See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/268296788

Conservation Biology of the Golden (Galaxias auratus) (Pisces: )

Thesis · June 2007

CITATION READS 1 172

1 author:

Scott Hardie Department of Primary Industris, Parks, Water and Ennvironment, Hobart, Tasmania

22 PUBLICATIONS 208 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

IUCN conservation assessment of Australian freshwater View project

All content following this page was uploaded by Scott Hardie on 23 May 2018.

The user has requested enhancement of the downloaded file.

Conservation Biology of the Golden Galaxias

(Galaxias auratus ) (Pisces: Galaxiidae)

Scott Anthony Hardie

AthesissubmittedforthedegreeofDoctorofPhilosophyattheSchoolofZoology,

UniversityofTasmania,Hobart,Tasmania,Australia

2007

Declaration of Originality

Thisthesisdoesnotcontainanymaterialwhichhasbeenacceptedfortheawardofanyother degreeordiplomaintheUniversityofTasmanianoranyotheruniversityorinstitution.The materialthisthesiscontainsis,tothebestofmyknowledge,originalexceptwheredue acknowledgementismade.

MrScottA.Hardie June2007

Statement of Authority of Access

Thisthesismaybereproduced,archived,andcommunicatedinanymaterialforminwholeor inpartbytheUniversityofTasmaniaoritsagents,andmaybemadeavailableforloanand copyinginaccordancewiththe CopyrightAct1968 .

MrScottA.Hardie June2007

i Statement of Co-authorship

Thefollowingpeopleandinstitutionscontributedtothepublication(orsubmissionfor publication)ofsomeoftheworkundertakenaspartofthisthesis:

Preface Candidate*†(96%),LeonA.Barmuta(2%),RobertW.G.White*(2%)

Chapter2. Candidate*†(82%),JeanE.Jackson †(6%),LeonA.Barmuta*(10%),Robert

W.G.White*(2%)

Chapter3. Candidate*(82%),LeonA.Barmuta*(14%),RobertW.G.White*(4%)

Chapter4. Candidate*†(85%),LeonA.Barmuta*(13%),RobertW.G.White*(2%)

Chapter6. Candidate* †(85%),LeonA.Barmuta*(13%),RobertW.G.White*(2%)

Chapter7. Candidate*†(80%),StephenB.Pyecroft ‡(10%),LeonA.Barmuta*(8%),

RobertW.G.White*(2%)

*SchoolofZoologyandTasmanianAquacultureandFisheriesInstitute,Universityof

Tasmania,PrivateBag5,Hobart,Tasmania7001,Australia

†InlandFisheriesService,POBox288,Moonah,Tasmania7009,Australia

HealthLaboratory,DepartmentofPrimaryIndustriesandWater,POBox46,Kings

Meadows,Tasmania7249,Australia

L.A.B.supervisedtheadministrationofthesestudies,helpeddevelopthekeyconcepts,and assistedwithdataanalysesforeachpaper.R.W.G.W.helpedrefinethecontentofthese papers.J.E.J.andS.B.P.contributedtothedevelopmentofthecontentofChapters2and7, respectively,andS.B.P.alsoprovidedlaboratoryassistanceforChapter7. ii Wetheundersignedagreewiththeabovestated“proportionofworkundertaken”foreachof theabovepublished(orsubmitted)peerreviewedmanuscriptscontributingtothisthesis :

Signed: ……………………………… ………………………………

DrLeonA.Barmuta DrSusanM.Jones Supervisor Head of School SchoolofZoology&TAFI SchoolofZoology UniversityofTasmania UniversityofTasmania

Date: June2007

iii Summary

Summary

1.Thegoldengalaxias( Galaxiasauratus Johnston1883)isathreatened,nondiadromous galaxiidthatisendemictolakesCrescentandSorellincentralTasmania,Australia.Similarto thelacustrinehabitatsofotherthreatenedgalaxiidsinthisregion,theCrescentSorellsystem hasalteredhydrologyandcontainsalienfishes.Theobjectiveofthisstudywastoexamine crucialaspectsofthebiologyandlifehistoryofG.auratus (includingage,growth,population structure,reproductivebiologyandrecruitmentdynamics)intheseimpoundedhighlandlakes thatarelikelytobeinfluencedbyhydrologyandlakemanagement.Aninvestigationof populationmonitoringmethodsforthiswasalsoconducted.Thisworkaimedto assessthevulnerabilityof G.auratus populations,andgaininsightintotheecological attributesofotherthreatenedgalaxiids,threatstothisfamilyandothersimilarsmallsized lenticspecies.

2.Analysisofa5year,monthlyrecordofpopulationandspawningattributesofboth populations,alongwithdetailedenvironmentaldata,includingwaterlevelsandwater temperatures,showedwaterlevelsandtheaccesstheyprovidetospawninghabitatstrongly limitthereproductionandrecruitmentof G.auratus inLakeCrescent.Detailedlifehistory attributesofthisspeciessupporttheseconclusionsandfurtherillustratethevulnerabilityof thisspeciestohydrologicalmanipulations.

3.Gonaddevelopmentbeganinmidsummerandspawningwasspreadoverlateautumn– earlyspring,peakinginwinter.Demersaladhesiveeggs(~1.5mmdiameter)werefoundon cobblesubstrates( c.20250mmdiameter)inlittoralareas( c.0.20.6mdeep).Patternsin larvalemergenceandabundancewereassociatedwiththetimingofinundationofspawning habitats.InLakeCrescent,seasonalabundancesoflarvaewerestronglyrelatedtothe

iv Summary magnitudeofwaterlevelrisesduringspawningandeggincubation(i.e.MaySeptember).

Despitetheoccurrenceoflarvaeinpelagichabitatsinbothlakesduringwinter,theydidnot growuntilspring;thus,couplingofwaterlevelandwatertemperatureregimesisimportant forrecruitment. Galaxiasauratus reachedupto240mminlengthand~10yearsofage; however,mostgrewto<130mmandthe0+,1+and2+yearclassesdominatedtheage structureofbothpopulations.Thereweremore>2+inLakeCrescentwherepredatory introducedsalmonidswerelessabundantthaninLakeSorell.Growthoftheselargerfishwas slowerduetolimitedaccesstocomplexlittoralhabitatsinLakeCrescent.

4.Inatranslocatedpopulation,fykenettingatnightwasthemosteffectivesamplingmethod owingtoincreasedactivityatnightandcoverseekingbehaviourbythisspecies.Inthelakes, monthlycatchesof G.auratus increasedsubstantiallyduringspawning,suggestingthat knowledgeofthereproductivebiologyoftargetspeciescanaidpopulationmonitoring programsforothergalaxiids.

5.Waterlevelfluctuationsplayakeyroleinthelifecycleof G.auratus whichrelieson accesstocomplexlittoralhabitatsforspawning,feedingandrefuge.Seasonalhydrological cycles(i.e.risesduringlateautumn–winter)andaminimumwaterlevelof802.20mAHD inLakeCrescentduringautumn(abovewhichlittoralareasofcobblesubstrateareinundated) arecriticalto G.auratus populations.Becausemanylacustrinegalaxiidsuselittoralhabitats duringseverallifestages,alterationstowaterlevelsandseasonalhydrologicalregimesmay impactontheirpopulationsbyrestrictingaccesstothesehabitatsatcriticaltimes.Toassist themanagementofotherthreatenedgalaxiidspecies,furtherstudiesshouldidentifyhabitats thatlimitpopulationsbasedonspeciesbiologyandexamineecologicaltraitsthatprovide resiliencetomajorperturbations.

v Acknowledgements

Acknowledgements

Firstly,Iwouldliketoacknowledgethesupportgiventomebymysupervisors,Leon

BarmutaandRobertWhiteoftheSchoolofZoologyandTasmanianAquacultureand

FisheriesInstitute(TAFI),UniversityofTasmania(UTas).Leonadministeredthisstudyand helpeddefineitsdirection.Hisbroadunderstandingofconservationbiologyand contemporarymanagementstrategiesforthreatenedtaxawereofgreatvaluetotheproject.

Leonhasawealthofknowledgeregardingtheanalysisofecologicaldataandhisguidance

(andunrelentingpatience)inthisareawasmuchappreciated.Rob’sthoughtsonthebiology ofthisspeciesandknowledgeofthefamilyGalaxiidaeimprovedthefinalcontentofthe thesis.

Giventhevariedcomponentsofthisthesisandsubstantialamountoftimespentinthefield,I wasfortunatetohavereceivedassistancefrommanypeople.Iamespeciallyindebtedtothe

TasmanianInlandFisheriesService(IFS),whereIinitiallybeganstudyingthegolden galaxias.Kindly,IFSallowedmetousemuchofthatinformationforthisthesisandprovided furtherlogisticalsupportonmanyoccasions.J.Diggleprovidedguidanceinearlystagesof theproject.Fieldwork,whichwasconductedinthevariableandsometimesarduous conditionsoftheTasmanianCentralPlateau,couldnothavebeenundertakenwithout assistancefromIFSstaffincludingB.Mawbey,A.Uytendaal,K.BrehenyandH.Mulcahy,

T.Byard,R.Walker,A.MacDonald,D.Jarvis,C.Wisniewski,M.Schottmeier,P.Donkers,

A.Taylor,R.CordwellandS.Frijlink.FurtherassistancewasalsoprovidedbyB.Mawbey,

K.BrehenyandH.Mulcahy(processingoflarvalsamples),A.Uytendaal(watertemperature modelling),D.Hardie(preparationoflocationmapsandaquaticmacrophyteidentification),

A.Taylor(otolithpreparationandsectioning)andS.Solman(generalfieldassistance).

Additionally,S.TraceyandG.Ewing(TAFI)providedguidanceintheinterpretationof

vi Acknowledgements otolithincrementalstructureandS.Traceyalsoperformedthesecondaryotolithreadings.

S.Wotherspoon(UTas)helpedwithgrowthmodelling,M.HigginsandT.Wilson

(DepartmentofPrimaryIndustriesandWater(DPIW))withmicrobiologicalandmolecular geneticwork,andC.Marshall(DPIW)withhistopathologicaltests.

Thefollowingpeoplearethankedforfruitfuldiscussionsandcommentsregardingdifferent elementsofthethesis:J.Jackson(IFS),S.Pyecroft(DPIW),T.Raadik(ArthurRylah

Institute,Melbourne),R.McDowall(NationalInstituteofWaterandAtmosphericResearch,

Christchurch,NewZealand),B.Mawbey(IFS),R.StuartSmith(UTas)andJ.Patil(CSIRO,

Hobart).Iwouldliketothankmytwoexaminersfortheirconstructivecommentsand suggestionswhichhelpedstrengthenthecontentofthethesisandwillalsoassistmein preparingfurtherassociatedpublications.IamverygratefultotheMcShanefamilyfortheir hospitalityandaccesstotheirpropertyatallhoursoftheday.Financialsupportwasprovided bytheNaturalHeritageTrust,EnvironmentAustralia(nowDepartmentoftheEnvironment andWaterResources),TasmanianStateGovernmentviaIFS,andTAFIthrougha postgraduatescholarship.TheTasmanianMuseumandArtGallery,Hobartalsoprovided logisticalsupport.

IamverygratefultoBrettMawbeyandAdamUytendaalformemorabletimesspentonlakes

CrescentandSorellandforwhattheytaughtme.Ithankmyparents,GrahamandMargaret, forgivingmethefreedomtopursueanddevelopmyinterestintheaquaticworldduringmy childhood.Finally,Iamespeciallythankfultomywife,Danielle,forherconstantloveand supportthroughoutthisstudy.

vii Dedication

Dedication

Ihopetheknowledgegainedfromthisvolumeofworkhelpsraiseawarenessofthe uniquenessandimperilledstatusofsmallsizedinconspicuousfreshwaterfishes.Ibelievethe naiveandcarelessviewsexpressedinthefollowingquote*regardingEuropeanfishesstill holdtruetodayinseveralsectors;tothedetrimentofmanyspecieswhichareoflittleorno commercialorrecreationalvalue.

‘ThereisalsoalittlefishcalledaStickleback:afishwithoutscales,buthathhisbodyfenced withseveralprickles.Iknownotwherehedwellsinwinter,norwhatheisgoodforin summer,butonlytomakesportforboysandwomenanglers,andtofeedotherfishthatbe fishofprey,asTroutsinparticular,whowillbiteathimasataPink,andbetter,ifyourhook berightlybaitedwithhim,forhemaybesobaited,ashistailturninglikethesailofawind millwillmakehimturnmorequickthananyPinkorMinnowcan.Fornote,thatthenimble turningofthatortheMinnowistheperfectionofMinnowfishing .’

*Takenfrommoderndayreprint‘Walton,I.(1995).TheCompleteAngler .London:J.M.Dent.’.Thisisthefifth editionofthisclassicanglingcompanionwhichwasfirstprintedin1676.IzaakWaltonwasaseventeenth centurydevoteeoftheartofangling,nostalgicroyalistandfriendofbishops. viii TableofContents

Table of Contents

Summary...... iv

Acknowledgements ...... vi

Dedication ...... viii

Table of Contents...... ix

Preface: Threatened fishes of the world: Galaxias auratus Johnston, 1883

(Galaxiidae) ...... xii

1. General Introduction...... 1

1.1.Conservationoffreshwaterfishes...... 1

1.2.Galaxiidfishesandthegoldengalaxias...... 2

1.3.Lakes,littoralhabitatsandhydrology...... 6

1.4.Researchobjectivesandapproach ...... 7

1.5.Thesisstructureandformat...... 9

2. Status of galaxiid fishes in Tasmania, Australia: conservation listings,

threats and management issues ...... 11

2.1.Abstract...... 11

2.2.Introduction...... 12

2.3. ...... 16

2.4.ConservationlistingsofTasmaniangalaxiids ...... 17

2.5.ThreatstoTasmaniangalaxiids ...... 19

2.6.ManagementissuesforgalaxiidsinTasmania ...... 26

3. Comparison of day and night fyke netting, electro-fishing and snorkelling

for monitoring a population of the threatened golden galaxias

(Galaxias auratus ) ...... 35

3.1.Abstract...... 35

ix TableofContents

3.2.Introduction ...... 36

3.3.Materialsandmethods...... 40

3.4.Results ...... 46

3.5.Discussion ...... 55

4. Spawning related seasonal variation in fyke net catches of golden galaxias

(Galaxias auratus ): implications for monitoring lacustrine galaxiid

populations...... 62

4.1.Introduction ...... 62

4.2.Materialsandmethods...... 63

4.3.Resultsanddiscussion...... 64

5. Age, growth and population structure of the golden galaxias ( Galaxias

auratus Johnston) in lakes Crescent and Sorell, Tasmania, Australia...... 68

5.1.Abstract ...... 68

5.2.Introduction ...... 69

5.3.Materialsandmethods...... 71

5.4.Results ...... 78

5.5.Discussion ...... 88

6. Reproductive biology of the threatened golden galaxias, Galaxias auratus

Johnston 1883 (Galaxiidae) and the influence of lake hydrology ...... 96

6.1.Abstract ...... 96

6.2.Introduction ...... 97

6.3.Materialsandmethods...... 100

6.4.Results ...... 111

6.5.Discussion ...... 125

x TableofContents

7. Spawning-related fungal infection of golden galaxias, Galaxias auratus

(Galaxiidae) ...... 133

7.1.Abstract...... 133

7.2.Introduction...... 133

7.3.Materialsandmethods...... 135

7.4.Results...... 135

7.5.Discussion...... 140

8. Recruitment dynamics of a non-diadromous lacustrine galaxiid fish:

the roles of water level fluctuations and habitat availability...... 144

8.1.Abstract...... 144

8.2.Introduction...... 145

8.3.Materialsandmethods...... 149

8.4.Results...... 156

8.5.Discussion...... 170

9. General Discussion...... 176

9.1.Conservationofthegoldengalaxiasandotherlacustrinegalaxiids...... 177

9.2.Managementstrategiesandfurtherresearch ...... 184

References...... 189

Appendices...... 225

xi Preface

Preface: Threatened fishes of the world: Galaxias auratus

Johnston, 1883 (Galaxiidae)*

*PublishedasHardieS.A.,BarmutaL.A.&WhiteR.W.G.(2004)in EnvironmentalBiology ofFishes 71,126.

Common name: Goldengalaxias.

Conservation status: Rare–(Tasmanian ThreatenedSpeciesProtectionAct1995 );

Endangered–(2003);Endangered–(Commonwealth EnvironmentProtectionand

BiodiversityConservationAct1999 ).

Identification: D710,A1112,P1418,vertebralcount5356(McDowall&Frankenberg,

1981).Smallscalelesssalmoniformfish,maximumsize:240mmTFL,130g(Hardie,2003).

Colouration:goldentoolivegreenondorsalsurfaceandsides,silverygreyonventral surface.Backandsidesarecoveredwithroundtoovalblackspots(McDowall&

Frankenberg,1981)(Fig.1).

