IVG Forest Conservation Report 2B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Global Assessment of Parasite Diversity in Galaxiid Fishes
diversity Article A Global Assessment of Parasite Diversity in Galaxiid Fishes Rachel A. Paterson 1,*, Gustavo P. Viozzi 2, Carlos A. Rauque 2, Verónica R. Flores 2 and Robert Poulin 3 1 The Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, 7485 Trondheim, Norway 2 Laboratorio de Parasitología, INIBIOMA, CONICET—Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche 8400, Argentina; [email protected] (G.P.V.); [email protected] (C.A.R.); veronicaroxanafl[email protected] (V.R.F.) 3 Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +47-481-37-867 Abstract: Free-living species often receive greater conservation attention than the parasites they support, with parasite conservation often being hindered by a lack of parasite biodiversity knowl- edge. This study aimed to determine the current state of knowledge regarding parasites of the Southern Hemisphere freshwater fish family Galaxiidae, in order to identify knowledge gaps to focus future research attention. Specifically, we assessed how galaxiid–parasite knowledge differs among geographic regions in relation to research effort (i.e., number of studies or fish individuals examined, extent of tissue examination, taxonomic resolution), in addition to ecological traits known to influ- ence parasite richness. To date, ~50% of galaxiid species have been examined for parasites, though the majority of studies have focused on single parasite taxa rather than assessing the full diversity of macro- and microparasites. The highest number of parasites were observed from Argentinean galaxiids, and studies in all geographic regions were biased towards the highly abundant and most widely distributed galaxiid species, Galaxias maculatus. -
Phrantela Iredale, 1943
Phrantela Iredale, 1943 Diagnostic features Shell pupiform to conic to trochiform, small to medium size for family (between about 1.7 and 7.0 mm in maximum dimension). Periostracum thin to well developed, colourless to dark brown. Teleoconch sculpture usually of faint, prosocline growth lines, weak spiral threads sometimes present; periphery of last whorl usually evenly rounded, sometimes subangled, rarely sharply angled. Aperture ovate, inner lip thin and narrow, columellar swelling typically absent (weakly developed in one taxon). Outer lip thin, slightly opisthocline to prosocline. Umbilicus wide to small, or closed and represented by chink. Operculum oval, thin, transparent pale yellow, simple, with eccentric nucleus. Bursa copulatrix in the female genital system reaches to the posterior pallial wall [or (rarely) almost reaches it or extends into the pallial roof] and has the duct emerging from the ventro-posterior comer. This is one of the main anatomical features that distinguishes this taxon from Beddomeia. The pallial genital ducts in both males and females are thinner in section than in Beddomeia and the female genital opening is typically slit-like, rather than a short, pore-like opening. Generally a posterior pallial tentacle is present. Classification Class Gastropoda Infraclass Caenogastropoda Order Littorinida Suborder Rissoidina Superfamily Truncatelloidea Family Tateidae Genus Phrantela redale, 1943 Type species: Potamopyrgus (?) marginata Petterd, 1889 by original designation. Original reference: redale, T. (1943). A basic list of the fresh water Mollusca of Australia. The Australian Zoologist 10: 188ĕ230. Type locality: A small trickling stream near Heazlewood River, Tasmania Biology and ecology n rivers, streams and seeps, and under small waterfalls. -
Creating Jobs, Protecting Forests?
