 4.2.3 Pollen viability ..........................................................................................15 4.3 Fruit/seed development and seed dispersal ...................................................................16 4.3.1 Fruit and seed development.......................................................................16 4.3.2 Seed dispersal............................................................................................16 4.4 Seed dormancy and germination...................................................................................18 4.4.1 Viability/germination.................................................................................18 4.4.2 Dormancy..................................................................................................18 4.4.3 Seed banks/persistence ..............................................................................19 4.5 Vegetative growth .........................................................................................................21 Section 5 Biochemistry.................................................................................................................21 5.1 Toxins ..........................................................................................................................21 5.2 Allergens .......................................................................................................................22 5.3 Other undesirable effects of phytochemicals ................................................................23 5.4 Beneficial phytochemicals ............................................................................................23 Section 6 Abiotic Interactions ......................................................................................................25 6.1 Abiotic stresses .............................................................................................................25 6.1.1 Nutrient stress............................................................................................25 6.1.2 Temperature stress ....................................................................................25 6.1.3 Water stress ...............................................................................................26 Section 7 Biotic Interactions.........................................................................................................26 7.1 Weeds............................................................................................................................26 7.2 Pests and pathogens.......................................................................................................26 7.2.1 Pests ..........................................................................................................26 7.2.2 Diseases.....................................................................................................26 Section 8 Weediness ......................................................................................................................27 8.1 Weediness status on a global scale................................................................................27 8.2 Weediness status in Australia........................................................................................28 8.2.1 Cultivated areas ........................................................................................28 8.2.2 Non-cropped disturbed habitats ................................................................28 8.2.3 Undisturbed natural habitats.....................................................................29 8.3 Control measures...........................................................................................................29 8.4 Weed risk assessment of canola....................................................................................30 Section 9 Potential for Vertical Gene Transfer ..........................................................................30 9.1 Intraspecific crossing ....................................................................................................30 9.2 Interspecific crossing ....................................................................................................32 9.2.1 Brassica rapa ............................................................................................35 9.2.2 Brassica juncea .........................................................................................37 iii BIOLOGY OF BRASSICA NAPUS L. (CANOLA) Office of the Gene Technology Regulator 9.2.3 Brassica oleracea ......................................................................................38 9.3 Intergeneric crossing .....................................................................................................38 9.3.1 Tribe Brassiceae species ...........................................................................38 9.3.2 Other plant species....................................................................................43 References ........................................................................................................................................45 Appendix 1 Weed Risk Assessment....................................................................................................62 iv BIOLOGY OF BRASSICA NAPUS L. (CANOLA) Office of the Gene Technology Regulator PREAMBLE This document describes the biology of canola (Brassica napus L.) with particular reference to the Australian environment, cultivation and use. Information included relates to the taxonomy and origins of cultivated B. napus, general descriptions of its morphology, reproductive biology, biochemistry, and biotic and abiotic interactions. This document also addresses the potential for gene transfer to occur to closely related species. The purpose of this document is to provide baseline information about the parent organism for use in risk assessments of genetically modified canola that may be released into the Australian environment. The term ‘canola’ refers to those varieties1 that meet specific standards on the level of erucic acid and glucosinolates. The word
Recommended publications
  • Nomenclatural Notes on Cruciferae Номенклатурные
    Turczaninowia 22 (4): 210–219 (2019) ISSN 1560–7259 (print edition) DOI: 10.14258/turczaninowia.22.4.18 TURCZANINOWIA http://turczaninowia.asu.ru ISSN 1560–7267 (online edition) УДК 582.683.2:581.961 Nomenclatural notes on Cruciferae D. A. German1, 2 1 South-Siberian Botanical Garden, Altai State University, Lenina Ave., 61, Barnaul, 656049, Russian Federation 2 Department of Biodiversity and Plant Systematics, Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 345; Heidelberg, D-69120, Germany E-mail: [email protected] Keywords: Arabidopsis, Brassicaceae, Dvorakia, Erophila, Eunomia, new combination, Noccaea, Peltariopsis, Pseu- docamelina, taxonomy, typification, validation. Summary. A generic name Dvorakia and combinations Arabidopsis amurensis, A. media, A. multijuga, A. sep- tentrionalis, Dvorakia alaica, D. alyssifolia, Erophila acutidentata, E. aquisgranensis, E. kohlscheidensis, and E. strigosula are validated. Places of valid publication and (except for the first combination) authorship forErysimum krynitzkii, Eunomia bourgaei, E. rubescens, Pseudocamelina aphragmodes, P. campylopoda, and Thlaspi hastulatum are corrected. For Pseudocamelina and Peltariopsis, information on the types is clarified. Some further minor nomen- clatural items are commented. Номенклатурные заметки о крестоцветных (Cruciferae) Д. А. Герман1, 2 1 Южно-Сибирский ботанический сад, Алтайский государственный университет, просп. Ленина, 61, г. Барнаул, 656049, Россия 2 Кафедра биоразнообразия и систематики растений, Центр исследований организмов, Гейдельбергский университет, Им Нойенхаймер Фельд, 345, Гейдельберг, D-69120, Германия Ключевые слова: действительное обнародование, новая комбинация, систематика, типификация, Arabidopsis, Brassicaceae, Dvorakia, Erophila, Eunomia, Noccaea, Peltariopsis, Pseudocamelina. Аннотация. Обнародовано родовое название Dvorakia, а также комбинации Arabidopsis amurensis, A. media, A. multijuga, A. septentrionalis, Dvorakia alaica, D. alyssifolia, Erophila acutidentata, E. aquisgranensis, E. kohlscheidensis и E.