Fig. 1. Goldengalaxias( Galaxiasauratus ).DrawingbyCarolKrogerinFulton(1990).

xii Preface

Distribution: EndemictotheinterconnectinglakesCrescentandSorellandtheirassociated creeksandwetlandsintheheadwatersoftheClydecatchmentcentralTasmania,

Australia.TwotranslocatedpopulationswereestablishedinfarmintheClydeRiver catchment,between1996and1998.Currently,onlyfourbreedingpopulationsexistincluding twonaturalandtwotranslocatedpopulations.

Abundance: NaturalpopulationsinlakesCrescentandSorellarecurrentlyabundant, althoughrelativeabundancedifferssignificantlybetweenthetwowiththeLakeCrescent populationbeinganorderofmagnitudegreaterthantheLakeSorellpopulation.Thetwo translocatedpopulationsofgoldengalaxiasarecurrentlyabundant(Hardie,2003).

Habitat and : Anondiadromousspeciespreferringlenticwaters.Adultsfrequently feedinthewatercolumnbuttendtobebenthicandprefertheshelterofrockylakeshores,in lakemacrophytebedsandwetlandhabitat.Theadultdietconsistsofaquaticandterrestrial ,small,molluscsandcannibalismofeggsandjuvenilefishiscommon

(Hardie,2003).Juvenilesarepelagicandfeedonzooplanktonandsmalllarvae

(Frijlink,1999).

Reproduction: Spawningtakesplaceinlateautumn–winteronrockyshoresandpossiblyin wetlandhabitatwhenavailable(Hardie,2003).Spawningoccursatapproximately4 °C(range

27°C)andappearstobetriggeredbyrisinglakelevels.Fecundityrangesfrom1000to

15000eggs.Fertilisedeggsare~1.5mmindiameter,transparentandadhesive.Spawned eggsarescatteredovercobblesubstrateoraquaticvegetationatadepthof200600mm.

Fertilizedeggsarethoughttoincubatefor3045daysinthewild.Larvalhatchingpeaks

xiii Preface duringlatewinter–earlyspring.Newlyhatchedlarvaeare57mminlengthandarepelagic until45monthsofage(40mmTFL).

Threats: LowwaterlevelsinlakesCrescentandSorellaretheprimarythreattonatural populationsofgoldengalaxias(Hardie,2003).InLakeCrescent,lowwaterlevelscande waterrockyshorelineswhichareacriticalhabitatforspawningandrefuge.Competitionand fromintroducedfishisalsoasignificantthreat.Fourintroducedspeciescurrently inhabitlakesCrescentandSorell( Salmotrutta , Oncorhynchusmykiss , Cyprinuscarpio and

Galaxiasmaculatus ).Browntroutareknowntopredateheavilyongoldengalaxiasinboth lakes(StuartSmith,2001).

Conservation action: ThegoldengalaxiasisprotectedunderStatelegislationandmayonly becollectedunderpermit.ThefindingsoftherecentworkofHardie(2003)havebeen incorporatedintoawatermanagementplanningprocessforlakesCrescentandSorelland havealsoprovidedbaselinedataforfuturemonitoringofpopulations.Thetranslocated populationofgoldengalaxiasintheJerichoareahasbeenformallyreserved.

Conservation recommendations: Thesignificanceofadjacentwetlandsandinflowing creeksandtheirassociatedwetlandsneedstobedetermined.Wildandtranslocated populationsofgoldengalaxiasshouldcontinuetobemonitoredonanannualbasis.

Remarks: Waterlevelmanagement,includingtheallocationofwatertomaintainbase

‘environmental’levelsinlakesCrescentandSorell,iscriticaltothesurvivalandhealthof naturalpopulationsofgoldengalaxias.

xiv GeneralIntroduction

1. General Introduction

1.1. Conservation of freshwater fishes

Freshwaterfishesareincreasinglybeingconsideredthreatenedatregional(Bruton,1990;

Moyle,1995;Fu etal. ,2003)andinternational(Cambray&GiorgioBianco,1998)levels.In ordertomaintaintheirassociatedfisheryresources,aquaticbiodiversity,andthehealthofthe systemswhichtheyinhabit,freshwaterfishconservationhasbeenrecognisedasanimportant actionglobally(LoweMcConnell,1990;Cowx&CollaresPereira,2002).Abroadrangeof threats,whicharemostlylinkedtoanthropogenicimpactsandbiologicalinvasions,increase thevulnerabilityoffishes(Bruton,1995).Additionally,rarespecieswhichhaverestricted distributions,occurinfrequentlyorhavelowabundances,areoftenatgreaterriskof extinction(Economidis,2002;Fagan etal. ,2002).Recentstudies(Angermeier,1995;Parent

&Schriml,1995;Duncan&Lockwood,2001;Reynolds etal. ,2005)havetriedtodetermine ifphylogenyandlifehistorytraitsoffreshwaterfishescorrelatewithextinctionrisk;however, theirresultshavebeenlargelyinconclusive.Whilstsomebiologicalandecologicalattributes, suchassmallsize(Reynolds etal. ,2005)anddiadromy(Angermeier,1995),doincreasethe riskofextinction,identificationofextrinsicfactorswhichaffectfamiliesorindividualspecies isparamounttotheirconservation(Duncan&Lockwood,2001).

Strategiestomanagethreatenedspeciestakemanyformsandincludepopulationmonitoring, riskassessments,habitatrestorationandreservation,captivepropagation,andtranslocationof taxa.Techniquestomonitorwildlifepopulationsareneededtoestimateabundanceandguide decisionsregardingtheirmanagement(Hauser etal. ,2006).Additionally,knowledgeofthe biologyandecologyoftargetspeciesisessentialtotheirconservationasthesedataunderpin methodsusedtoassessstatus(IUCN,2003),identifythreatsandfacilitaterecovery.Recently, managementofthreatenedtaxahasshiftedfromthetraditionalsinglespeciesfocustomulti

1 GeneralIntroduction speciesapproachesduetotheinclusionofincreasingnumbersoftaxaonthreatenedspecies lists,andtheeconomicandresourceconstraintsofmanagementagencies.Speciesspecific biologicalunderstandingisoftenlimitedundermultispeciesrecoveryplansincomparisonto thoseforsinglespecies(Clark&Harvey,2002).However,dataforwellstudiedspeciescan provideinsightintothebiologicalattributesandkeythreatsofothercloselyrelatedtaxa, whichhaveyettobeexamined.

Knowledgeofpopulationdynamicsandrelationshipsbetweenspeciesandtheirhabitatsis requiredtoperformquantitativeriskassessments(Lindenmayer&Burgman,2005).Such dataoftenexistpriortothedeclineofcommerciallyexploitedspecies,butfortaxalikesmall sizedfreshwaterfisheswhichareofnocommercialorrecreationalvalue,thesedataare usuallyscarce.Thelifehistoriesofmanyfishesrelyonthespatialandtemporalalignmentof accesstocertainhabitats.Therefore,thelackoffavourablehabitatsfordifferentlifestages canhavesignificantconsequencesforfishpopulations(Naiman&Latterell,2005).In modifiedenvironments,thisvariabilitymaybetheprimarythreattopopulations.Thus, identificationofbiologyhabitatlinkagescanaidconservationefforts(Rosenfeld&Hatfield,

2006).

1.2. Galaxiid fishes and the golden galaxias

FishofthesalmoniformfamilyGalaxiidaearerelativelysmall(adultsgenerally<300mm long),scalelessandoftencryptic(McDowall&Frankenberg,1981).Theyoccupyfreshwater andestuarineenvironmentsinmostlycooltemperateregionsonseverallandmassesinthe

SouthernHemisphere,butareparticularlyprominentinthefreshwaterfishfaunasofsouthern

AustraliaandNewZealand(McDowall&Fulton,1996;McDowall,2000).Membersofthe family,ofwhichtherearearound50species,exhibitbothdiadromousandnondiadromous

2 GeneralIntroduction lifehistories.Thisenablesthemtooccupyadiverserangeofhabitats.Whilstsomemigratory speciescontributetoregionalwhitebaitfisheries(McDowall&Fulton,1996;McDowall,

2000),mostgalaxiidspeciesarenotofrecreationalorcommercialvalueandmorethan50% ofspeciesarethreatened(i.e.protectedunderlegislationintheirregion(s)ofoccurrenceor listedonconservationawarenesslists)(McDowall,2006).

Despitethebroaddistributionofthefamily,particularlysomespecies(e.g. Galaxias maculatus Jenyns(Waters&Burridge,1999)),manynondiadromousspecieshavehighly restricteddistributions.Severalgalaxiidspeciesonlyoccurinasingleriversystemorafew lenticwaters.Similartomanysmallsizedendangeredfishes,galaxiidsfacethreatsfrom exoticspecies,particularlythoseassociatedwithintroducedsalmonidswhichhavebeenwell documented(Tilzey,1976;Crowl etal. ,1992;Ault&White,1994;McIntosh,2000;

McDowall,2003).However,anthropogenicalterationsoftheirhabitatsarealsolikelytohave contributedtothedeclineofsomegalaxiids,anddataregardingtheseimpactsarelimited

(Hanchet,1990;Eikaas&McIntosh,2006).Forexample,impoundmentcandramaticallyalter hydrologicalregimesandhabitatlandscapesinnaturallenticwatersthatareoccupiedby lacustrinegalaxiids.However,atpresentlittleisknownoftherolesofhydrologicalvariables inthelifehistoriesofgalaxiidsorthestrategiesbywhichtheyusedifferenthabitats.

TheislandofTasmania,southernAustralia,hasadiversegalaxiidfauna,with16species,of which11areendemic.Sevenendemicnonmigratoryspeciesoccurindiscretepopulationsin highlandlakesandlagoonsinthecentralhighlanddistrictknownastheTasmanianCentral

Plateau(TCP).Sixofthesespeciesoccurinlakesthathavebeenimpoundedduringthepast centuryforhydroelectricpowergenerationandmunicipalandagriculturalwaterstorage purposes.Despiteconservationeffortsundermultispeciesrecoveryplans(Crook&Sanger,

3 GeneralIntroduction

1997;ThreatenedSpeciesSection,2006),someTasmanianlacustrinespecies(e.g. Galaxias pedderensis Frankenberg(Hamr,1995)and mesotes McDowallandFulton

(ThreatenedSpeciesSection,2006))inimpoundedlakeshaverecentlyundergonesignificant declines.Whilstthereisconjecturesurroundingthereasonsforthis,alackofbiologicaland ecologicaldataandeffectivepopulationmonitoringmethodsfortheseandotherlocalspecies makemanagementandrecoveryoftheirpopulationsdifficult.

Thegoldengalaxias, Galaxiasauratus Johnston,isatypicalexampleofalocalisedlacustrine galaxiid(Fig.1).ThisspeciesisendemictotheinterconnectedLakeCrescentandLakeSorell

(Fig.2)inthesoutheastoftheTCPintheupperreachesoftheClydeRivercatchment

(McDowall&Fulton,1996).Theseshallowlakes(meandepths<3.5m)areverysimilar chemicallyandphysicallyandhavebeenimpoundedforagriculturalandmunicipalwater storagepurposes.Sincebeingdescribedover120yearsago(Johnston,1883),thebiologyof

G.auratus hasremainedlargelyunstudied.InAustralia,thisspeciesislistedunderStateand nationalthreatenedspecieslegislation,butunlikemanythreatenedgalaxiids,anddespite predationfromintroducedsalmonids(StuartSmith etal. ,2004),wildpopulationsof

G.auratus areabundantandjuvenileandadultfisharereasonablyeasytocollect(Fig.3).

Twotranslocated‘refuge’populationsof G.auratus havealsorecentlybeenestablishedin nearby,smalloffagriculturalwaterstorages(Hardie,2003),oneofwhichisalso relativelyabundant.Forthesereasons, G.auratus isagoodmodelspeciestouseto investigatepopulationmonitoringmethodsforthreatenedlacustrinegalaxiidsandthebiology andecologyofthesefishesinwatersthathavealteredhydrology.

4 GeneralIntroduction

Fig. 1. Female Galaxiasauratus (183mmforklength).Thisindividualhaswelldeveloped gonads;thus,theabdominalwallisreasonablydistended.

Fig. 2.ViewfromanorthwesternshoreofLakeSorelllookingsouthtowardsTable Mountainduring2000.

5 GeneralIntroduction

Fig. 3.Haulingacatchof Galaxiasauratus inafinemeshedfykenetinLakeSorellduring 2000(samplers:ScottHardie(left),BrettMawbey(right)).Overnightfykenettingwasthe maintechniqueusedtosamplejuvenileandadultfishinthisstudy.

1.3. Lakes, littoral habitats and hydrology

Waterlevelfluctuationsareanimportanthydrologicalvariableinlacustrinesystems, particularlyastheycontroltheavailabilityandconditionofhabitatsinlittoralareas(Gasith&

Gafny,1990).Manylacustrinefishesuselittoralhabitatsatsomestageoftheirlifecycle(e.g. forspawningorduringajuvenilephase(Winfield,2004a));therefore,accesstotheseareas cangreatlyinfluencefishproduction(Gafny etal. ,1992;Rowe etal. ,2002b).Anthropogenic manipulationofwaterlevelsinimpoundednaturallenticwaters(i.e.naturallakesthathave beendammedforwaterstoragepurposes)canalterthetiming,magnitude,durationand periodicityoffluctuations.Forthesereasons,alterationstohydrologicalregimesarelikelyto beamajorthreattosomefreshwaterfishes.Additionally,fishplayimportantecologicalroles inlakeecosystems,particularlyasmanyspeciespassthroughazooplanktivorousstageduring theirontogeny(Winfield,2004b).Theirontogenetichabitatshiftscanlinkdifferentareasof

6 GeneralIntroduction lakesbyprovidingpathwaysforenergyflowbetweenhabitats(Schindler&Scheuerell,2002;

VanderZanden&Vadeboncoeur,2002).Therefore,iffisharereliantuponcertain hydrologicalconditionsandthehabitatstheyprovidetocompletetheirlifecycle,lake hydrologymayalsoindirectlycontrolconnectivitybetweenlittoral,pelagicandbenthic habitats.

Lakeshighinthelocalhydrologicallandscape(e.g.highlandlakes)oftenhaverelatively smallcatchmentsand,thus,receiveagreaterproportionoftheirwaterfromprecipitationthan lakeslowerinthehydrologicallandscape(Warren&French,2001).Becausethehydrologyof thesesystemsdependsheavilyonlocalclimaticconditions,thesewaterscanbegreatly influencedbyclimaticextremes,suchas.Whilstsomeresearchershavedocumented theaffectsofdroughtsonriverinefishes(Matthews&MarshMatthews,2003),fewhave investigatedtheresponseoflacustrinefishestotheseevents.InsouthernAustralia,oneofthe maindriversofclimaticvariabilityistheElNiñoSouthernOscillation(ENSO)(Kershaw et al. ,2003).TheperiodicoccurrenceofElNiñoinduceddroughtscauseshightemporal variabilityinthehydrologicalregimesofintheregion(McMahon&Finlayson,2003).

Coupledwithincreasingdemandsforwaterresources,ElNiñoinduceddroughtsmay representasignificantthreattothefreshwaterfishfaunaofsouthernAustralia.Therefore, knowledgeoftheprocessesbywhichtheseeventsaffectfishpopulationsisneeded, particularlyforspecieswithrestricteddistributionswhererefugehabitatsmaybescarceor unavailable.

1.4. Research objectives and approach

Theobjectiveofthisthesiswastoexaminecrucialaspectsofthebiologyandecologyof

G.auratus thatarelikelytobevulnerabletothetwomainanthropogenicdisturbancesinlakes

7 GeneralIntroduction

SorellandCrescent:(1)changesinhabitatqualityandquantitythatareassociatedwith alteredwaterlevels,and(2)predationandcompetitionfromintroducedsalmonids.By studyingthisspecies,Ihopedtogaininsightintotheecologicalattributesofotherthreatened galaxiids,threatstothisfamilyandothersimilarsmallsizedlenticspecies.

Ifocusedonthelikelystagesofthisspecies’lifecycleandtheirhabitatassociationsusing dataforotherlacustrinegalaxiidsasaguide(Fig.4).Afieldbased(ratherthanalaboratory based)approachthatinvolvedexaminingallfivesuspectedlifestagesof G.auratus (see

Fig.4)wastakenbystudyingwildpopulationsinlakesCrescentandSorell.Overatemporal scaleofseveralyears(upto5yearsforsomedata), G.auratus populationsweresubjectto seasonalhydrologicalandclimaticcycleswhichallowedtherolesofthesefactorstobe explored.However,atasmallerspatialandtemporalscale,atranslocatedpopulationof

G.auratus inanagriculturalwaterstoragewasusedtoevaluatemethodstomonitor populationsasthissmallclosedsystemenabledmorerobustcomparisonstobemade.