Creating Jobs, Protecting Forests? An Analysis of the State of the Nation’s Regional Forest Agreements Creating Jobs, Protecting Forests? An Analysis of the State of the Nation’s Regional Forest Agreements The Wilderness Society. 2020, Creating Jobs, Protecting Forests? The State of the Nation’s RFAs, The Wilderness Society, Melbourne, Australia Table of contents 4 Executive summary Printed on 100% recycled post-consumer waste paper 5 Key findings 6 Recommendations Copyright The Wilderness Society Ltd 7 List of abbreviations All material presented in this publication is protected by copyright. 8 Introduction First published September 2020. 9 1. Background and legal status 12 2. Success of the RFAs in achieving key outcomes Contact: [email protected] | 1800 030 641 | www.wilderness.org.au 12 2.1 Comprehensive, Adequate, Representative Reserve system 13 2.1.1 Design of the CAR Reserve System Cover image: Yarra Ranges, Victoria | mitchgreenphotos.com 14 2.1.2 Implementation of the CAR Reserve System 15 2.1.3 Management of the CAR Reserve System 16 2.2 Ecologically Sustainable Forest Management 16 2.2.1 Maintaining biodiversity 20 2.2.2 Contributing factors to biodiversity decline 21 2.3 Security for industry 22 2.3.1 Volume of logs harvested 25 2.3.2 Employment 25 2.3.3 Growth in the plantation sector of Australia’s wood products industry 27 2.3.4 Factors contributing to industry decline 28 2.4 Regard to relevant research and projects 28 2.5 Reviews 32 3. Ability of the RFAs to meet intended outcomes into the future 32 3.1 Climate change 32 3.1.1 The role of forests in climate change mitigation 32 3.1.2 Climate change impacts on conservation and native forestry 33 3.2 Biodiversity loss/resource decline 33 3.2.1 Altered fire regimes 34 3.2.2 Disease 35 3.2.3 Pest species 35 3.3 Competing forest uses and values 35 3.3.1 Water 35 3.3.2 Carbon credits 36 3.4 Changing industries, markets and societies 36 3.5 International and national agreements 37 3.6 Legal concerns 37 3.7 Findings 38 4. -
Phrantela Marginata (Petterd, 1889)
Phrantela marginata (Petterd, 1889) Diagnostic features The shell of P. marginata is narrower than nearly all other species and has a relativelysmaller last whorl than any other species.This species is generally similar to P. annamurrayae and P. conica [1] [2] which all have a long, narrow penis with a narrow base and an undulating penial duct. Phrantela marginata (adult size 3.2-4 mm) Distribution of Phrantela marginata. Classification Phrantela marginata (Petterd, 1889) Class Gastropoda I nfraclass Caenogastropoda Order Littorinida Suborder Rissoidina Superfamily Truncatelloidea Family Tateidae Genus Phrantela redale, 1943 Original name: Potamopyrgus (?) marginata Petterd, 1889. Petterd, W. F. (1889). Contributions for a systematic catalogue of the aquatic shells of Tasmania. Papers and Proceedings of the Royal Society of Tasmania 1888, 60-83. Type locality: A small stream near Heazlewood River, Tasmania. Biology and ecology This species lives mainly amongst aquatic vegetation, it is also found in root mats in the bed of a small trickle. Egg capsules unknown but probably like those of another species of Phrantela; small, with single embryo, and covered in coarse sand grains. Development direct. Distribution This species is known from a few localities in a small area along Thirteen Mile Creek, a tributary of the Heazlewood River, northwest Tasmania. Notes This species is on the Tasmanian Threatened species list of nvertebrate Animals as Rare (small population at risk). Further reading Petterd, W. F. (1889). Contributions for a systematic catalogue of the aquatic shells of Tasmania. Papers and Proceedings of the Royal Society of Tasmania 1888: 60-83. Ponder, W. F., Clark, G. A., Miller, A. -
Bogotá - Colombia