    [Show full text]
  • Final Report
    FINAL REPORT Integrated spatial models of non-native plant invasion, fire risk, and wildlife habitat to support conservation of military and adjacent lands in the arid Southwest SERDP Project RC-1722 DECEMBER 2015 Brett G. Dickson, PhD Thomas D. Sisk, PhD Steven E. Sesnie, PhD Bethany A. Bradley, PhD Northern Arizona University Landscape Conservation Initiative School of Earth Sciences and Environmental Sustainability Distribution Statement A This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
    [Show full text]
  • Induced Polyploidization in Brassica Fruticulosa - a Wild Relative of Brassicas As Potential Source for Mustard Aphid Tolerance Arun Kumar* , Prashant Yadav
    ISSN. 0972 - 8406 The NEHU Journal Vol. XVIII, No.2, July - December 2020, pp. 1-11 Induced polyploidization in Brassica fruticulosa - a wild relative of Brassicas as potential source for mustard aphid tolerance Arun Kumar* , Prashant Yadav Directorate of Rapeseed-Mustard Research, Bharatpur -321 303, Rajasthan *Corresponding author e-mail: [email protected] Abstract Polyploidy is an important source for acquiring new genetic recombination and creating genetic uniqueness in plants. Ploidy manipulation is generally associated with the obtainment of some increased enviable traits of the plants as well as also provides them greater adaptability to various biotic and abiotic stresses as compared to its diploids counterparts. In the present study, successful induction of autotetraploidy has been achieved through seedling treatment of colchicine in B. fruticulosa Cyr. subsp. fruticulosa (2n = 16 FF), a wild relative of cultivated brassicas. The diploid seedlings of B. fruticulosa were treated with different concentrations of aqueous colchicine using the cotton-swab method for 8 -12 hours for 2-3 days. The highest percentage of success was recorded in when the seedlings were treated with 0.2% cochicine for eight hours within two days. The synthesized plant showed remarkable enhancement in several morphological and floral characters making more robust. Induced tetraploid was cytologically distinguished from diploid by the occurrence of 32 chromosomes at diakinesis/metaphase-I with different combinations of univalent, bivalents and multivalent in the form of trivalents and quadrivalents. The anaphase I and II disjunction of bivalents/chromosomes was leading more or less regularly and equally to the formation of seeds from the synthesized plants.
    [Show full text]
  • Nested Whole-Genome Duplications Coincide with Diversification And
    ARTICLE https://doi.org/10.1038/s41467-020-17605-7 OPEN Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae Nora Walden 1,7, Dmitry A. German 1,5,7, Eva M. Wolf 1,7, Markus Kiefer 1, Philippe Rigault 1,2, Xiao-Chen Huang 1,6, Christiane Kiefer 1, Roswitha Schmickl3, Andreas Franzke 1, Barbara Neuffer4, ✉ Klaus Mummenhoff4 & Marcus A. Koch 1 1234567890():,; Angiosperms have become the dominant terrestrial plant group by diversifying for ~145 million years into a broad range of environments. During the course of evolution, numerous morphological innovations arose, often preceded by whole genome duplications (WGD). The mustard family (Brassicaceae), a successful angiosperm clade with ~4000 species, has been diversifying into many evolutionary lineages for more than 30 million years. Here we develop a species inventory, analyze morphological variation, and present a maternal, plastome-based genus-level phylogeny. We show that increased morphological disparity, despite an apparent absence of clade-specific morphological innovations, is found in tribes with WGDs or diversification rate shifts. Both are important processes in Brassicaceae, resulting in an overall high net diversification rate. Character states show frequent and independent gain and loss, and form varying combinations. Therefore, Brassicaceae pave the way to concepts of phy- logenetic genome-wide association studies to analyze the evolution of morphological form and function. 1 Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany. 2 GYDLE, 1135 Grande Allée Ouest, Québec, QC G1S 1E7, Canada. 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic.