TheapproachIusedforthisresearchfollowedalogicalseriesofstepswhichhelpeddevelop theconceptsforeachchapterofthisthesis.Firstly,duetoalackofinformationregardingthe

Tasmaniangalaxiidfauna,Irevieweditsstatusandidentifiedthreatsandknowledgegaps usingexistingliterature(Chapter2).Thishighlightedthelackofdataregardingthelifecycles andhabitatrequirementsoftheTasmanianfaunaandillustratedthesignificanceofthenon migratoryspecieswhichinhabithighlandlakesontheTCP.Secondly,becauseseveral populationsamplingmethodsareroutinelyusedtomonitorgalaxiidpopulationsinlentic watersbutnonehadbeenformallyevaluated,Iconductedastudytodothisusinga translocatedpopulationof G.auratus (Chapter3).Thirdly,Ifocusedonthewild G.auratus populationsinlakesCrescentandSorellandsampledthemintensively(i.e.principalsampling

8 GeneralIntroduction atmonthlyintervals)over2.5years,toexamine: i)seasonalvariationincatches(Chapter4), ii )ageandgrowth,andpopulationstructure(Chapter5), iii )reproduction(Chapter6)andits associatedmortality(Chapter7),and iv )recruitmentdynamics(Chapter8).Duringthistime,I alsoidentifiedandsurveyedthelittoralspawninghabitatsof G.auratus inLakeCrescent whichhavealimitedextent.Thisexerciseshowedthattheavailabilityofthiscriticalhabitat isheavilyinfluencebywaterlevelfluctuationsinLakeCrescent,whereasinLakeSorell, accesstothishabitatisnotreliantuponhydrology.Becauseofthesefindings,Icontinuedto monitortherecruitmentofthesepopulationsforafurther2.5years(5breedingseasonsin total)toexaminetherolesofhydrologyandhabitatavailability(Chapter8).

1.5. Thesis structure and format

Thestructureofthisthesisreflectsthelogicalapproachfollowedforthisresearch.

Consequently,chaptersarepresentedinasequencewhichallowsthemtobuilduponthe findingsofpreviousonesand,insomecases,investigatepreviouslyposedquestions.All chapters,whichvaryinlength,havebeenpreparedaspapersforpublicationinscientific journals;somehavebeenpublished,acceptedorsubmittedforpublicationandothershavenot yetbeensubmitted.Becauseofthisformattingandthemultipleuseofsampledmaterial(i.e. fishspecimens)andotherdata(e.g.waterlevels),thereissomerepetitionwithinthechapters.

However,eachchapterhasauniquefocusandseekstoaddressadifferentsetofaimswhich relatetotheconservationbiologyof G.auratus .

9 GeneralIntroduction

Littoral-benthic Epibenthic Pelagic

1. Eggs 2. Larvae

5. Spawning 3. Juveniles

4. Adults

Fig. 4.Fivetypicalstagesinthelifecycleofanondiadromouslacustrinegalaxiidandthe mainhabitatsusedduringeachstagebasedonpublisheddataforothersimilarspecies (Pollard,1971;Humphries,1989;Rowe&Chisnall,1996a;Barriga etal. ,2002;Rowe etal. , 2002a;Morgan,2003).Therelativeproportionoftimeeachlifestageoccupiesthethree habitatsisrepresentedbythepositionofthehorizontalbars.

10 StatusofgalaxiidfishesinTasmania

2. Status of galaxiid fishes in Tasmania, Australia: conservation listings, threats and management issues*

*PublishedasHardieS.A.,JacksonJ.E.,BarmutaL.A.&WhiteR.W.G.(2006)in Aquatic

Conservation:MarineandFreshwaterEcosystems 16,235250.

2.1. Abstract

1.FishesofthefamilyGalaxiidaearerestrictedtotheSouthernHemispherewherethey occupyadiversearrayofhabitatsrangingfromover2000minelevationtosealevel.Some speciesarediadromousandhencefreshwater,estuarineandmarinehabitatsareusedduring theirlifecycle;otherspeciescompletetheirentirelifecyclesinfreshwaterenvironments.

2.Tasmaniahasadiversegalaxiidfaunathataccountsfor64%ofnativefreshwaterfish speciesfoundontheisland.TheTasmaniangalaxiidfaunaischaracterisedbyhighspecies richness(5generaand16species),endemism(11species),restricteddistributions

(11species),andnondiadromouslifehistories(11species).

3.ThegalaxiidfaunaofTasmaniahassignificantconservationstatuswith69%ofspecies considered‘threatened’.TheconservationstatusofthefaunaisrecognisedatState,National andInternationallevels.

4.ThekeythreatstogalaxiidsinTasmaniaareexoticspecies,hydrologicalmanipulations, restricteddistributions,generalhabitatdegradation,andexploitationofstocks.

5.WhileworkhasrecentlybeenundertakentoconserveandmanageTasmaniangalaxiid populations,thefaunaisstillthoughttobeimperilled.Knowledgegapsneedingtobe addressedincludethebiologyandecologyofmostspecies(e.g.reproductivebiology,life histories,andhabitatuseandrequirements),impactsofhabitatmanipulations,aswellas

11 StatusofgalaxiidfishesinTasmania mechanismsandimpactsofinteractionswithexoticspecies.Techniquestoaccuratelymonitor thestatusofgalaxiidspeciesandtheirpopulationsneedtobedevelopedandthecoexistence ofsomegalaxiidswithintroducedsalmonidsshouldalsobeexamined.

Keywords:Galaxiidae;freshwaterfish;southernAustralia;threatenedspecies;endemism; introducedspecies;conservation;fisheriesmanagement

2.2. Introduction

FishesofthesalmoniformfamilyGalaxiidaearerelativelysmall(adultsgenerally<300mm long)andscaleless.Theyaregenerallyregardedasfreshwaterspecies,althoughafew membersofthefamilyarediadromous,andsomespecieshavebothdiadromousandnon diadromouslifehistories.Diadromousspeciesmayoccupyestuarineand/orfreshwater habitats,butarecharacterisedbyhavingamarinejuvenilestageintheirlifecycle(Andrews,

1976).ThefamilyisrestrictedtotheSouthernHemisphere,whereapproximately50species

(McDowall,1996)occurlargelyincooltemperateregionsincludingAustralia,NewZealand,

Chile,PatagonianArgentinaandSouthAfrica(McDowall&Frankenberg,1981).

ThefamilyisparticularlydiverseinsouthernAustraliawhere5generaand22speciesoccur infreshwaterandestuarineloticandlentichabitats,91%ofwhichareendemictothe continent(Allen etal. ,2002).Galaxiidscommonlyoccurfromsealeveluptoelevationsof around1200ma.s.l.inAustralia,althoughonespecies( Galaxiasolidus )inhabitslakeand creekhabitatsuptoapproximately2000ma.s.l.intheKosciuszkoareaofsouthernNew

SouthWales(Raadik&Kuiter,2002).

12 StatusofgalaxiidfishesinTasmania

ThemainislandofTasmaniaanditsnumeroussmalleroffshoreislands(totallandareaof

55000km 2(Williams,1974))lieatthesoutheasterntipofmainlandAustralia(between

143°48’148°30’Eand39°34’43°41’S)(Fig.1).ThelandformofcentralTasmaniais dominatedbytheTasmanianCentralPlateau(TCP)(Fig.1)wherethereareover4000lentic waterbodies(Lynch,1972)manyofwhichareinterconnected.Currently,34freshwaterfish species(25nativeand9exotic)areknowntooccurinTasmanianinlandwaters(Table1), whichprovidearegionalstrongholdforgalaxiidsinAustraliawith5generaand16species,

11ofwhichareendemic(Table1).Galaxiidsaccountfor64%ofnativefreshwaterfish speciesinTasmania(Table1)andthemajorityoftheisland’sthreatenedfreshwaterfish species,withonlyoneotherfreshwaterspecies, Prototroctesmaraena ,beinglistedunder

StateandNationallegislation.ThegalaxiidfaunacomprisestwosubfamilieswithGalaxiinae beingdominant(15species)whileAplochitoninaeisrepresentedby Lovettiasealii .Galaxiids aredistributedthroughoutTasmaniainsubalpinelakes,rivers,wetlands,coastallagoonsand estuaries.TheTCPisregardedasalocalised‘hotspot’offreshwaterfishendemismin comparisontootherregionsofAustralia(Allen etal. ,2002),duetotheoccurrenceofseven endemicnonmigratorygalaxiidspeciesinhighlandlakesandlagoons.

Galaxiidshavesignificantconservationvaluewithover50%ofspeciesgloballybeing

‘threatened’(i.e.protectedunderlegislationintheirregion(s)ofoccurrenceorlistedon conservationawarenesslists).InAustralia,16ofthe22species(73%)areconsideredtobe

‘threatened’(ASFB,2003).CommonthreatsinAustralianwatersincludebarrierstofish movement(Harris,1984;Koehn&O'Connor,1990;Gehrke etal. ,2002)andcompetition and/orpredationfromintroducedsalmonids(Tilzey,1976;Raadik etal. ,1996;Lintermans,

2000),whileoverexploitation(i.e.harvesting)mayhaveanimpactongalaxiidpopulationsin somesystemsinTasmania(Blackburn,1950).

13 StatusofgalaxiidfishesinTasmania

Fig. 1. TasmanianregionshowingtheCentralPlateauandsomemajorriversandlakes.

14 StatusofgalaxiidfishesinTasmania

Table 1. FreshwaterfishfaunaofTasmania.

Nativespecies Introducedspecies Peddergalaxias( Galaxiaspedderensis )* Browntrout( Salmotrutta ) Swangalaxias( Galaxiasfontanus )* Atlanticsalmon( Salmosalar ) Clarencegalaxias( Galaxiasjohnstoni )* Rainbowtrout( Oncorhynchusmykiss ) Saddledgalaxias( Galaxiastanycephalus )* Brooktrout( Salvelinusfontinalis ) Goldengalaxias( Galaxiasauratus )* Redfinperch( Percafluviatilis )† Swampgalaxias( Galaxiasparvus )* Goldfish( Carassiusauratus )† Climbinggalaxias( Galaxiasbrevipinnis ) Tench( Tincatinca )† Spottedgalaxias( Galaxiastruttaceus ) Europeancarp( Cyprinuscarpio )†‡ Commongalaxias( Galaxiasmaculatus ) Easterngambusia( Gambusiaholbrooki )†‡ Arthursparagalaxias( Paragalaxiasmesotes )* Shannonparagalaxias( Paragalaxiasdissimilis )* GreatLakeparagalaxias( Paragalaxiaseleotroides )* Westernparagalaxias( Paragalaxiasjulianus )* Australianmudfish( Neochannacleaveri ) Dwarfgalaxias( Galaxiellapusilla ) Tasmanianwhitebait( Lovettiasealii )* Tasmaniansmelt( Retropinnatasmanica )* Riverblackfish( Gadopsismarmoratus ) Australiangrayling( Prototroctesmaraena ) Shortheadedlamprey( Mordaciamordax ) Pouchedlamprey( Geotriaaustralis ) Longfinnedeel( Anguillareinhardtii ) Shortfinnedeel( Anguillaaustralis ) Southernpygmyperch( Nannopercaaustralis ) Freshwaterflathead( Pseudaphritisurvillii )

*EndemictoTasmania. †Considereda‘pest’speciesbyStateauthorities. ‡Listedasa‘controlled’speciesunderStatelegislation.

15 StatusofgalaxiidfishesinTasmania

Theimperilledstatusoffreshwaterfishesandtheirconservationhasreceivedsignificant attentioninrecentyearsinAustralia(Cadwallader,1978;Ingram etal. ,1990;Pollard etal. ,

1990;Faragher&Harris,1994;Cadwallader,1996)andonaglobalscale(Cambray&

GiorgioBianco,1998;Duncan&Lockwood,2001).GiventhesignificanceoftheTasmanian galaxiidfaunaanditshighendemism,managementofthesefishesisofutmostimportanceto conservingtheregion’sfreshwaterfishbiodiversityandprotectingthespeciesdiversityofthe family.ThischapterbrieflycommentsonthetaxonomyofgalaxiidsinTasmania,summarises thefamily’sconservationstatusinTasmania,definesthreateningprocesses,anddiscusses managementissues.

2.3. Taxonomy

Untilrecently,onlythreeGalaxiinaegenerawererecognisedinTasmania;however,studies havewarrantedachangeinthetaxonomyofthemudfishpreviouslyknownas Galaxias cleaveri to Neochannacleaveri (McDowall,1997a;Waters&White,1997).Thisspecieswas consideredendemictoTasmaniauntil1980whenitwasfoundonmainlandAustraliaat

WilsonsPromontoryinVictoria(Fig.1)(Jackson&Davies,1982).Ithassincebeencollected onFlindersIslandinBassStrait(Green,1984)andalongthewesterncoastofVictoria

(Koehn&Raadik,1991),furtherconfirmingitsoccurrenceoutsideTasmania.Itistherefore proposedthatthecommonname‘Australianmudfish’(asusedbyMcDowall(1997a)),rather thanthecurrentlyused‘Tasmanianmudfish’,beadoptedfor N.cleaveri ,asitiscurrentlythe only Neochanna speciesrecognisedinAustralia.

AnadditionalTasmanianendemicspecies, G.niger ,describedbyAndrews(1985),hasnot beenincludedinthispaper(Table1)asitsvalidityisuncertain(Fulton1990;R.M.

McDowall,pers.comm.).Acurrentgeneticandmorphometricstudyonsomegalaxiids

16 StatusofgalaxiidfishesinTasmania

(Raadik,2001),includingthisspecies,shouldhelpresolveitstaxonomicstatus(T.A.Raadik, pers.comm.).

2.4. Conservation listings of Tasmanian galaxiids

ThegalaxiidfaunaofTasmaniahassignificantconservationvalue(Table2).Eleven

(10endemicspeciesplus Galaxiellapusilla )ofthe16species(69%)thatoccurinTasmania arecurrentlylistedundertheTasmanian ThreatenedSpeciesProtectionAct1995 andata nationallevelbytheAustralianSocietyforFishBiology(ASFB,2003).Fivearealsolisted undertheCommonwealth EnvironmentProtectionandBiodiversityConservationAct1999 andsevenataninternationallevel(IUCN,2003).

Tasmaniaishometoarguablythemost‘endangered’freshwaterfishinAustralia,

G.pedderensis ,whichisnolongerfoundinitsremainingnaturalhabitat(ofLake

Pedderimpoundment(Fig.1))andnowoccursonlyintwotranslocatedpopulations(Hamr,

1995;ThreatenedSpeciesSection,2006).Itisalsoimportanttonotethatallfourspeciesof theendemic Paragalaxias ,whichareconfinedtotheTCP,arelistedunderthreatened specieslegislation.

17 StatusofgalaxiidfishesinTasmania

Table 2. ConservationstatusofgalaxiidsinTasmania.

Conservationstatus Species TTSP a ASFB b EPBC c IUCN d Galaxiaspedderensis * endangered critically endangered critically endangered endangered Galaxiasfontanus * endangered endangered endangered critically endangered Galaxiasjohnstoni * endangered endangered endangered critically endangered Galaxiastanycephalus * vulnerable vulnerable vulnerable vulnerable

Galaxiasauratus * rare endangered

Galaxiasparvus * rare endangered datadeficient

Galaxiasbrevipinnis

Galaxiastruttaceus

Galaxiasmaculatus

Paragalaxiasmesotes * endangered endangered vulnerable

Paragalaxiasdissimilis * vulnerable endangered

Paragalaxiaseleotroides * vulnerable endangered

Paragalaxiasjulianus * rare lowrisk

Neochannacleaveri

Galaxiellapusilla rare vulnerable vulnerable vulnerable

Lovettiasealii * aTasmanian ThreatenedSpeciesProtectionAct1995 . bAustralianSocietyforFishBiologyThreatenedSpeciesListings2003(ASFB,2003). cCommonwealth EnvironmentProtectionandBiodiversityConservationAct1999 . dInternationalUnionforConservationofNatureandNaturalResourcesRedList2003(IUCN, 2003). *EndemictoTasmania.

18 StatusofgalaxiidfishesinTasmania

2.5. Threats to Tasmanian galaxiids

WhilethethreatsfacingsomeTasmaniangalaxiidspecieshavebeenreported(Hamr,1995;

Crook&Sanger,1997;Crook&Sanger,1998a,b;Koster,2003;Hardie etal. ,2004;

ThreatenedSpeciesSection,2006),mechanismsandthescaleofimpactshaveyettobe formallyidentifiedorquantified.

Majorthreatstofreshwaterfishspeciesonaglobalscalehavebeendiscussedand summarisedbyBruton(1995),whoproposedthatfactorscausingfishestobecomethreatened canbesummarisedintoeightbroadcategories.Whilehedidnotincludeacategorytoaccount forthenaturallyconfinedordisturbanceinducedfragmenteddistributionoffishes(i.e.