ISSN 0370-3908 ISSN 2382-4980 (En linea) Academia Colombiana de Ciencias Exactas, Físicas y Naturales Vol. 40 • Número 156 • Págs. 375-542 · Julio - Septiembre de 2016 · Bogotá - Colombia Comité editorial Editora Elizabeth Castañeda, Ph. D. Instituto Nacional de Salud, Bogotá, Colombia Editores asociados Ciencias biomédicas María Elena Gómez, Doctor Luis Fernando García, M.D., M.Sc. Universidad del Valle, Cali, Colombia Universidad de Antioquia, Medellin, Colombia Gabriel Téllez, Ph. D. Felipe Guhl, M. Sc. Universidad de los Andes, Bogotá, Colombia Universidad de los Andes, Bogotá, Colombia Álvaro Luis Morales Aramburo, Ph. D. Leonardo Puerta Llerena, Ph. D. Universidad de Antioquia, Medellin, Colombia Universidad de Cartagena, Cartagena, Colombia Germán A. Pérez Alcázar, Ph. D. Gustavo Adolfo Vallejo, Ph. D. Universidad del Valle, Cali, Colombia Universidad del Tolima, Ibagué, Colombia Enrique Vera López, Dr. rer. nat. Luis Caraballo, M.D., M.Sc. Universidad Politécnica, Tunja, Colombia Universidad de Cartagena, Colombia Jairo Roa-Rojas, Ph. D. Eduardo Alberto Egea Bermejo, M.D., M.Sc. Universidad Nacional de Colombia, Universidad del Norte, Bogotá, Colombia Barranquilla, Colombia Rafael Baquero, Ph. D. Ciencias físicas Cinvestav, México Bernardo Gómez, Ph. D. Ángela Stella Camacho Beltrán, Dr. rer. nat. Departamento de Física, Departamento de Física, Universidad de los Andes, Bogotá, Colombia Universidad de los Andes, Bogotá, Colombia Rubén Antonio Vargas Zapata, Ph. D. Hernando Ariza Calderón, Doctor Universidad del Valle, Universidad del Quindío, Cali, Colombia Armenia, Colombia Pedro Fernández de Córdoba, Ph. D. Ciencias químicas Universidad Politécnica de Valencia, España Sonia Moreno Guaqueta, Ph. D. Diógenes Campos Romero, Dr. rer. nat. Universidad Nacional de Colombia, Universidad Nacional de Colombia, Bogotá, Colombia Bogotá, Colombia Fanor Mondragón, Ph. -
Table 7: Species Changing IUCN Red List Status (2018-2019)
IUCN Red List version 2019-3: Table 7 Last Updated: 10 December 2019 Table 7: Species changing IUCN Red List Status (2018-2019) Published listings of a species' status may change for a variety of reasons (genuine improvement or deterioration in status; new information being available that was not known at the time of the previous assessment; taxonomic changes; corrections to mistakes made in previous assessments, etc. To help Red List users interpret the changes between the Red List updates, a summary of species that have changed category between 2018 (IUCN Red List version 2018-2) and 2019 (IUCN Red List version 2019-3) and the reasons for these changes is provided in the table below. IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered [CR(PE) - Critically Endangered (Possibly Extinct), CR(PEW) - Critically Endangered (Possibly Extinct in the Wild)], EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). Reasons for change: G - Genuine status change (genuine improvement or deterioration in the species' status); N - Non-genuine status change (i.e., status changes due to new information, improved knowledge of the criteria, incorrect data used previously, taxonomic revision, etc.); E - Previous listing was an Error. IUCN Red List IUCN Red Reason for Red List Scientific name Common name (2018) List (2019) change version Category -
The Galaxiid Fishes of Australia (Pisces: Galaxiidae)
THE GALAXIID FISHES OF AUSTRALIA (PISCES: GALAXIIDAE) R. M. McDoWALL, Fisheries Research Division, Ministry of Agriculture and Fisheries, Christchurch, New Zealand and R. S. FRANKENBERG, Department of Zoology, University of Melbourne, Melbourne, Victoria, Australia* *Present address: "Warrangee", Howlong, New South Wales 2640 Australia. CONTENTS INTRODUCTION ................................................... , ......................................444 Material examined ........................................................................................447 Systematics ..................................................................................................449 KEY TO AUSTRALIAN GENERA OF GALAXIIDAE ............................................... .455 Genus Galaxias Cuvier ...................................................................................455 KEY TO AUSTRALIAN SPECIES OF GALAXIAS ................................................... .455 Galaxias brevipinnis Gunther ......................................................................... .456 Galaxias olidus Gunther ................................................................................ .469 Galaxias johnstoni Scott ................................................................................ .489 Galaxias pedderensis Frankenberg .................................................................. .493 Galaxias fontanus Fulton ............................................................................... .498 Galaxias truttaceus Valenciennes .....................................................................501 -
Conservation Advice Galaxias Johnstoni Clarence Galaxias