    [Show full text]
  • Honey and Pollen Flora of SE Australia Species
    List of families - genus/species Page Acanthaceae ........................................................................................................................................................................34 Avicennia marina grey mangrove 34 Aizoaceae ............................................................................................................................................................................... 35 Mesembryanthemum crystallinum ice plant 35 Alliaceae ................................................................................................................................................................................... 36 Allium cepa onions 36 Amaranthaceae ..................................................................................................................................................................37 Ptilotus species foxtails 37 Anacardiaceae ................................................................................................................................................................... 38 Schinus molle var areira pepper tree 38 Schinus terebinthifolius Brazilian pepper tree 39 Apiaceae .................................................................................................................................................................................. 40 Daucus carota carrot 40 Foeniculum vulgare fennel 41 Araliaceae ................................................................................................................................................................................42
    [Show full text]
  • Brassica Tournefortii
    Orange County Chapter occnps.org California Native Plant Society ! HAVE YOU SEEN THIS PLANT? It is an Emergent Invasive in Orange County SAHARA MUSTARD Brassica tournefortii Known OC sites & Status Updates Distribution map & info: • calflora.org/cgi-bin/species_query.cgi? where-calrecnum=1146 • cal-ipc.org/ip/management/plant_profiles/ Brassica_tournefortii.php Can be confused with: Sahara Mustard is a fast-germinating, • Shortpod (aka Summer) Mustard, fast-growing annual, flowering and fruiting Hirschfeldia incana from January to June. Petals are small, • London Rocket, Sisymbrium irio Flowering stems grow up to 2.5 ft. from a basal pale yellow; sepals often purplish. • Field Mustard, Brassica nigra rosette. The plants can flower & set seed when just a few inches high. Basal leave are rough to the touch, pinnately lobed, each lobe with many teeth. Orange County Chapter occnps.org California Native Plant Society ! SAHARA MUSTARD, P. 2 Short-pod Mustard, London Rocket & Seeds are produced in pod-like fruits (siliques) Field Mustard (not shown) are also that, when ripe & dry, explosively open invasives, but much more widespread lengthwise & scatter the seeds. Seed is in OC than is Sahara Mustard. viable for about 4 years. Stems & fruits often form into an intertwined, rounded mass. • Sahara Mustard (left): fruits are long & narrow with long, distinct pedicels & beaks, held out from the stem IF YOU SEE THIS PLANT AT A SITE THAT’S NOT ON THE LIST: below the flowers. • Record the plant’s location as exactly as you can (GPS coordinates if possible), the • Shortpod Mustard, (center): fruits date you saw it, and an estimate of how many there were.
    [Show full text]
  • The Evolutionary Dynamics of Genes and Genomes: Copy Number Variation of the Chalcone Synthase Gene in the Context of Brassicaceae Evolution
    The Evolutionary Dynamics of Genes and Genomes: Copy Number Variation of the Chalcone Synthase Gene in the Context of Brassicaceae Evolution Dissertation submitted to the Combined Faculties for Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Liza Paola Ding born in Mosbach, Baden-Württemberg, Germany Oral examination: 22.12.2014 Referees: Prof. Dr. Marcus A. Koch Prof. Dr. Claudia Erbar Table of contents INTRODUCTION ............................................................................................................. 18 1 THE MUSTARD FAMILY ....................................................................................... 19 2 THE TRIBAL SYSTEM OF THE BRASSICACEAE ........................................... 22 3 CHALCONE SYNTHASE ........................................................................................ 23 PART 1: TROUBLE WITH THE OUTGROUP............................................................ 27 4 MATERIAL AND METHODS ................................................................................. 28 4.1 Experimental set-up ......................................................................................................................... 28 4.1.1 Plant material and data composition .............................................................................................. 28 4.1.2 DNA extraction and PCR amplification ........................................................................................