‘restricteddistribution’),itcanbeviewedasathreattothesurvivalofaspecies.Althoughnot aprocessitself,the‘restricteddistribution’ofaspeciesleavesitvulnerabletoenvironmental events(e.g.or)orhumaninducedhabitatchanges,whichcouldhavegenetic implicationsforsmallorisolatedpopulations(Shaffer,1981;Vrijenhoek,1998).As

Tasmanianendemicgalaxiidshavelimitednaturaldistributions,‘restricteddistribution’is consideredasignificantthreattothefaunaandithasbeenincludedinrecentnominationsfor listingseveralspeciesunderthreatenedspecieslegislation.

WeassessedthreatsfacingallgalaxiidfishesofTasmania(includingthosewithout conservationlistings)againsttheeightcategoriesproposedbyBruton(1995),withthe additionofaninthcategory,‘restricteddistribution’.

Summary of threats

Thethreekeythreatstoeachgalaxiidspeciesweredeterminedfromcurrentavailable information(publisheddata,governmentreportsandunpublisheddata),summed,and

19 StatusofgalaxiidfishesinTasmania expressedasapercentageofthenumberofspeciesaffectedbyeachthreat(Fig.2;

Appendix1).Fivethreatcategorieswerefoundtoberelevanttothecurrentstatusofgalaxiids inTasmania.‘Globaleffects’,acategoryproposedbyBruton(1995),wasthoughttobethe nextmostsignificant,althoughitwasnotbelievedtobeamajorpriorityforanyspeciesat present.

Exploitation

Habitat degradation

Restricted distribution

Hydrological manipulation

Exotic species

0 20 40 60 80 100 Species affected (%)

Fig. 2. ThreatstogalaxiidsinTasmania.ThreatcategorieshavebeenmodifiedfromBruton (1995).

Theimpactsassociatedwiththeintroductionof‘exoticspecies’(i.e.competitionand predation)werefoundtobeasignificantthreattoall16galaxiidspecies.Thisrelates primarilytosalmonidspecies,particularly Salmotrutta whichiswidespreadinTasmania.

‘Hydrologicalmanipulation’andthe‘restricteddistribution’ofmanyspecieswerethenext mostsignificantthreats,withthesecategoriesimpactingon75%and69%ofspecies respectively.General‘habitatdegradation’affects44%ofspeciesand‘exploitation’(i.e. harvesting)isamajorthreattotwospecies, N.cleaveri and L.sealii ,whichformsignificant componentsofwhitebaitstocksthataretargetedbyrecreationalfishers.

20 StatusofgalaxiidfishesinTasmania

Threats in detail

TheprimarythreattoTasmaniangalaxiidsisthoughttobecompetitionandpredationby introducedspecies(bothexoticandtranslocatednativespecies).Thesalmonids S.trutta and

Oncorhynchusmykiss ,whichformthebasisoftheState’srecreationaltroutfishery,areof greatestconcern. S.trutta hasfurtherrestrictedthealreadynaturallyconfineddistributionsof

G.fontanus intheSwanRiver(148°04’E,41°57’S)andMacquarieRiver(147°18’E,

41°50’S)catchments(Crook&Sanger,1998a)and G.johnstoni intheClarenceRiver catchment(146°19’E,42°06’S)(Crook&Sanger,1998b). S.trutta alsolimitstheabundance of G.auratus inlakesCrescentandSorell(Fig.1)(Hardie etal. ,2005), G.truttaceus (Ault&

White,1994)and G.tanycephalus (InlandFisheriesService,Tasmania,unpubl.data).Much oftheearlyspreadofsalmonidsinTasmaniaoccurredbeforemostgalaxiidspecieswere recognised. S.trutta isnowfoundinallhabitattypescontaininggalaxiidsinTasmaniaandis likelytohavehadvaryingimpactsonallspecies.Salmonidshavealsobeenreportedto impactongalaxiidsthroughcompetitionandpredationinotherregions(Crowl etal. ,1992;

Raadik etal. ,1996;Macchi etal. ,1999;Raadik&Kuiter,2002;Cambray,2003;McDowall,

2003).

Percafluviatilis aregenerallyviewedasanundesirable‘pest’speciesinTasmania,althoughit isnotlistedassuchinlegislation. P.fluviatilis impactsuponpopulationsof G.fontanus

(Crook&Sanger,1998a)andispresentincatchmentswithseveralothergalaxiidspecies.Its spreadintoothersystems,particularlythosecontainingendemicgalaxiids,couldhave devastatingeffects.Tasmaniangalaxiidshaveevolvedinisolationfromlargerfreshwater piscivoresandarethoughttobeparticularlyvulnerabletocompetitionanddirectpredation fromaggressiveintroducedspeciessuchas P.fluviatilis .Large P.fluviatilis arepiscivorous

21 StatusofgalaxiidfishesinTasmania

(Collette etal. ,1977)andithasbeensuggestedthattheycouldthreatensmallfishspecies, includinggalaxiids,insouthernWesternAustralia(Pen&Potter,1992;Morgan etal. ,2002).

Thepresentrestrictedpopulationsof Cyprinuscarpio and Gambusiaholbrooki inTasmania stemfromunauthorisedintroductionsduringthe1980s.Bothspeciesarealsoviewedas undesirable‘pest’speciesandarelistedas‘controlled’speciesundertheTasmanian Inland

FisheriesAct1995 .InTasmania, C.carpio areonlyfoundinlakesCrescentandSorellwhich isalsotheentirenaturalrangeoftheendemic G.auratus .Currently C.carpio areinlow abundanceduetoanintensivecontainmentanderadicationprogram(Diggle etal. ,2004;IFS,

2004).ElsewhereinAustralia, C.carpio hasbeenshowntodegradehabitats(Fletcher etal. ,

1985;King etal. ,1997;Robertson etal. ,1997)andalterthetrophicstructureoffreshwater ecosystems(Khan,2003;Khan etal. ,2003;Parkos etal. ,2003).Whileinteractionsbetween cyprinidsandgalaxiidsremainlargelyunstudied, C.carpio isthoughttoposeathreatto

G.auratus throughcompetitionforresources,andpossiblyhabitatdegradationifthespecies wastobecomeabundant.

Gambusiaholbrooki iscurrentlyrestrictedtopartsoftheTamarRivercatchment(Fig.1)in northernTasmania(Keane&Neira,2004)andafewsmallisolatedpopulationsinsouthern

Tasmania,whicharecurrentlybeingsubjectedtoeradicationefforts.Therecentintroduction of Gambusiaholbrooki toTasmaniaisofconcernasthisspecieshashadnegativeimpactson smallindigenousfishspecies(Myers,1965;Howe etal. ,1997).Itscloserelative,Gambusia affinis ,isanaggressivepredatorofjuvenilegalaxiidsinlaboratoryexperiments(Barrier&

Hicks,1994).Itthereforehasthepotentialtoimpactongalaxiidspeciesinthewild.

Gambusiaholbrookihasbeenidentifiedasasignificantthreattothenationallythreatened

Galaxiellapusilla (Koster,2003)asbothspeciespreferwetlandtypehabitats.

22 StatusofgalaxiidfishesinTasmania

Translocatednativefishspeciesalsoposeathreattogalaxiids.Forexample,thenative

G.brevipinnis whichwastranslocatedviahydroelectricdevelopmentfromtheGordonRiver catchment(siteofLakeGordon:Fig.1)intohabitatsthatwerepreviouslyonlyoccupiedby theendemicgalaxiids G.pedderensis and G.parvus ,inthesouthwestoftheState(Hamr,

1992b). G.brevipinnis mayhavecontributedtothedeclineof G.pedderensis inLakePedder afteritwasfloodedinthe1970s(Hamr,1995).Ithasbeenhypothesisedthat G.brevipinnis hassimilarlydisplacedsmallernonmigratorygalaxiidspeciesinabove impoundmentsinNewZealand(McDowall&Allibone,1994;Allibone,1999).Thisspecies hasalsobeentranslocatedbetweencatchmentsbytheSnowyMountainshydroelectricscheme onmainlandAustralia(Morison&Anderson,1991;Waters etal. ,2002).

Habitatalterationassociatedwiththehydrologicalmanipulationofinlandwatersis threatening75%ofTasmaniangalaxiids.Impoundmentsandwaterdiversionscreatedby

Statewidehydroelectricpowerschemesthatwerelargelyconstructedinthe196070sarethe maincontributors.Catchmentsoccupiedby10ofthe11endemicgalaxiidshavebeenaltered byhydrologicaldevelopments.Threatsassociatedwiththesedevelopmentsinriverine habitatsincludebarrierstomigrations,changesinflowregimes,andalterationstowater levels.Habitatsofimpoundednaturallakesareimpactedbyunseasonaland,insomecases highlyvariable,fluctuationsinwaterlevels.Thesealterationstohydrologicalregimescan degradehabitatattributesthatarecriticalinthelifecycleofgalaxiids(e.g.suitablespawning habitat(Hardie etal. ,inpress)).

Therestricteddistributionsof10endemicgalaxiidspecies,andtheindigenous Galaxiella pusilla ,makestheirsurvivalprecarious.Insomecasesthealreadyconfinednatural distributionsofthesespecieshavebeenfurtherreducedbyhumaninducedchangesor

23 StatusofgalaxiidfishesinTasmania throughexclusionfromhabitatsbyintroducedspecies(i.e. S.trutta ).Forseveralspecies(e.g.

G.johnstoni ),thedeclineprobablystartedwiththeintroductionofsalmonidsinthe1860s, andtheoriginaldistributionsarenotknown.Futurereductionintherangeofthesespecies andisolationoftheirpopulationsisofgreatconcern.

Habitatdegradation,includingimpactssuchassedimentationandreductionsinwaterquality causedbyurbanisation,andagricultureandforestrypractices,areconsideredtobesignificant threats.Landuseandcatchmentandriparianvegetationtypeshavebeenfoundtoinfluence thedistributionandabundanceofgalaxiidsinNewZealand(McDowall,1997b;Rowe etal. ,

1999;Eikaas etal. ,2005).Thepreservationofwetlandtypehabitatsisconsideredcriticalfor theconservationof Galaxiellapusilla and N.cleaveri (Koehn&Raadik,1991;Koster,2003).

Approximately20ofthe89TasmanianwetlandslistedundertheDirectoryofImportant

WetlandsinAustraliaaredecliningincondition,andonlyafewsignificantsitescurrently haveanysortofshortorlongtermsecurity(e.g.throughreservation)(Anon,2003).

TherecreationalwhitebaitfisheryinTasmaniamayposeathreattogalaxiidstocksinsome waters.Thisfishery,whichdatesbacktothe1930s,historicallyfocusedon L.sealii ,the dominantspeciesintheearlyspringtimemigratoryruns.However,thereopeningofthe recreationalseasonin1990forfourweeksduringspringinalimitednumberofrivershas targetedotherspecieswhichcontributetothemigrations,including G.maculatus ,

G.brevipinnis , G.truttaceus and N.cleaveri .Thefisherywasstudiedindetailinthe1940s

(Blackburn,1950),andthestatusofstockswasexaminedbrieflyduringthe1980s(Fulton&

Pavuk,1988),butnorecentsurveyshavetakenplace.Althoughinformationislimited, recreationalharvestingofwhitebaitmigrationscouldpotentiallythreaten L.sealii and

N.cleaveri populationsinsomesystemswithrelativelysmallcatchments;itcouldalsobe

24 StatusofgalaxiidfishesinTasmania impactingonothergalaxiidpopulationsbyregularlydepletingpopulationsatlevelsthatare unsustainable.

Globalclimatechangesatanumberoftemporalscales(Shulmeister etal. ,2004)wouldno doubthaveimplicationsforallgalaxiidspeciesintheState.However,atgreatestriskarenon migratoryspecieswhichhaverestricteddistributionsintheeastoftheState( Galaxiella pusilla and G.fontanus )whererainfallishistoricallylowandhighlyvariable.Eastern populationsofmigratorywhitebaitspeciesmayalsobeaffectedbyclimaticchanges.Climatic changemayalterlevelsofdischargeandseasonalityofflowsincoastalriverswhichare importanttothereproductionofthesespecies(Blackburn,1950),thus,limitproductionof theirpopulations.

Directeffectsofclimatechangeincludeelevatedwatertemperaturesanddecreasesinhabitat availabilityincludingtotallossofwaterfromsmallheadwaterstreamsoccupiedby

G.fontanus .RecentlowwaterlevelsinlakesCrescentandSorellhavebeenfoundtohavea significantnegativeimpactontherecruitmentof G.auratus populationsthroughthe dewateringofspawningsubstrate(Hardie,2003).ImpactsonotherspeciesaroundTasmania mayalsobearesultofchangestohydrologicalregimesofstoragesandwaterwaysthatare componentsoftheState’shydroelectricscheme.Increasesinnaturalultravioletradiation

(UVR)mayalsoaffectrecruitmentofgalaxiidpopulationsinelevatedwatersontheTCP becauseexposuretoUVRmayincreasemortalityofgalaxiideggs(Battini etal. ,2000).

TheeffectofclimatechangeonthefreshwaterfishfaunaofNewZealand(whichhasa similarclimatetoTasmania),hasbeenexaminedbyMcDowall(1992a).Hepostulated, amongstotherthings,ashiftfromnorthtosouthinthedistributionsofwidespreadspecies,

25 StatusofgalaxiidfishesinTasmania butconcludedthathumanactivitiesweremorelikelytoinfluencetheconditionofwater coursesthanclimatechange.

2.6. Management issues for galaxiids in Tasmania

Recent conservation work

Overthepast20years,fisheriesmanagersinTasmaniahavebeguntodirectefforttowards conservingtheState’snativefreshwaterfishfauna,particularlygalaxiids.Therehasbeen recognitionofthesignificanceofgalaxiids,andtheimperilledstatusofmanyspecies, particularlywiththeprogressivelistingof10oftheendemicspeciesunderStatelegislation.

Workconductedundergalaxiidrecoveryplans(Sanger&Fulton,1991;Crook&Sanger,

1997)hasfocusedlargelyonmonitoringthestatusoffiveendemicspecies( G.pedderensis ,

G.fontanus , G.johnstoni , G.tanycephalus and G.parvus ),brieflyexaminingtheirbiology and,insomecases,instigatingongroundworkstoprotectpopulations.Ithasalsoincludeda publiceducationprogram.Anewrecoveryplanhasrecentlybeenprepared(Threatened

SpeciesSection,2006)includingall11galaxiidspeciesthatarelistedunderStatethreatened specieslegislation.Iffunded,thenewrecoveryplanwillcontinueconservationactionsforat leastanotherfiveyears.AmanagementplanfortheTasmanianwhitebaitfisheryhasalso recentlybeenprepared(IFS,2006)whichincludesmanagementstrategiestoprotectgalaxiid speciesthatcontributetowhitebaitmigrations.Intensiveresearchonthestatus,biologyand ecologyof G.auratus hasalsobeenundertaken(Hardie,2003;Hardie etal. ,2004,2005,

2006a;Hardie etal. ,2006b;Hardie etal. ,2007;Hardie etal. ,inpress).

Recentconservationmanagementactionsimplementedbytheseprojectsinclude establishmentandprotectionoftranslocatedpopulations,effortstoeradicateexoticfish,

26 StatusofgalaxiidfishesinTasmania constructionofbarrierstopreventexoticspeciesinvasionsandcaptivebreedingtrials

(Hardie,2003;ThreatenedSpeciesSection,2006).Theworkon G.auratus alsoaimstobetter definethespecies’lifehistoryanddeterminetheeffectsoflakelevelmanagement.

Pestspecieseradicationandcontrol,andeducationprogramshavealsobeenconducted.

Eradicationandcontainmenteffortshavefocusedonconfinedpopulationsofferalsalmonids,

C.carpio and Gambusiaholbrooki ,whileeducationaboutthenegativeimpactsofallfive introduced‘pest’specieshasalsotakenplace(R.Walker,pers.comm.).Publicawarenessof impactscausedbyintroducedspeciesiscriticaltotheconservationoftheState’sgalaxiid fauna.Thisisillustratedbyrecentunauthorisedintroductionsof C.carpio and Gambusia holbrooki ontotheislandandillegaltranslocationsof Gambusiaholbrooki andsalmonids withinTasmania.

Somebasicconservationstrategieshavebeenimplementedbyrecreationalfisheries managers,includingnolongerstockingsalmonidsintonaturalwatersthatdonotalready containthem(i.e.nodeliberateextensionofthedistributionofsalmonidsinnaturalwaters) andgenerallyconstrainingstockingrateswithinthehistoricallimitsforreceivingwaters.

However,habitatscontainingthreatenedgalaxiidspeciescontinuetobestockedwith salmonidseventhoughtheimpactofstockingstrategieshasnotbeenexamined.Clearly, workisneededinthisareaifTasmanianfisheriesmanagerswishtobalancetherecreational andconservationalcomponentsoftherefreshwaterfishresources.