THREATENED SPECIES SCIENTIFIC COMMITTEE Established under the Environment Protection and Biodiversity Conservation Act 1999 The Minister’s delegate approved this Conservation Advice on 16/12/2016 . Conservation Advice Galaxias johnstoni Clarence galaxias Conservation Status Galaxias johnstoni (Clarence galaxias) is listed as Endangered under the Environment Protection and Biodiversity Conservation Act 1999 (Cwlth) (EPBC Act) effective from 16 July 2000. The species was eligible for listing under the EPBC Act as on 16 July 2000 it was listed as Endangered under Schedule 1 of the preceding Act, the Endangered Species Protection Act 1992 (Cwlth). Species can also be listed as threatened under state and territory legislation. For information on the current listing status of this species under relevant state or territory legislation, see http://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl . The main factors that make the species eligible for listing in the Endangered category are that the Clarence galaxias had experienced past decline, it had a limited distribution in central Tasmania that was severely fragmented and continuing decline was inferred given the presence of introduced fish species in areas where some of the populations occur (TSS 2006). Description The Clarence galaxias, family Galaxiidae, is a small, stout freshwater fish, reaching a maximum length of approximately 140 mm (Allen et al., 2002; TSS 2006). Adults are dark brown in colour with irregular brown bars or blotches on the back and sides, tending to a yellow belly (Allen et al., 2002; TSS 2006). Numerous very small black spots are often present, but these are parasites in the skin rather than natural markings of the species (Fulton 1990). -
Phrantela Kutikina Ponder & Clark, 1993
Phrantela kutikina Ponder & Clark, 1993 Diagnostic features This conical species contrasts anatomically with P. daveyensis, the same differences also applying for P. richardsoni except that the bursa in P. richardsoni extends to the posterior pallial wall. Phrantela kutikina (adult size 2.5-3.2 mm) Distribution of Phrantela kutikina. Classification Phrantela kutikina Ponder & Clark, 1993 Class Gastropoda I nfraclass Caenogastropoda Order Littorinida Suborder Rissoidina Superfamily Truncatelloidea Family Tateidae Genus Phrantela redale, 1943 Original name: Phrantela kutikina Ponder & Clark, 1993 in Ponder, W. F., Clark, G. A., Miller, A. C & Toluzzi, A. (1993). On a major radiation of freshwater snails in Tasmania and eastern Victoria - a preliminary overview of the Beddomeia group (Mollusca: Gastropoda: Hydrobiidae). I nvertebrate Taxonomy, 7: 501- 750. Type locality: Small creek immediately upstream from Kutikina Cave, Franklin River, Tasmania (42°31'42" S, 145°46' E). Biology and ecology n leaf litter and silt. Egg capsules unknown but probably like those of another species of Phrantela; small, with single embryo, and covered in coarse sand grains. Development direct. Distribution The type of this species was found in a stream close to Kutikina Cave and in the stream flowing from the cave in western Tasmania. t occurred with Phrantela umbilicata in the type locality. P. kutikina occurs in various streams flowing into the Gordon and Franklin Rivers. Further reading Ponder, W. F., Clark, G. A., Miller, A. C. & Toluzzi, A. (1993). On a major radiation of freshwater snails in Tasmania and eastern Victoria: a preliminary overview of the Beddomeia group (Mollusca: Gastropoda: Hydrobiidae). I nvertebrate Taxonomy 7: 501-750. -
Conservation Biology of the Golden Galaxias (Galaxias Auratus) (Pisces: Galaxiidae)
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/268296788 Conservation Biology of the Golden Galaxias (Galaxias auratus) (Pisces: Galaxiidae) Thesis · June 2007 CITATION READS 1 172 1 author: Scott Hardie Department of Primary Industris, Parks, Water and Ennvironment, Hobart, Tasmania Australia 22 PUBLICATIONS 208 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: IUCN conservation assessment of Australian freshwater fishes View project All content following this page was uploaded by Scott Hardie on 23 May 2018. The user has requested enhancement of the downloaded file. Conservation Biology of the Golden Galaxias (Galaxias auratus ) (Pisces: Galaxiidae) Scott Anthony Hardie A thesis submitted for the degree of Doctor of Philosophy at the School of Zoology, University of