    [Show full text]
  • Brassica Tournefortii H M L Brassicaceae Impact Risk Level African / Sahara Mustard BRTO
    Brassica tournefortii H M L Brassicaceae impact risk level African / Sahara mustard BRTO K EY CHARA C TERISTI C S growth Annual herb with stem 10-100 cm fruit Fruiting pedicels widely diverging high. from stem, lower pedicels 6-22 mm long. flower Flowers light yellow, 4 petals, 6mm wide, racemes with 6-20 flowers. Capsule, linear, rounded, slightly Will flower and fruit as early as De- constricted between seeds; 3-7cm cember or January, setting seed by long, 2-3 mm wide, glabrous; beaks February. In fruit or dead by April. stout, 1.0-1.5 cm long, cylindrical, Inflorescence subtended by only confluent with capsule, apex as wide small bracts. as stigma; seeds uniseriate. Branching stems +/- from base, stems TNC more so above. Hairs on lower stem are stiff and white. fireflyforest.com leaves Usually in basal rosette. Stem leaves decrease in size from base upwards. Basal leaves 7.5-30 cm long, deeply lobed with serrate edges. Lobes also toothed, margins prickly hairy. seeds Rounded, finely reticulate, brown to brown-purple; approximately 1 mm diameter; sticky when wet. ©J. Randall TNC SODN Elevation: Ecotypes Invaded: Up to 7200 feet Dunes, desertlands & riparian areas. EC OLOGY & SUITABLE HABITAT D ISTRIBUTION Note: basal rosette of leaves with deep Found in diverse natural and lobing; profusely disturbed habitats at low eleva- branched stems above; flowers in tions in S Arizona, NW Sonora, racemes. and SE California. Common in disturbed sites, roadsides and abandoned fields fireflyforest.com and southwestern deserts. Also found in sandy soils, gravelly washes, low dunes, sandy alka- line troughs and rocky slopes.
    [Show full text]
  • Auto-Taxonomy of Brassica Tournefortii Gouan
    Bangladesh J. Plant Taxon. 27(2): 233-250, 2020 (December) © 2020 Bangladesh Association of Plant Taxonomists AUTO-TAXONOMY OF BRASSICA TOURNEFORTII GOUAN. (BRASSICACEAE) IN EGYPT 1 ASMAA ABDELHAMEED, WAFAA AMER , WALAA HASSAN* AND AYMAN ABOELLIL Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt Keywords: Brassicaceae; Forms; ISSR; Pollen grains; SEM. Abstract Brassica tournefortii Gouan. (family Brassicaceae) is one of the five species in the Egyptian flora. Its populations showed notable morpho-plasticity with taxonomic debates, which were not yet resolved. The current study was carried out to assess the species morpho-plasticity and its molecular identity based on ISSR. The study was applied to 27 herbarium and fresh populations, representing all the species distribution ranges in Egypt. The taxonomic revision included 70 morphological characters, revealed five distinct Forms (1-5), radical leaf, and fruit provided the major distinguishable traits among the studied 70 morphological characters based on them the morphologic key is provided to delimit these forms. The pollen grain features using SEM are a pioneer at the infra-specific level, two shapes observed the subprolate (Forms 1& 3) and prolate (Forms 2, 4 & 5). Furthermore, the exine micro-features possess taxonomic value at the infra- specific level. The cluster analysis based on ISSR data revealed two clusters congruent to those developed by morphological and pollen traits. The ISSR results indicated that the species morpho-plasticity is genetically controlled. The study highlights the importance of the multidisciplinary approach to assess the taxonomic identity at the infra-specific level, for the auto-taxonomy of morpho-plastic species.
    [Show full text]
  • London Rocket Tech Bulletin – ND
    4/6/2020 London Rocket London Rocket Sisymbrium irio L. Family: Brassicaceae. Names: Sisymbrium was the Greek name of a fragrant herb. London Rocket. Summary: An erect, annual, many branched plant, with deeply lobed leaves that does not form a rosette. It has clusters of small, 4-petalled, yellow flowers in late winter to spring on the tops of stems that form long (25-110 mm), narrow seed pods that may be slightly curved. Description: Cotyledons: Two. Club shaped, Tip rounded. Sides convex. Base tapered. Surface hairless. Petiole longer than the blade. First Leaves: Club shaped, paired. The first pair have rounded tips and smooth edges. The second pair have pointed tips and toothed edges. Hairless or a few hairs. Leaves: Alternate. Does not form a rosette. Stipules - None. Petiole - On lower leaves. Blade - 30-160 mm long x 13-70 mm wide, triangular in outline, deeply lobed or serrated or toothed (usually 2-6 pairs), lobes are usually toothed, end lobe is pointed and larger than the side lobes. The side lobes usually point towards the base of the leaf. Tip pointed. Smooth and hairless or a few scattered hairs. Stem leaves - Alternate. Similar to rosette leaves but not as lobed or unlobed, sometimes arrow shaped. Hairless or small hairs. Stems: Slender, erect, round, up to 1000 mm tall. Often with slender, curved, simple hairs near the base, usually hairless near the top. Usually much branched from the base with spreading stems. Flower head: www.herbiguide.com.au/Descriptions/hg_London_Rocket.htm 1/8 4/6/2020 London Rocket Flowers are in clusters at the top of the stem which then elongates as the fruits mature underneath.