Current data and knowledge gaps

ThefirstendemicTasmaniangalaxiidstobedescribedwere G.auratus and L.sealii

(Johnston,1883).Speciescontinuedtobedescribedovertheproceedingyearswiththelast majorperiodoftaxonomicworkoccurringinthelate1970swhenfivespeciesweredescribed

27 StatusofgalaxiidfishesinTasmania

(G.fontanus (Fulton,1978b), G.tanycephalus (Fulton,1978a), P.mesotes and P.eleotroides

(McDowall&Fulton,1978b), P.julianus (McDowall&Fulton,1978a)),while G.niger was describedin1985(Andrews,1985).Giventhegenerallycrypticnatureofgalaxiidsandthe largenumberofwatersinareasofremotewildernessinTasmania,itispossiblethatmore speciesremainundiscovered.Thereforeitisimportantthatfaunalsurveyscontinueinun sampledareas.Theuseofgenetictechniquesmayenabletherecognitionoffurtherspecies belongingtospeciescomplexeswhichhaveevolvedintheisolationofnaturallyfragmented populations.ThishasbeenthecaseinNewZealand,wheregeneticanalyseshaverecently discoveredgalaxiidspeciescomplexesthatwerepreviouslythoughttobelongtoasingle species(Allibone etal. ,1996;Allibone&Townsend,1997;Ling etal. ,2001;Waters&

Wallis,2001);thisalsoseemslikelyonmainlandAustralia(Raadik,2001).

EcologicaldataonTasmaniangalaxiidsarelimited.Informationavailableincludesstatusand distribution(Fulton,1990;Sanger&Fulton,1991;Chilcott&Humphries,1996;Crook&

Sanger,1997;Hardie,2003;Nelson,2004;ThreatenedSpeciesSection,2006)and evolutionaryhistoryandgeneticsofthegalaxiidfauna(Johnson etal. ,1981;Johnson etal. ,

1983;White etal. ,1987;Ovenden&White,1990;Ovenden etal. ,1993;Waters,1996;

Waters&White,1997;McDowall,1998),aswellasthebiologyandecologyofsomespecies

(Fulton,1982;Humphries,1989,1990;Sanger&Fulton,1991;Hamr,1992a;Frijlink,1999;

Hardie,2003;Davis,2004).However,manyaspectsofthegalaxiidfaunacriticalfor conservationmanagementhavenotbeenexamined.Theseincludethereproductivebiology, lifehistories,habitatuseandrequirementsofmostspecies,impactsofhabitatmanipulations

(suchaswaterlevels),aswellasmechanismsandimpactsofinteractionswithexoticspecies.

Thereisalsoalackofgeneticinformation,particularlyforthosespeciesthathaveisolated

28 StatusofgalaxiidfishesinTasmania populationsandfragmenteddistributions.Thethreatspreviouslyoutlinedalsoneedtobe examinedindetailtoenabletheirmitigation.

InformationongalaxiidbiologyislackingontheTCP,wheretherearesevenendemicspecies includingallfourspeciesof Paragalaxias .LenticwatersontheTCPalsosupportTasmania’s mostsignificantsalmonidfisheries.ArthursLakeandGreatLake(Fig.1)eachcontaintwo endemicgalaxiidspecies(ArthursLake: P.mesotes and G.tanycephalus ;GreatLake:

P.dissimilis and P.eleotroides ),whichhavehighlyrestricteddistributionsandarethoughtto beunderconsiderablepressurefromthesalmonidstockswhichareactivelymanagedand monitored.However,knowledgeofthelifecyclesandhabitatrequirementsof Paragalaxias spp.(Fulton,1982)and G.tanycephalus (Davis,2004)islimited.Thefactthatthesegalaxiids arecurrentlycoexistingwithintroducedsalmonidsshouldnotbeviewedasindicatingtheir resiliencetothreatsposedbysalmonids.Salmonidsposewelldocumentedthreatstogalaxiids

(Crowl etal. ,1992),andalterationstotheconditionoftheselakescouldcompoundtoinduce asuddendecreaseintheabundanceofgalaxiids,fromwhichtheremaybelongtermgenetic consequences.

TherecentyearsofverylowwaterlevelsinGreatLake,ahydromanagedimpoundednatural lakecomplex,areanexampleofasignificanthabitatchangethatcouldhavedirectorindirect effectsongalaxiidpopulations.Theselowwaterlevelsimpactuponthecharophytealgal beds,whichareattimesprolificinthebenthichabitatsofGreatLake. Paragalaxias spp. appeartofavourtheseweedbeds,buttheimpactofalteredwaterlevelsontheirpopulationsis unknown.Therapiddisappearanceof G.pedderensis fromtheLakePedderimpoundment lessthanadecadeafterthenaturallakewasinundated(Lake,1998)illustrateshowthestatus

29 StatusofgalaxiidfishesinTasmania ofalakedwellingpopulationcanchangeduetocompoundingimpacts(i.e.introductionof nonnativefishandhabitatalterations).

TherecreationalsalmonidfisheryinTasmaniaisimportantlocallyandinternationally,andit providesfinancialbenefitstomanysectorsofthecommunity(Anon,2003).Historical evidencesuggeststhatintroducedsalmonidshavebeendetrimentaltoatleastafew

Tasmaniangalaxiidspecies.Forexample, G.johnstoni hasdisappearedfromwaterstowhich

S.trutta havebeenintroducedorinvaded(ThreatenedSpeciesSection,2006).Conversely, somespecieshavemaintainedpopulationswithintroducedsalmonidsforover100years.

Again, G.johnstoni providesanexample;itpersistsinClarenceLagoon(146°19’E,42°06’S) despitethestockingof Salvelinusfontinalis since1963.Maintenanceofthe S.fontinalis fisherydiscouragestheillegalintroductionofothersalmonidspeciestotheLagoon

(ThreatenedSpeciesSection,2006).Clearly,thereisstillanurgentneedforfurtherworkto identifyboththeimpactsofintroducedsalmonidsandthemechanismsthatoperatetoallow somegalaxiidstocoexistwiththem.

Watersthatcontainexistingsalmonidfisheriesandcoexistinggalaxiidscontinuetobe restocked.Thesetranslocationsareaimedatmaintainingrecreationalsalmonidfisheries,even thoughcostbenefitanalysesofthesemanagementstrategieshavenotbeenperformed,let aloneassessmentsoftheimpactstheymaybehavingonindigenousspecies.Illegalrestocking ortranslocationofsalmonidsishighlylikelytooccurifgivenwatersweredestocked.Illegal translocationsaffectingendangeredspecieshavebeendetectedinrecentyears(e.g. introductionof O.mykiss intoalagooncontaining G.johnstoni (Jackson etal. ,2004)), therefore,anyfuturestrategicremovalsordestockingofsalmonidswillneedtobeplanned andexecutedcarefully.

30 StatusofgalaxiidfishesinTasmania

Translocationsoffishspeciesviawatertransfersassociatedwithhydroelectricschemeson theTCPalsothreatengalaxiids.ExamplesincludetransfersfromtheWesternLakesarea

(146°22’E,41°52’S)intoGreatLake,andbetweenGreatLakeandArthursLake,whichhave thepotentialtotranslocate Paragalaxias spp.and G.tanycephalus intowatersoutsideoftheir naturalrange.Thelikelihoodofthesetranslocationsandtheirpotentialimpactsongalaxiid populationshavenotbeenfullyinvestigated.

ThestatusoftheTasmanianwhitebaitfisheryrequiresassessment.Investigationsshould focusonthesizeofruns,speciescompositioninrecreationalcatches,anddeterminethe effectivenessofcurrentmanagementregulationsinprotectingpopulations.Comparisons couldthenbedrawnwithpreviousstudies(Blackburn,1950;Fulton&Pavuk,1988).

Short-term actions

Intheshortterm,severalactionsareconsideredimportantfortheconservationofTasmanian galaxiids.Thestatusofpopulationsofthreatenedspeciesshouldbemonitoredonaregular basisandrigorousquantitativeorstandardisedqualitativemonitoringmethodsneedtobe developed.Thequestion“whatdothecatchesmean?”needstobeformallyaddressedtoaid programsmonitoringgalaxiidpopulations.

AstatewideGISbasedfreshwaterfishdistributiondatabaseshouldbedeveloped.Currently therecordingofcatchesbyvariouscollectors(publicandprivatesectors)ispoorlyco ordinatedandmanagementofthedatais adhoc .Adatabaseofthiskindwouldhavebenefits forthemanagementofgalaxiidfaunaandalsoothernatives,recreationalspecies,andexotic pests.MonitoringofthespreadofexoticspeciesiscriticaltothemanagementoftheState’s freshwaterfisheriesasawhole.

31 StatusofgalaxiidfishesinTasmania

Theecologyandbiologyofallgalaxiidspeciesneedtobeexamined,especiallyforspecies undergreatestthreat.Mitigationstrategiestoaddressidentifiedthreatsshouldbeinvestigated andimplemented,andfaunalsurveysinunsampledareasshouldbegivenpriority.New populationsofgalaxiidsshouldbeinvestigatedbytaxonomistsand,wherenecessary,genetic analysesbeconductedtoresolvetaxonomicuncertainty.

Long-term issues

SuccessfullongtermmanagementoftheTasmaniangalaxiidfaunadependsuponseveral issuesbeingaddressed.Theseincludemanagementoffishpassage,protectionand rehabilitationofaquaticandriparianhabitats,controlovertranslocationsofexoticandnative speciesandcontainmentofthedistributionofexoticpestspecies,andadherencetoprotective legislationforthreatenedspeciesmanagement.

Clearlytheuseoffreshwater,estuarineandmarinehabitatsbydiadromousgalaxiidsduring theirlifecyclesmakesmanagementoftheir‘habitat’difficult.Problemsassociatedwiththe conservationofdiadromousspecieshavebeenhighlightedbyMcDowall(1992b).In

Tasmania,diadromousspeciesoccurbelowandaboveseawardlimits,meaningthattheir protectionandmanagementrelyonatleasttwoseparatemanagementagenciesanddifferent governmentlegislation.However,currentlymostdiadromousgalaxiidspeciesinTasmania arecommon,widespread,andarenotconsideredtobesignificantlythreatened.Non diadromousspecieswithrestricteddistributionsareofgreatestconcern.Managementissues associatedwiththesespecies,whichgenerallyoccupylentichabitats(i.e.lakesandlagoons), aremorelocalisedand,therefore,shouldbemorestraightforwardtoaddress.

32 StatusofgalaxiidfishesinTasmania

ControloverthetranslocationofexoticandnativefishintoandwithinTasmaniaiscriticalto theconservationofthegalaxiidfauna.ManagementoftheState’srecreationaland commercialfreshwaterfisheriesshouldaimtoconservetheindigenousfishfauna.The distributionsofsalmonidsshouldbemonitored,particularlyastheyareavaluedrecreational speciesinTasmaniaandillegaltranslocationsareknowntooccur.InNewZealandithasbeen speculatedthat S.trutta iscontinuingtospread130yearsaftertheirinitialintroductioninto thecountry(McDowall,2000).ThisisalsothecaseinTasmania(InlandFisheriesService,

Tasmania,unpubl.data).

ThedistributionofotherintroducedspecieswithintheStateshouldcontinuetobemonitored.

Managementauthoritiesalsoneedtobeawareofthefurtherspreadofexoticspeciesin southernmainlandAustraliaandofthepotentialsuccessorotherwiseoftranslocationsof speciesthatarecurrentlynotfoundinTasmania.Authoritiesshouldalsotakeactionto preventtheintroductionandestablishmentoffurtherfreshwaterfishspeciesintotheStateby enforcinggreatercontroloveraquariumandaquacultureindustries.

Resourcestoenforceconservationlegislationareoftenlacking,thusfreshwaterfishesarenot alwaysaffordedtheprotectiontheyaredesignatedunderlaw(CollaresPereira&Cowx,

2004).ConservationlistingsofTasmaniangalaxiidsshouldbekeptuptodatetoensurethat threatenedspecieshaveappropriateprotectionprovidedbylegislationwhenmanagement issuesarise.Thelevelofprotectiongivento‘threatened’speciesinTasmanianeedstobe consideredbymanagementauthorities.State( ThreatenedSpeciesProtectionAct1995 )and

Commonwealth( EnvironmentProtectionandBiodiversityConservationAct1999 )legislation isinplacefortheprotectionofthreatenedspeciesinTasmania;however,thelegislationis,in somecases,notimplemented.UnderStatelegislation,anyimpactuponasingleindividualof

33 StatusofgalaxiidfishesinTasmania alistedspeciesisnotacceptable.However,currentfisheriesmanagementstrategiesinwaters containingthreatenedgalaxiidsdonothavesufficientdatatoensurethesecurityofthese fishesviatheirmanagementactions.Noristhere,inmanycases,quantitativeevidenceto provethatthesestrategiesareactuallybeneficialtorecreationalfisheries.

Currentpoliciesthatallowthecontinuedstockingofsalmonidsintowaterscontaininglisted galaxiidsarebeingimplementedwithoutassessmentsoftheirimpactsorbenefitto recreationalfisheries.However,removalofsalmonidsfromwaterscontainingthreatened speciesisbeingimplementedandisrecognisedasamanagementoptionforotherwaters wherethreatenedspeciesexist.Whileprogramstoeradicatesalmonidsfromsomewatersof conservationsignificancewilllikelyberesistedorreversedillegally,wefeelstronglythatfor thelongtermsecurityofTasmaniangalaxiidsthreethingsneedtohappen.First,monitoring oftheentirefishcommunitieswithinwhichvulnerablegalaxiidpopulationsoccurneedsto continue,sothatillegaloraccidentalintroductionsofexoticspeciescanbespeedilydealt with.Second,theimpactsofintroducedsalmonidsneedtobefurtherresearched,prioritising themostvulnerablegalaxiids,sothat adhoc hypothesesaboutthepotentiallongterm coexistenceofgalaxiidsandsalmonidscanbeevaluated,andthebenefitsofchangesto stockingregimescanbeclearlyidentified.Third,forthosewaterswheretheriskposedby continuedsalmonidstockingisuntenable,substantialeducationalandenforcementcampaigns shouldbeundertakentoensuretheenduringsuccessofanyattemptatsalmonideradicationor destocking.

34 Comparisonofmonitoringmethods

3. Comparison of day and night fyke netting, electro-fishing and snorkelling for monitoring a population of the threatened golden galaxias ( Galaxias auratus )*

*PublishedasHardieS.A.,BarmutaL.A.&WhiteR.W.G.(2006)in Hydrobiologia 560,145

158.

3.1. Abstract

Thelittoralzoneofsmalloffstreamwaterstoragecontainingatranslocatedpopulationof

Galaxiasauratus wassampledfortnightlyatdayandnightwithfykenets,electrofishingand snorkellingover3months.Variationinpopulationdataprovidedbyeachmethod,including relativeabundanceindices,sizestructure,andhabitatpreferences,wereexamined.Aspectsof behaviourandactivitypatternswerealsoinvestigated.Nightsamplingusingallmethods consistentlyyieldedlargercatchesthandaysampling.Thesizestructureofcatchesvaried, withelectrofishingatnightandfykenettingduringthedayhavinghigherproportionsof juveniles,whilstsnorkellingatnightandelectrofishingduringthedayhadhigherproportions ofadults.Fykenettingatnightyieldedbyfarthelargestcatches(~3foldmorethanother methods)andalsocapturedgoodnumbersofbothjuvenilesandadults. Galaxiasauratus had astrongdielactivitypatternandweremostactiveatnight.Themajorityofthepopulation movedintothelittoralzoneduringthenightandbackintodeeperwaterduringtheday.A smallnumberofjuvenilesremainedinthelittoralzoneandsomeadultsshelteredinthedense coverofspeciesrichlittoralvegetationduringtheday.Shoreswithshallowdepthprofiles appearedtobepreferredduetohighercatchesintheseareasusingallmethods.Basedonthe resultsofthisstudy,fykenettingatnightinlittoralhabitatsisrecommendedformonitoring

35 Comparisonofmonitoringmethods populationsof G.auratus .Fykenettingislikelytobeaneffectivemethodformonitoring otherlacustrinegalaxiidspecies;however,furtherworkisrequiredtoinvestigatetheeffects ofhabitatvariablesandfishcommunitystructureonactivitypatternsofgalaxiids,andhence theircatchabilitywithvariousmethods,inmoreextensivelenticenvironments.