Tasmania, Hobart, Tasmania, Australia 2007 Declaration of Originality This thesis does not contain any material which has been accepted for the award of any other degree or diploma in the University of Tasmania nor any other university or institution. The material this thesis contains is, to the best of my knowledge, original except where due acknowledgement is made. Mr Scott A. Hardie June 2007 Statement of Authority of Access This thesis may be reproduced, archived, and communicated in any material form in whole or in part by the University of Tasmania or its agents, and may be made available for loan and copying in accordance with the Copyright Act 1968 . Mr Scott A. Hardie June 2007 i Statement of Co-authorship The following people and institutions contributed to the publication (or submission for publication) of some of the work undertaken as part of this thesis: Preface Candidate*† (96%), Leon A. -
ANNUAL REPORT 2019-20 Inland Fisheries Service a Nnual Report 2019-20 GD11611
INLAND FISHERIES SE Inland Fisheries Service A nnual Report R VICE ANNUAL REPORT 2019-20 2019-20 GD11611 Inland Fisheries Service Tasmania’s newest inland recreational fishery, Camden Dam Undertaking a fishery performance assessment at Curries River Reserviour How to contact us: 17 Back River Road New Norfolk, 7140 Tasmania Ph: 1300INFISH www.ifs.tas.gov.au The Hon Guy Barnett MP Minister for Primary Industries and Water Dear Minister In accordance with the requirements of Section 36 of the State Service Act 2000 and Section 42 of the Financial Management Act 2016, I am pleased to submit the 2019-20 Annual Report of the Inland Fisheries Service for presentation to Parliament. Yours sincerely John Diggle Director of Inland Fisheries 5 October 2020 1 Inland Fisheries Service 1 Annual Report 2019-20 Contents Minister’s Message ................................................................................................................................................ 5 About the Inland Fisheries Service (IFS) ..................................................................................................... 6 Vision .................................................................................................................................................................... 6 Mission.................................................................................................................................................................. 6 Our outcomes .................................................................................................................................................... -
Fact Sheet: Big Trouble for Little Fish
Science for Policy Research findings in brief Project 2.1 Big trouble for little fish: Identifying Australian freshwater fishes at imminent risk of extinction In brief In Australia, many freshwater fish described in the past decade, and (The Environment Protection and species have declined sharply since seven are awaiting description. Biodiversity Conservation Act 1999 the 1950s. Preventing extinctions Twenty-one of the species identified (EPBC Act)). Listing of the other will require identifying the species are small-bodied, with the majority 19 species would provide essential most at risk. occurring in southern Australia, a protection and recognition for the remaining individuals of these We used structured expert elicitation region where introduced predatory species and their critical habitat. and other available published and trout species have taken a heavy unpublished data to identify the toll, especially on native galaxiids. The fate of all 22 species will depend freshwater fishes at greatest risk Although the majority of these species upon individual targeted action, of extinction, and to estimate were once far more widespread, all 22 investment and collaboration among the likelihood of extinction within fishes now have small distributions with governments and non-government ~20 years if there is no change areas of occupancy ranging between organisations to mitigate threats to current management. 4 – 44 km2; this greatly increases the and support recovery. We identified 22 species at high risk of risk that single catastrophic events, such The assessments were undertaken extinction (from ~315 species known as a large bushfire, could cause species prior to the 2019–20 Black Summer to occur in Australia), 20 of which had extinctions.