    [Show full text]
  • The Common Weeds of Grain Cropping – the Ute Guide
    Title: Common Weeds of Grain Cropping: The Ute Guide Authors: Andrew Storrie (Agronomo), Penny Heuston (Heuston Agronomy Services) and Jason Emms (GRDC) Acknowledgements: The GRDC would like to thank all the various individuals (who have been acknowledged with their photos) who provided images for use in this guide. ISBN: 978-1-922342-02-7 (print) 978-1-922342-03-4 (online) Published: April 2020 Copyright: © 2020 Grains Research and Development Corporation. All rights reserved. GRDC contact details: Ms Maureen Cribb Integrated Publications Manager, PO Box 5367, KINGSTON ACT 2604 Email: [email protected] Design and production: Coretext, www.coretext.com.au Cover: Caltrop Photo: Jason Emms (GRDC) Disclaimer: Any recommendations, suggestions or opinions contained in this publication do not necessarily represent the policy or views of the Grains Research and Development Corporation. No person should act on the basis of the contents of this publication without first obtaining specific, independent professional advice. GRDC will not be liable for any loss, damage, cost or expense incurred or arising by reason of any person using or relying on the information in this publication. Copyright © All material published in this guide is copyright protected and may not be reproduced in any form without written permission from GRDC. WE WANT YOUR FEEDBACK We’re looking for ways to improve our products and services and would like to know what you think of the Common Weeds of Grain Cropping: The Ute Guide. Complete a short five-minute online survey to tell us what you think. www.grdc.com.au/weedsuteguide grdc.com.au 3 CONTENTS grdc.com.au 4 Purpose of this guide ...........................................................
    [Show full text]
  • Native Species
    Birdlife Australia Gluepot Reserve PLANT SPECIES LIST These are species recorded by various observers. Species in bold have been vouchered. The list is being continually updated NATIVE SPECIES Species name Common name Acacia acanthoclada Harrow Wattle Acacia aneura Mulga Acacia brachybotrya Grey Mulga Acacia colletioides Wait a While Acacia hakeoides Hakea leaved Wattle Acacia halliana Hall’s Wattle Acacia ligulata Sandhill Wattle Acacia nyssophylla Prickly Wattle Acacia oswaldii Boomerang Bush Acacia rigens Needle Wattle Acacia sclerophylla var. sclerophylla Hard Leaved Wattle Acacia wilhelmiana Wilhelm’s Wattle Actinobole uliginosum Flannel Cudweed Alectryon oleifolius ssp. canescens Bullock Bush Amphipogon caricinus Long Grey Beard Grass Amyema miquelii Box Mistletoe Amyema miraculosa ssp. boormanii Fleshy Mistletoe Amyema preissii Wire Leaved Acacia Mistletoe Angianthus tomentosus Hairy Cup Flower Atriplex acutibractea Pointed Salt Bush Atriplex rhagodioides Spade Leaved Salt Bush Atriplex stipitata Bitter Salt Bush Atriplex vesicaria Bladder Salt Bush Austrodanthonia caespitosa Wallaby Grass Austrodanthonia pilosa Wallaby Grass Austrostipa elegantissima Elegant Spear Grass Austrostipa hemipogon Half Beard Spear grass Austrostipa nitida Balcarra Spear grass Austrostipa scabra ssp. falcata Rough Spear Grass Austrostipa scabra ssp. scabra Rough Spear Grass Austrostipa tuckeri Tucker’s Spear grass Baeckea crassifolia Desert Baeckea Baeckea ericaea Mat baeckea Bertya tasmanica ssp vestita Mitchell’s Bertya Beyeria lechenaultii Mallefowl
    [Show full text]