Keywords:Galaxiidae;Tasmania;threatenedfish;populationmonitoring;samplingmethods; dielactivitypatterns

3.2. Introduction

Conservationbasedmanagementeffortsforthreatenedfreshwaterfishesareincreasingly beingconductedundersingleormultispeciesrecoveryplans(Brown etal. ,1998;

DepartmentofConservation,2004).Accuratemonitoringofthestatusofthreatenedfish populationsisacriticalcomponentofresearchthatisrequiredtounderpinmanagement decisionsrelatingtothreatenedspecies(Cowx,2002);itisalsofundamentaltothe implementationofrecoveryprogramswhichaimtopreventfurtherdeclinesandfaciliate recovery.Abundanceandsizestructuredataarerequiredtoassesstheimpactofidentified threats,theeffectivenessofmanagementstrategies,andthelongandshorttermviabilityof populations.

FishesoftheGalaxiidaearefoundinfreshwaterandestuarineenvironmentsincooltemperate regionsofseverallandmassesintheSouthernHemisphere(McDowall&Fulton,1996).

Manyspeciesthroughoutthefamily’srangeofoccurrenceareconsideredtobethreatened

(Hamr,1995;Gill&Morgan,1997;David,2002;Keith,2002);hence,monitoring populationsforconservationpurposesisacommonmanagementpractice.Galaxiidsaccount for64%ofthenativefreshwaterfishesinTasmania,Australiaandcomprise16species,of

36 Comparisonofmonitoringmethods which11areendemictotheisland.Tasmanianendemicgalaxiidsaregenerallylakedwelling

(i.e.nonmigratorylifehistories),havehighlyrestricteddistributionsandare‘threatened’(i.e. listedunderStatethreatenedspecieslegislation)(Hardie etal. ,2006b)andtheyhaveallbeen includedinarecentrecoveryplan(ThreatenedSpeciesSection,2006)whichaimstoconserve theirpopulations.

Thegoldengalaxias( Galaxiasauratus (Johnston))isatypicalexampleofanendemic

Tasmaniangalaxiid.Thisspeciesisnonmigratory,protectedbyStateandnationallegislation, anditsdistributionisconfinedtotheupperreachesoftheClydeRivercatchmentinthesouth eastoftheTasmanianCentralPlateau(Hardie etal. ,2004).Twonaturalpopulationsexistin theinterconnectedlakesCrescentandSorell.Twotranslocatedpopulationshavealsorecently beenestablishedinoffstreamagriculturalwaterstorageswithinthecatchmentbyauthorised transfersofadultfishfromnaturalpopulations(Hardie,2003).

Aprimaryrequirementwhenselectingmethodstosamplethreatenedfishistoensuredamage tocaughtfishisminimal,soastoenhancethesurvivorshipofreleasedfish.Techniquesfor monitoringgalaxiidpopulationsneedtoaccountforseveralattributesofthesefishes:small size(<300mmlong),scalelessandhencesusceptibletoabrasion,generallybenthicand cryptic(McDowall&Frankenberg,1981),dielchangesinbehaviourandactivity(Rowe&

Chisnall,1996a;David&Closs,2003),andoccupationofadiverserangeofhabitats

(McDowall,1990;McDowall&Fulton,1996).

Methodspreviouslyusedtomonitorgalaxiidpopulationsinlakesgenerallysamplelittoral habitatsandincludeelectrofishing(Fulton,1982;Humphries,1989),trapnetting(Rowe etal. ,

2003),seinenetting(Pollard,1971),gillnetting(Barriga etal. ,2002),fykenetting(Rowe&

37 Comparisonofmonitoringmethods

Chisnall,1997a;Rowe etal. ,2002a)andsnorkelcensuses(InlandFisheriesService,

Tasmania,unpubl.data).Inlakehydroacousticmeasurementshavealsobeenemployedin largerwatersforgalaxiidlarvae(Taylor etal. ,2000)andadults(Rowe&Chisnall,1996a).

Catchabilityforagivenmethodisameasureoftheinteractionbetweentheabundanceofa fishspeciesandtheefficiencyofthefishingmethod,whichisinfluencedbyhabitat parameters,fishbehaviour,andcommunitydynamics(ArreguínSánchez,1996).Fishspecies areusuallyactiveduringlimitedperiodswithinthedielcycle;diurnalspeciesindaytime, nocturnalspeciesatnightandcrepuscularspeciesatdawnanddusk(Wootton,1998).Littoral habitatsareknowntobeimportantareasforsmallsizedfishinlenticwaters(Fischer&

Eckmann,1997;Brosse&Lek,2002),withtheexistenceofdifferentkindsoflittoral structure,substrate,orvegetationbeingcriticaltothezonationoffishinlakes(Matthews,

1998).Givenvariationsinmorphology,behaviourandhabitatuseinfishofdifferentageand size,allsamplingmethodshavelimitationsanddegreesofbiastowardscertainsizeclassesof aspecies.Toreducethisbias,acombinationoffishingmethodsisoftenemployedtomonitor populations.However,useofasingletechnique,towhichthetargetspecieshasahighdegree ofcatchabilityacrossvaryinghabitats,enablesdirectcomparisonsofrelativeabundanceand sometimespopulationstructure.

InTasmania,monitoringregimesforlacustrinegalaxiidpopulationshavereliedlargelyupon shorebasedelectrofishingandtoalesserextentlittoralfykenetting,despitesuspected unquantifiedinfluencesoncatchabilityfromclimaticvariables(e.g.windinduced turbulence),habitatparameters(e.g.substratetypes),andbehaviouralpatternsoftarget species.Recentdaytimelittoralsamplingof G.auratus inlakesCrescentandSorellshowed thatcatchesusingbothelectrofishingandfykenettingaregreaterinshallow(depths<1.0m)

38 Comparisonofmonitoringmethods areaswhichcontaincomplexhabitatssuchasrockysubstrateoraquaticvegetation(Hardie,

2003).Electrofishedcatchesofseveralfishspecieshavebeenshowntovaryacrossdiel periodsinlittoralhabitats(Pierce etal. ,2001),ashavefykenetcatchesofadultgalaxiids

(Rowe&Chisnall,1996a).Todate,theefficiencyofsamplingregimesformonitoring lacustrinegalaxiidpopulationshasnotbeencriticallyexamined.Evaluationofcommonly usedmethodswillimprovetheaccuracyofmonitoringtechniquesand,therefore,theabilityto detectchangesinthestatusofthreatenedspeciesandeffectivenessofconservationstrategies.

Theaimofthisstudyistoassesswhichofthreecommonlyusedsamplingmethods(fyke netting,electrofishingandsnorkelcensuses)bestdescribesthestatusofasmallpopulationof

G.auratus .Todothiswecomparedcatchesof G.auratus collectedfromthelittoralzoneofa smallclosedsystem(offstreamwaterstorage)atdayandnightusingthesesampling methods.Giventhehabitatspresentatthestudysite,eachofthesemethodswasdeemed suitableforsamplingthegalaxiidpopulation.Variationinpopulationdataprovidedbyeach samplingmethodincludingrelativeabundanceindices,sizestructure,andhabitatpreferences wereexamined.Aspectsofbehaviourandactivitypatternswerealsoinvestigated.The hypothesesanalysedwerethat(1) G.auratus havestrongdielmovementpatternsandare nocturnallyactive,hence,catcheswillbegreateratnight,(2)fykenetsaretheleastsize biasedandthereforecapturethebroadestsizerangeoffish,and(3)vegetatedcoverand shallowmarginswithgentlegradientprofilesarepreferredhabitatsfor G.auratus .Theresults ofthisstudyshouldprovideinsightintobroadermethodologicalissuesformonitoring lacustrinegalaxiidpopulations.

39 Comparisonofmonitoringmethods

3.3. Materials and methods

Study site

Thetranslocatedpopulationof G.auratus sampledduringthisexperimentwaslocatedina small(0.6ha)humanmade,offstreamagriculturalwaterstorage(referredtoasa‘’for theremainderofthispaper)onthesoutheasternfringeoftheTasmanianCentralPlateau,

Australiaat550ma.s.l.(42°17’S,147°8’E)(Fig.1).ThedamwhichissituatedintheFordell

Creekcatchment,asmallsubcatchmentoftheClydeRivercatchment,wasstockedwith ca

700adult G.auratus fromLakeCrescentduring1998bytheTasmanianInlandFisheries

Service(Hardie,2003).Anabundantselfsustainingpopulationof G.auratus hassince established(Hardie,2003)andnootherfishspecieshavebeenrecordedinthedam(S.A.

Hardie,unpubl.data).Thedamwasconstructedin1972,isrectangularinshape,hasa capacityof11300m 3atfullsupplylevel(butwasapproximately0.4mbelowfullsupply levelduringthestudy)andhadameandepthof22.5m(maximumof3.2m)atthetimeof theexperiment.Nativedryschlerophyllforestcoversthedam’scatchment(30ha),80%of whichhasbeenfencedtoexcludestock.

Habitat variables

Physicochemicalwatervariables(conductivity,dissolvedoxygen,pHandturbidity)were measuredatfourlittoralsitesonceduringeachsamplingoccasion( n=20)usingthe followinginstrumentsrespectively:WTWConductivityMeter(LF330),WTWOximeter

(Oxi330),WTWphMeter(pH320),andHACHTurbidimeter(2100P).Waterlevelwasalso measuredatthebeginningofeachsamplingoccasion( n=5)fromareferencepointmarkedat thestartoftheexperiment.Threewatertemperatureloggers(OnSolutionPtyLtd)were deployedatadepthof0.5minthelittoralzoneandweredownloadedperiodically.

40 Comparisonofmonitoringmethods

Fig. 1. Locationofstudysiteandotherpopulationsof Galaxiasauratus inthelakesCrescent andSorellregion,Tasmania,Australia.

41 Comparisonofmonitoringmethods

Shorelinedepthprofilesweresurveyedalong18transectsat90°totheshore.Depthreadings weretakenat1mintervalsfromtheshoreuntiladepthof~1.2mwasreached(within7mof shallowersouthernandeasternshoresand4mofdeepernorthernandwesternshores).The outeredgeofbedsofemergentvegetationwasalsorecordedtothenearest1malong transects.

Aquaticvegetationinthelittoralzonewassurveyedat16sites(siteswerepositionedin clockwiseorderstartinginthenortheastcorner).Plantspecies,speciespercentcover,and waterdepthweremeasuredwithina1m×1mquadratateachsite.TheBraunBlanquet coverscale(Moore&Chapman,1986)wasusedtodefinetheareaofcoverprovidedbyeach plantspeciesatthewatersurfaceandatthesurfaceofthesubstrate.

Fish sampling

FishweresampledbetweenMarchandMay2004.Thetimeofyearselectedforthisstudy

(autumn)wasbasedonknowledgeofthereproductivecycleandrecruitmentdynamicsof

G.auratus atthestudysiteandinnaturalpopulations.Afterautumn,catchabilityofadultsin littoralhabitatsbecomeshighlyvariableandmayincreasesignificantlyduringspawning

(winter–earlyspring)(Hardie etal. ,2005)whilejuvenilesrecruitintoadulthabitatsduring summer(Chapter8).

Thesamplingregimeofthisstudyconsistedoffivefortnightlysamplingoccasions(each lasting34d)withinwhicheachofthefishingmethodswasemployedatdayandnight

(withina24hperiod).Thesequenceofmethodsineachsamplingoccasionvariedand accountedfor5ofthe6possiblesequences.Thestartingphotoperiod(nightorday)foreach samplingoccasionwasrandomlyselected.

42 Comparisonofmonitoringmethods

Fishweresampledusing12singlewingfinemeshedfykenets(3m×0.6mwing,570mm

Dshapedentrance,5mmstretchedmesh),backpackelectrofishing(SmithandRootInc, model12BPOW,250mmanodering)andsnorkelcensuses(14Wtorchatnight).Fykenets alsohad80mmstretchedmeshscreensontheentrancetoavoidcaptureofplatypus(Grant et al. ,2004)andwaterbirds(Beumer etal. ,1981).Sunriseoccurredat06240713handsunset at17031936hduringtheexperiment.Fykenetsweresetandpulledwithinthe2hoflight eithersideofsunriseandsunsetandelectrofishingandsnorkellingwereperformedatmidday and2haftersunsetfordayandnightsampling,respectively.

Nettingsites(meandepthrange370930mm)werespatiallydistributedaroundthelittoral perimeterofthedam.Netsweresetindividuallyatalternating45°anglestotheshore.The samesiteswereusedfornettingsessionsthroughoutthestudyandsoaktimeaveraged8.5h and15.5hduringdayandnightsessionsrespectively.Electrofishingwasundertakenalong zigzaggedtransectsaroundtheentirelittoralzoneofthedam(<1.2mdeep)byateamof two,withstunnedfishbeingcollectedbythedipnetoftheassistant.Electricalsettingswere keptconstantoneachsamplingoccasion(330V,DCcurrentof20Hzandpulsefrequencyof

8ms).Snorkelcensusesinvolvedasinglediverswimmingaroundtheentirelittoralzone

(observationstakenatdepths<1.6m)(Fig.2),withthelengthofobservedfishbeing estimatedtothenearest10mmandrecordedbyashorebasedassistant.Snorkellingvisibility wasdeterminedonasingleoccasionatbothdayandnightbymeasuringthedistancefrom whichawhitesign(300×210mm)withtheblackletter“A”(140mmhighand10mmline thickness)positionedat0.5mbelowthesurfacecouldberead.Visibilitywasfoundtobe

1.5mduringdayand2.4matnight.Electrofishingandsnorkellingeffort(timetocomplete

1lapoflittoralmargin)variedfrom3055min,generallytakinglongeratnightwhencatches weregreater.

43 Comparisonofmonitoringmethods

Fig. 2. Daytimesnorkelcensusoflittoralzoneofthedamthatcontainsatranslocated populationof Galaxiasauratus during2004(sampler:ScottHardie).

Catchshore 1(i.e.N,E,SandW)foreachmethodwasrecordedandsummedtoobtainthe totalcatchforeachsession.Allfishcapturedbyfykenettingandelectrofishingwere anaesthetisedusingacloveoilbasedanaesthetic(Aquis®)andthelengths(totalforklength

(TFL),nearestmm)ofasubsampleof50fishweremeasured.Anaesthetisedfishwere allowedtorecoverinfreshwaterbeforebeingreleasedbackintothedam.Wherelarge numbersoffishwerecollected( n>50),approximatelyequalproportionsofthecatchwere releasedineachcornerofthedam.

Data analysis

Meandepthat1mintervalsfromshorewascalculatedforeachshoreline,anddepthprofiles wereplotted.Linearregressionwasusedtoquantifyshoregradientsusingdepthprofiledata.

Communitycompositionoflittoralvegetationwasexaminedusingagglomerativehierarchical

44 Comparisonofmonitoringmethods clusteranalysesimplementedbytheunweightedpairgroupsmethodusingarithmetic averages(UPGMA)(Legendre&Legendre,1998)ofthesurveysitesbasedonBrayCurtis matrixofdissimilarities(Faith etal. ,1987)ofspeciespresence/absence.Vegetationdatawere alsoanalysedusingthesamemethodstocomparesitesintermsoftheirstructuralsimilarityin totalvegetativecovermeasuredatthewatersurfaceandatthesurfaceofthesubstrate.Catch dataforeachfishingmethodanddielperiodwerepooledandsquareroottransformedto normaliseresidualspriortoanalysis.Twowayanalysisofvariance(ANOVA)wasusedto determinedifferencesincatchesduringdayandnightandbetweenfishingmethods.Because nofishwererecordedbysnorkellingduringtheday,thetwowayANOVAwasonlycarried outincludingtheothertwomethods,whileaonewayANOVAwasusedtotestfor differencesbetweenmethodsatnight.Lengthdataforfishingmethodsanddielperiodswere pooledandcumulativelengthfrequencydistributionsfromeachmethodwerecomparedusing

KolmogorovSmirnovtwosampletests(Quinn&Keough,2002).Dieldifferencesincatches betweenmethodswereanalysedtoinvestigatehabitatuseandactivitypatterns.Catchdatafor eachshorewerecorrectedtoaccountforthedifferentlengthofshores(fishm 1ofshore)and thesecorrectedvalueswerelog 10 ( x+1)transformedtonormaliseresiduals.Thesedatawere analysedusingtwowayANOVAforeachshorewithtwofixedfactors:dielperiod(dayor night)crossedwithfishingmethod(fykenetting,electrofishingorsnorkelling),followedby

Tukey’stestsforanyunplannedmultiplecomparisons(thethreewayANOVAcrossingdiel period,fishingmethodandshoreyieldedahighlysignificant3wayinteraction,hencethe twowayanalyses).AllanalyseswerecarriedoutinRversion2.1.1(RDevelopmentCore

Team,2005)usingthepackagescluster(Maechler&basedonSoriginalbyPeterRousseeuw

([email protected])([email protected])andinitialRportbyKurt.Hornik@R project.org,2005)andvegan(Oksanen etal. ,2005)forclusteranalyses.Thesignificance levelforhypothesistestswas P=0.05.

45 Comparisonofmonitoringmethods

3.4. Results

Habitat characteristics

Physicochemicalmeasurementsinthelittoralzoneremainedreasonablyconstant

(mean±S.E.);turbidity2.74±0.11NTU,dissolvedoxygen10.60±0.27mgL1, conductivity278±0.92Scm 1,pH8.04±0.06,althoughtherewasagradualdecreasein watertemperaturefromameanof14.6°Cduringthefirstsamplingoccasionto7.1°Cduring thefifthoccasion.Thewaterlevelofthedamvariedmarginallywithin±60mmduringthe entireexperiment.

Profilesofthedam’sshoresaredepictedinFig.3;gradientswereallapproximatelylinear withshallowergradientsonthesouthernandeasternshores.Clusteranalysisshowedthat aquaticvegetationinthelittoralzonewasrelativelysimilarintermsofspeciescomposition, exceptforinthenortheastcorner(NE_1)ofthedam,whichhadmorespeciesandaunique combinationofplantscomparedtoallothersites(Fig.4a;Table1).Theamountofvegetative coverwasfairlyhomogenouswithtwomajorgroupsofsites(Fig.4b).Thelargergroup, whichincludedthediversenortheastcornersite,hadsimilardegreesofcoveratboththe watersurfaceandthesubstrate(~80100%coverineach),whereastheothergroupconsisted ofsitesonthedeeperlittoralshores(i.e.sitesE_3,E_5,SW_9,SE_6andS_8)wherecoverat thesubstratewas3050%lessthanatthewatersurface.Inshorelittoralareas(<1mdeepand

<4mfromshoreforsouthernandeasternshoresand<3mfromshorefornorthernand westernshores)weredominatedbyamixtureofsubmerged( Myriophyllum sp.and Lilaeopsis polyantha )andemergent( Eleocharisacuta )aquaticvegetation,whileoffshorelittoralareas

(11.6mdeepand<8mfromshore)weredominatedbysubmergedvegetation( Myriophyllum sp.and L.polyantha ).

46 Comparisonofmonitoringmethods

Distance offshore (m) 1 2 3 4 5 6 7

0.2 East South North 0.4 West

0.6

0.8 Mean depth (m) depth Mean 1.0

1.2

1.4

Fig. 3.Depthprofilesofdamshorelines.

47 Comparisonofmonitoringmethods

(a) NE_1 N_16 E_5 W_12 S_8 E_4 0.0 0.2 0.4 0.6 E_3 W_11 N_15 SE_6 E_2 SW_9 NW_14 W_13 S_7 W_10 Bray-Curtisindex dissimilarity

(b) E_3 E_5 S_8 SW_9 SE_6 S_7 E_2 0.00 0.05 0.10 0.15 W_10 W_13 N_16 NE_1 W_12 E_4 N_15 W_11 NW_14 Bray-Curtis dissimilarity index Bray-Curtis dissimilarity

Fig. 4.DendrogramsofagglomerativehierarchicalclusteranalysisbasedonBrayCurtis matrixofdissimilaritiesin(a)speciesrichnessand(b)coveratsurfaceandsubstratelevels betweenvegetationsurveysites.Sitesatabbreviatedbyshore(E=east,N=north, NE=northeastcorner,NW=northwestcorner,S=south,SE=southeastcorner, SW=southwestcornerandW=west)andsitenumber.Notedifferentyaxisscales.

48 Comparisonofmonitoringmethods

Table 1. Speciescompositionofaquaticvegetationinthelittoralzoneofthedam. Macrophytespecies 2

Site 1 C EA EG LP M NA P PT RA TP No.ofspp.

NE_1 + + + + + + 6

E_2 + ++ 3

E_3 + ++ 3

E_4 + ++ 3

E_5 + ++ 3

SE_6 + ++ 3

S_7 + ++ 3

S_8 + ++ 3

SW_9 ++++ 4

W_10 + ++ 3

W_11 + ++ 3

W_12 + + + + + 5

W_13 + +++ 4

NW_14 + + + + + 5

N_15 ++++ 4

N_16 + + 2

1Sitesareabbreviatedbyshore(E=east,N=north,NE=northeastcorner,NW=northwest corner,S=south,SE=southeastcorner,SW=southwestcornerandW=west)suffixed withsitenumber. 2Macrophytenamesareabbreviatedas: Characeae sp.(C), Eleocharisacuta (EA), Elatine gratioloides (EG), Lilaeopsispolyantha (LP), Myriophyllum sp.(M), Neopaxiaaustralasica (NA), Poaceae sp.(P), Potamogetontricarinatus (PT), Ranunculusamphitrichus (RA),and Triglochinprocerum (TP).

49 Comparisonofmonitoringmethods

Comparison of fishing methods

Smallnumbersofjuvenileswereperiodicallyobservedfeedingfromthesurfaceofthewater atdaytimeduringthestudy.Snorkelobservationsatnightrevealedthatjuvenilesgenerally occurredinshallow,inshorehabitats(<0.6m)containingamixtureofsubmergedand emergentvegetation,whereasadultswerestationedinepibenthicmicrohabitatsindeeper openwater(0.61.2m)abovesubmergedvegetation.Adultsweregenerallydistributedevenly

(approximately0.41.0mapart)withintheselittoralhabitats.Bothadultsandjuvenileswere observedforagingforinvertebratesinsubmergedvegetationatnight.Aggressiveterritorial behaviourwasobservedbetweenadultandjuvenilefish,withlargerfishchasingsmallfish awayfromtheirfeedingarea.

Atotalof2388 G.auratus weresampledduringthestudy(174duringthedayand2214at night;pooledlengthrange60171TFLmm).Noshorttermmortalityfromsamplingwas observedandnootherfishspecieswerecaught.Therewasahighlysignificantinteraction betweendielperiodandfishingmethod(omittingsnorkelling: F1,16 =56.7, P<0.001)with greatercatchesatnightforallothermethods.Themagnitudeofthisdifferencedependedon fishingmethod(Fig.5).Therewasnosignificantdifferencebetweendaytimefykenet catchesandelectrofishing( P=0.85).Atnight,fykenettingcaught~3foldmorefishthan eitheroftheothermethods( F2,12 =59.4, P<0.001).

Sampledfishcomprisedtwodistinctgroupsofsizeclasseswhichweretakentorepresent juveniles(60100TFLmm)andadults(101170TFLmm).Pooledcatchdataforthethree fishingmethodsyieldedsignificantlydifferentcumulativelengthfrequencies(all P<0.01).

Similarly,lengthfrequenciesofcatchesforeachmethodalsovariedwithdielperiod(Fig.6).

Thereweresignificantdifferencesinlengthfrequenciesbetweenthedayandnightcatches

50 Comparisonofmonitoringmethods frombothelectrofishing( P<0.05)andfykenetting( P<0.001).Electrofishingcaughtmore juvenilesatnightandmoreadultsduringtheday.Fykenettingcaughtpredominately juvenilesduringtheday,whileatnighttherewasamorebalancedcatchofjuvenileandadult fish.Nofishwereobservedbysnorkellingduringthedayandfishobservedatnightwere predominatelylargersizedadultfish.

350

300 Day Night 250

200

150

100

Mean catch (no. of fish) of (no. catch Mean 50

0

Electrofish Fyke net Snorkel

Fig. 5.Mean(±1S.E.)dielcatchesorobservationsof Galaxiasauratus byelectrofishing, fykenettingandsnorkelling(nofishwereobservedbysnorkellingduringdaytime).

51 Comparisonofmonitoringmethods

60 80 100120140160 60 80 100120140160 60 80 100120140 160

Night : Electrofish Night : Fyke net Night : Snorkel

n = 181 n = 250 n = 436 40 40

30 30

20 20

10 10

0 0 Day : Electrofish Day : Fyke net

n = 77 n = 97 Frequency (%) Frequency 40

30

20

10

0 60 80 100120140160 60 80 100120140160 Fork length (mm)

Fig. 6.Cumulativelengthfrequenciesofdielcatchesorobservationsof Galaxiasauratus byelectrofishing,fykenettingandsnorkelling(nofish wereobservedbysnorkellingduringdaytime).

52 Comparisonofmonitoringmethods

Habitat use and behaviour

Galaxiasauratus appearstoprefershallowlittoralhabitatswithgentlyslopingdepthprofiles ascatchesforallfishingmethods,exceptforelectrofishingduringtheday,weregenerally greateroneasternandsouthernshores(Fig.7).Themajorityoffish(>90%)sampledby electrofishingduringthedaywerecapturedinthenortheastcornerofthedam(Fig.3and

Table1;regionsurroundingsiteNE_1).Analysisofcorrectedcatchdata(fishm 1ofshore) fornightsamplesshowedtherewasnosignificantinteractionbetweenmethodorshore

(F6,44=0.5, P=0.8),butthereweredifferencesbetweenmethods( F2,44 =112.71, P<0.001) andshores( F3,44 =14.56, P<0.001)(Fig.7).Tukey’stestsforeachofthesemaineffects revealedthatallpairwisecomparisonsweresignificantlydifferentbetweenfishingmethods, whileamongsttheshores,theeasternshorehadsignificantlymorefishm 1thanallother shores,andthesouthernshorehadmorefishm 1thanthenorthernshore.Fordaysamples, fishm 1foreachshorediffereddependingonthemethodemployed(shore ×fishingmethod interaction: F3,23 =6.37, P=0.01).Tukey’stestswithineachfishingmethodshowedno significantdifferencesbetweenshoresforfykenets,whiletheeasternshorehadsignificantly morefishm 1thanthewesternshore(Fig.7).

53 Comparisonofmonitoringmethods

North East South West North East South West North East South West Night : Electrofish Night : Fyke net Night : Snorkel

1.5 1.5 )

1 1.0 1.0 −

0.5 0.5

0.0 0.0 Day : Electrofish Day : Fyke net

1.5 (Corrected catch) (fish m (fish catch) (Corrected 10 1.0 Log

0.5

0.0 North East South West North East South West Shore

Fig. 7.Boxplotsofcatchesorobservationsof Galaxiasauratus pershorebyelectrofishing,fykenettingandsnorkelling.Dotsrepresentthe medianandopencirclesdenotevaluesthatlieoutsidetherangespannedbythewhiskers(nofishwereobservedbysnorkellingduringdaytime).

54 Comparisonofmonitoringmethods

3.5. Discussion

Evaluation of sampling methods

Ideally,regimesformonitoringthestatusofpopulationsofthreatenedfishesshoulduse efficientfishingmethodswhichprovidecatchesthat:(1)proportionallyrepresentallsize classes(i.e.arenotselective),and(2)aresufficientlysensitivetoenableearlydetectionof alterationsinpopulationsize.Comparisonsofthecatchesfromeachfishingmethodinthis studyarelimitedbynotknowingtheabsoluteabundanceorsizestructureofthe G.auratus populationsampled.However,giventherelativelysmallsizeofthedamandthelargeeffort employedforeachfishingmethod(e.g.electrofishandsnorkelentirelittoralzone),direct comparisonsbetweenmethodsshouldprovideausefulassessment,atleast,ofthesensitivity ofeachtechnique.

Thisstudyhasshownthatsamplingatnightusingeitherfykenetting,electrofishingor snorkellingyieldedlargercatchesof G.auratus thanduringtheday.Fykenettingatnightwas themostefficientsamplingregimeasitproducedthelargestcatches(mean=313fish session 1);however,theproportionofjuvenileswaslowerinnighttimefykecatchesthanin thedaytime,whichmaysuggestsomedifferentialactivitypatternsbetweenadultsand juveniles.Clearly,thisneedstoberesolvedfurtherbymoreintensivedielsampling experiments.Daytimefykenettingcapturedfewadultsandonlysmallnumbersofjuveniles

(mean=19fishsession 1).Therefore,itappearsthatnighttimefykenettingisamoreefficient methodforsamplingthe G.auratus populationofthedam.Theefficiencyofnighttimefyke nettingfor G.auratus islikelytobeduetoincreasedactivityinallsizeclassesinthelittoral zoneatnight,butcouldalsobepartlyattributedtofishseekingthecoverprovidedbynets.

Thehighcatchabilityofcoverorientedfishspecieshasbeenrelatedtotheabilityoffykenets toprovidecoverinotherstudies(Krueger etal. ,1998;Rogers etal. ,2003).

55 Comparisonofmonitoringmethods

Meshsizecanbeusedtoadjustthesizeselectivityoffykenetcatches(Kraft&Johnson,

1992;Chisnall&West,1996).Thefinemesh(5mmdiameter)usedinthisstudyenabledthe captureofanextensivesizerangeofgalaxiids(64171TFLmm).Althoughtheefforttoset andretrievefykenetswasgreaterthanthatneededfortheothermethods(i.e.requiringtwo sitevisitsandtimetocleananddrynetsbeforestorage),theresultsobtainedbyfykenetting atnightjustifythisextraeffort.

Thedesignofgalaxiidpopulationmonitoringregimesincorporatingfykenettingneedto avoidbiasduetoseasonalvariationincatches.Thishasoccurredinwildpopulationsof

G.auratus withtemporalcatchesincreasingduringspawning(winter–earlyspring)(Hardie etal. ,2005).However,basedonourresults,samplinginlatesummer–autumnwithfykenets isrecommendedformonitoringtheabundanceandsizestructureofthegalaxiidpopulationin thedamsampled.Finemeshedfykenetshavebeeneffectiveforassessingcommunityor populationstructureofbenthicfishesinlakeselsewhere(Krueger etal. ,1998)andtheirusein combinationwithothermethodshasbeenrecommendedforsamplinglittoralfish assemblages(Weaveretal. ,1993;Fago,1998).Ourresultsfurthersupportthese recommendations.

Electrofishingcaughtsmallersamplesoffishthannighttimefykenettingatbothday

(mean=15fishsession 1)andnight(mean=42fishsession 1).Nighttimeelectrofishingwas moreeffectivethandaytimeasitcapturedlargernumbersofjuvenileandadultfish.

However,weobservedthattheefficiencyofelectrofishingatdayandnightwasverypoor, duetothickvegetationhinderingthecaptureofstunnedfishaftertheirinitialdetection.

Therefore,catchesunderrepresentedtheabundanceoffishpresentinthelittoralzone.

56 Comparisonofmonitoringmethods

Nightelectrofishinghasbeenreportedtomoreefficientthandayelectrofishingforfishin riverine(Paragamian,1989)andlake(McInerny&Cross,2000)habitats.Electrofishingis biasedtowardslargersizefish(Zalewski,1983)anditisalsomoreeffectiveinshallower waterwhereavoidanceoftheelectricfieldismoredifficult(Reynolds,1996).Inthisstudy, juvenile G.auratus werethoughttobemoresusceptibletoelectrofishingatnight,asthey occupiedtheshallowermargins(<0.6m).Daytimeelectrofishingiscommonlyusedto monitorTasmaniangalaxiidpopulationsinlenticwaters(ThreatenedSpeciesSection,2006).

Electrofishingmaybeeffectiveforpresence/absencesurveys;however,abundanceandsize structuredatafromelectrofishingsamplesshouldalsobetreatedwithcautiongiventhis techniques’biastowardslargerfishandtheeffluenceofhabitatrelatedvariables(i.e.fish habitatuseandpoorcatchabilityindensevegetation)hadoncatchesinthisstudy.Ifbackpack electrofishingistobeusedtomonitorgalaxiidpopulations,thensamplingatnightshouldbe considered.

Snorkellinginthedaywasineffectiveformonitoringthe G.auratus population,butnight samplingencounteredmanyfish(mean=87fishsession 1).Nofishwereobservedby snorkellingduringtheday,which,basedontheresultsoftheothermethods,accurately reflectsthesmallnumberofgalaxiidsinopenwaterandsparselyvegetatedareasinthelittoral zoneduringtheday.Wealsosuspectthatthesmallnumberoffishthatmayhaveoccupied thesehabitatsduringthedayweremorelikelytobefrightenedbythediverindaylightand soughtshelterbeforedetection.

Thesizestructureoffishobservedwhensnorkellingatnightwasstronglybiasedtowards adults(>100TFLmm).Underwatermagnificationoftheactualsizeofobservedfish(Mullner etal. ,1998)wasnotaccountedforinthisstudyandmaybepartlyresponsibleforthisbias.

57 Comparisonofmonitoringmethods

However,visualobservationsindicatedthatareasofdeeperwaterbeyondthelittoralbedsof emergentvegetationwerefavouredbylargerfish.Thisregionwasnotsampledaseffectively bytheothermethods,particularlyelectrofishing.Conversely,shallowerareasthatcontained denserstandsofemergentvegetationwhichareprobablyoccupiedpredominatelybyjuveniles werepoorlysampledbysnorkellingduetothecoverprovidedtofish.Basedonourresults, dependingonsuitablewaterclarity,snorkellingatnightcouldbeusedtoassess presence/absenceandtheabundanceofadultfishinagivenpopulation,butshouldnotbe reliedupontodeterminetheyearclassstrengthofjuvenilesoroverallpopulationstructurein galaxiidmonitoringprograms.

Diel activity, habitat use and behaviour

Dielshiftsinhabitatusearecommoninsmallsizedfishinlenticfreshwaterhabitatsandare generallythoughttobelinkedtopredatoravoidance(Fuiman&Magurran,1994)andfeeding strategies(Pitcher,1993).Differencesintheabundanceandsizestructureofcatchesatday andnightinthisstudyenabledthedielactivitypatternsof G.auratus tobeexamined.Catches weresignificantlygreateratnightusingallsamplingmethods(passiveandactive)soitwould appearthat G.auratus areeithernocturnallyactiveormanyfishmoveinshoreand concentrateinthelittoralzoneatthistime.Severalothergalaxiidspeciesarealsonocturnally active(Glova&Sagar,1989;Rowe&Chisnall,1996b;David&Closs,2003).

Galaxiasauratus showastrongdielshiftinhabitatuse.Duringtheday,themajorityoffish appearedtoretreattodeeperwaterwithsmallnumbersofjuvenilesremaininginsparsely vegetatedlittoralhabitatsandsomeadultsshelteringinthedensespeciesrichvegetationin thenortheastcornerofthedam.Dielfykenetandelectrofishingcatchesindicatethat,at night,largernumbersofbothjuvenilesandadultsmovedintolittoralareas,withmuchgreater

58 Comparisonofmonitoringmethods catchesofbothsizeclassesatthistime.Highercatchesonshoreswithshallowdepthprofiles

(southernandeasternshores)indicatedapreferenceforthesehabitats.Thismaybeafunction ofincreasedcatchabilitytothemethodsusedinshallowerwater.Fykenetsaremostefficient inshallowwaterandaregenerallysetwherethefloatlineisatthesurfacetopreventfish swimmingoverthewing(Rogers etal. ,2003),whiletheefficiencyofbackpackelectrofishing isknowntodecreasewithanincreaseinwaterdepth(Reynolds,1996).However,oursnorkel observationsindicated G.auratus hadapreferenceforshallowshoreswheresubmerged vegetationwasabundantincomparisontodeepershoreswherebarrensubstratewas dominant.

Coverprovidedbyaquaticmacrophytesinfluencespredatorpreyinteractionsinfreshwater fishcommunities(Savino&Stein,1989;Eklöv,1997)andalsodielactivitypatternsofprey fish(Jacobsen&Berg,1998).Thestructuralcomplexityofmacrophytesmayalsoinfluence thedistributionoffishesinlakeswithsmallsizedfishfavouringthesehabitats(Chick&

McIvor,1994;Weaver etal. ,1997).Thepreferenceofsomeadult G.auratus duringtheday forlittoralvegetationinthenortheastcornerofdamislikelytobeduetothegreaterand morestructurallycomplexcoverprovidedbyvegetationinthisarea.Foodresourceswerenot assessedinthedam,butvegetatedaquatichabitatsusuallycontainhigherabundancesof macroinvertebratesthanadjacentunvegetatedareas(Crowder&Cooper,1982).Adultsand juvenileswereobservedfeedingatnightwhensnorkellingwithstationaryfishforagingfor macroinvertebratesinsubmergedvegetation.Therefore,movementof G.auratus from offshoreareastothevegetatedlittoralzoneappearstobefeedingrelatedandmaytake advantageofanincreaseintheactivityofinvertebrateswhichcouldalsoseekshelterduring dayandbemorevulnerabletopredationatnight.

59 Comparisonofmonitoringmethods

Nootherfishspeciesoccurinthedamusedinthisstudythereforethebehaviourandactivity patternsobservedhaveoccurredwithoutcompetitionandpredationpressuresfromother aquaticspecies.However,avianpredatorscanaltertheabundanceandsizedistributionof teleostprey(Gliwicz&Warsaw,1992;Steinmetz etal. ,2003).Thepiscivoruswaterbird, whitefacedheron( Egrettanovaehollandiae ),wasfrequentlyobservedatthedamduringthe day,anditissuspectedthatcormorants( Phalacrocoraxcarbo ),alsoapiscivorousspecies, mayvisitthedamperiodically.Therefore,thedielmovementbetweenhabitatsobservedis thisstudymaybepartlyduetothethreatfromavianratherthanaquaticpredation.

Management implications

Thisstudyhascomparedthreefishingmethodsforsampling G.auratus inasmallclosed lenticsystem;however,thehabitatattributesandfishcommunitystructureofthedammay differfromthoseoflargerlakesoccupiedbyotherlacustrinegalaxiids.Forexample,many lenticwatersontheTCPthatareinhabitedbythreatenedgalaxiidpopulationsaredeeper, haveseverallittoralsubstratetypes(e.g.rocks,sand,aquaticvegetationandwoodydebris) andalsocontainabundantpopulationsofintroducedsalmonidswhichareknowntoheavily preyupongalaxiids(Crowl etal. ,1992;StuartSmith etal. ,2004).Giventhesedifferencesin habitat,andcompetitionfromandpredationbysalmonids,thebehaviourandactivitypatterns ofotherlacustrinegalaxiidsmayvaryfromthoseobservedhere.Therefore,theefficienciesof thesamplingmethodsusedinthisstudyarealsolikelytodiffer.Furtherworkisrequiredto investigatetheeffectsofhabitatandfishcommunitystructureonactivitypatternsofgalaxiids inlenticwaters.Examinationofthesefactorswillhelpdeterminethecatchabilityofgalaxiids indifferenthabitatsinrelationtovariousmethods.Thisinformationisneededtoindex galaxiidabundanceandpopulationstatususingcatchperuniteffort(CPUE)datacollectedby routinemonitoring.Researchinthisareashouldleadtopredictivemodelsofabundancebased

60 Comparisonofmonitoringmethods onCPUEdatathatwouldenableaccuratemonitoringofthreatenedgalaxiidpopulationswith minimaleffort.

61 Variationinfykenetcatches

4. Spawning related seasonal variation in fyke net catches of golden galaxias ( Galaxias auratus ): implications for monitoring lacustrine galaxiid populations*

*Published(withminoradjustments)asHardieS.A.,BarmutaL.A.&WhiteR.W.G.(2005) in FisheriesManagementandEcology 12,407409.

Keywords:abundance;catchability;fykenet;Galaxiidae;populationmonitoring;spawning

4.1. Introduction

FishesbelongingtothefamilyGalaxiidaearerelativelysmall(usually<300mmlong), freshwaterdwellingteleostswhicharefoundonseverallandmassesintheSouthern

Hemisphere(McDowall&Fulton,1996).Manygalaxiidspecieshavenondiadromouslife historiesandthedistributionofsomeoftheseconsistsofdiscretelacustrinepopulations

(McDowall,2000;Allen etal. ,2002).Duetorestrictedorfragmenteddistributions,along withotherimpacts(e.g.introducedfishspecies),manylacustrinegalaxiidspeciesare consideredtobethreatened;hence,monitoringpopulationsforconservationpurposesisa commonmanagementpractice.

Fykenetsareknowntobeeffectiveforcapturingsmallsizedbenthicorlittoralfishinlakes

(Fago,1998;Krueger etal. ,1998),includinggalaxiids(Rowe&Chisnall,1997a;Rowe etal. ,

2002a).FykenetcatchesofAtlanticsalmon, Salmosalar L.,inlakesvaryseasonally, suggestingrelativeabundanceindicesbasedoncatchdataoftenrequirecorrectionfor differencesincatchability(Ryan,1984).Seasonalfluctuationsinfykenetcatchesof

62 Variationinfykenetcatches

Europeanperch, Percafluviatilis L.,havealsobeenreportedduetospawningrelatedhabitat shifts(Kubecka,1992).Otherstudieshaveshownthatcoverorientatedfishspeciestendto haveincreasedcatchabilitybyfykenetsbecausefykenetsprovidecover(Krueger etal. ,

1998;Rogers etal. ,2003).

Knowledgeofseasonalchangesincatchabilityoftargetspeciestoagiventypeoffishinggear iscriticaltotheapplicationofthattechniqueforpopulationmonitoring.Populationsof threatenedfreshwaterfishareinfrequentlymonitored(i.e.seasonallyorannually)to determinetheirstatus,therefore,samplingregimesneedtoensurecatchesarenotbiasedby seasonalvariationsinbehaviourorhabitatuse.Whilefykenetshavepreviouslybeenusedto monitorlacustrinegalaxiidpopulations(ThreatenedSpeciesSection,2006),seasonal variationincatchesneedstobeexaminedtoavoidtheconfoundinginfluenceofsuch variation.

Thegoldengalaxias, Galaxiasauratus (Johnston),isendemictolakesCrescent(42°10’S,

147°10’E)andSorell(42°6’S,147°10’E)ontheCentralPlateauofTasmania,Australia.

Theselakesarelocatedatanelevationof c800ma.s.l.,andarerelativelyshallow(<3.5m) andturbid(meanof130NTUduringstudy). Galaxiasauratus isthreatenedbyalterationsto waterlevelregimes,andcompetitionandpredationfromintroducedfishspecies(Hardie et al. ,2004).

4.2. Materials and methods

Asacomponentofrecentworktoexaminethecurrentstatusandecologyof G.auratus populationsinlakesCrescentandSorell,bothpopulationsweresampledmonthlyusingfyke netsbetweenOctober2000andDecember2002(Hardie etal. ,inpress;Chapters5and8).

63 Variationinfykenetcatches

Thedataobtainedenabledseasonalvariationincatchestobeinvestigated.Thesamesampling techniquesandeffortwereappliedineachlakeoneachsamplingoccasion.Twelvefine meshedfykenets(2mmstretchedmesh)weresetovernight(meansoaktimeof18h)among threelittoralsiteswhichrepresentedthedominantsubstratumtypes(cobble,sand,fine sediment)ineachlake(i.e.fournetspersite).Theentrancesoffykenetswerefittedwith screens(84×70mmaluminiummesh)toavoidthecaptureofplatypus(Grant etal. ,2004) andwaterbirds(Beumer etal. ,1981).Differencesincatchesbetweenlakeswereexamined usingmixedmodelANOVAand apriori contrastswereusedtotestwhethercatchesduring spawningperiodsdifferedfrominterveningnonspawningperiods.Inspectionofresiduals suggestedthatthecountdatabelogtransformed;thistransformationwassuccessfulin removingheteroscedasticityandyieldingapproximatelynormallydistributedresiduals.

4.3. Results and discussion

Catchesof G.auratus werealwaysgreaterinLakeCrescentthaninLakeSorell(Fig.1).

Duringlateautumn–earlyspring(MaySeptemberinLakeSorellandJuneOctoberinLake

Crescent),G.auratus depositedeggs,whichwereapproximately1.5mmindiameterand adhesive,onthefinemeshoffykenetsduringsampling(Figs.1&2).Toverifythateggs weredepositedduetospawningactivity(i.e.fertilisationtookplace)asampleofeggswas incubatedinanaquariumuntilhatchingoccurred.Duringthe2001and2002spawning periodsinLakeCrescentandinthe2002periodinLakeSorell,catchesincreased substantiallyanddifferedsignificantlyfrominterveningnonspawningperiods(Fig.1:Lake

Crescent(all P<0.01),LakeSorell(all P<0.05)).Thisincreaseincatchesalsocoincideswith othermeasuresofthereproductivecycleof G.auratus (Hardie etal. ,inpress):duringwinter

–earlyspringthegonadalsomaticindex(ratioofgonadmasstobodymass)of G.auratus

64 Variationinfykenetcatches peaks,fishwithgonadsclassedaspostspawningwerepresentinbothpopulationsatthis time,andeggswerefoundonrockyshores.

(a) 10000 1000 100 10 1

(b)

10000 1000 Catch (no. of fish) of (no. Catch 100 10 1

1 1 1 2 t-00 -01 t-01 -02 t-02 c eb c c O Dec-00F Apr-01Jun-0Aug-0O Dec-0Feb Apr-02Jun-02Aug-0O Dec-02 Month

Fig. 1. Monthlyfykenetcatchesof Galaxiasauratus fromeachsitein(a)LakeSorelland (b)LakeCrescent.Catchateachsiteisindicatedwithopencirclesandthemeanmonthly catchisconnectedbysolidlines.Theoccurrenceof G.auratus eggsonfykenetmeshduring samplingisindicatedbygreyshading.

Galaxiasauratus probablyhasahighercatchabilitywithfykenettingthanwithother samplingmethods,includingshorebasedbackpackelectrofishingandseinenetting(Hardie et al. ,2006a).Thismaypartlybeduetoanattractiontowardsfykenetsbecauseofthecover theyprovide.However,theincreaseincatchesthatoccurredduringwinterspringcouldalso resultfromfishbeingattractedtothenetsasaspawningsubstrate,inadditiontoageneral increaseintheabundanceof G.auratus inthelittoralzoneduringthistime.

65 Variationinfykenetcatches

Fig. 2. Galaxiasauratus eggsdepositedonafinemeshedfykenetthatwasusedtosample fishduringAugust2001(sampler:ScottHardie).

Itappearsthatspawningrelatedseasonalchangesinbehaviourcanalterthecatchabilityof adult G.auratus byfinemeshedfykenets.Consequentlyfuturemonitoringregimesfor

G.auratus shouldavoidsamplingduringspawningperiodssothatabundancesarenot overestimated.Theresultsofthisstudysuggestthatmonitoringprogrammesshouldnot sample G.auratus populationsbetweenMayandOctober(inclusive).Thiswillprevent spawningrelatedincreasesincatchescausingoverestimatedrelativeabundanceindices.

Excludingcatchdatafromspawningperiods(MaytoOctober),therewereonaverageover

7.7timesmoregalaxiidsinLakeCrescentthaninLakeSorell(269fishmonth 1inLake

Crescentvs34fishmonth 1inLakeSorell; F=62.2;d.f.=1and4; P=0.0014).This differenceinmeancatchprobablyrepresentsthedifferenceinrelativeabundancebetweenthe

66 Variationinfykenetcatches twopopulations,whichissuspectedtobeduetodifferentratesofpredationbyintroduced salmonidsanddifferencesinprimaryproductivitybetweenthelakes.LakeCrescentismore productive(Cheng&Tyler,1976b)andhaslessabundantsalmonid(browntrout, Salmo trutta L.,andrainbowtrout, Oncorhynchusmykiss (Walbaum))populations(InlandFisheries

Service,Tasmaniaunpubl.data)thanLakeSorell,therefore,thecapacitytosupportamore abundantgalaxiidpopulation.

TasmanianinlandwatersprovidearegionalstrongholdforgalaxiidsinAustralia,withfive generaand16species(11ofwhichareendemic),but69%ofspeciesareconsideredtobe threatened(Hardie etal. ,2006b).Nineofthe11endemicgalaxiidspeciesprimarilyoccurin lenticwatersandhavenondiadromouslifecycles.Fykenettingiscurrentlyusedtomonitor populationsofsomeofthesespecies(J.E.Jackson,pers.comm.)andmaybeaneffective monitoringmethodformostpopulations.However,fisheriesmanagersinTasmaniaandother regionsshouldbecautiouswheninterpretingrelativeabundanceindicesbaseduponfykenet catchesoflacustrinegalaxiidpopulationsunlessseasonalvariationincatchabilityisknown.

Dataonthereproductivebiologyoftargetspeciesisoneaspectoftheirlifehistorythatmay improvethedesignofmonitoringprogrammes.

67 Ageandgrowthof Galaxiasauratus

5. Age, growth and population structure of the golden galaxias

(Galaxias auratus Johnston) in lakes Crescent and Sorell,

Tasmania, Australia*

*Tobesubmittedto MarineandFreshwaterResearch followingminoradjustments.

5.1. Abstract

Ageof Galaxiasauratus ( n=600)fromlakesCrescentandSorell,Tasmaniawasestimated bycountsofopaquezonesinthinsectionsofsagittalotoliths.Age0+fishwereassignedages basedontheoreticalbirthdatesandsampledates,andtheprogressionofmeancohortlengths wasusedtodescribetheirgrowth.Theoldestmaleandfemale G.auratus analysedwere10 and7yearsrespectively.Lengthatagedatashowedtwodistinctphasesinthegrowthof juvenilesandadults(transitionat~60mmforklength).VonBertalanffygrowthmodelsfitted lengthatagedataofadults,butdidnotaccuratelydescribethegrowthofjuveniles.Females growfasterandhavegreaterlongevitythanmales,andbothsexesinLakeSorellgrowfaster thanthoseinLakeCrescent.Fishinthe0+,1+and2+yearclassesdominatedtheage structureofbothpopulations,butthereweremore>2+inLakeCrescent.Differencesin habitatavailability,foodresources,andcompetitionandpredationinteractionswith introducedsalmonidsarelikelytoinfluencethegrowthandagestructureof G.auratus populations.Managementstrategiesshouldfocusonminimisingshorttermimpactssuchas reductionsinlakelevels,recruitmentfailuresorincreasesintheabundanceofsalmonids.

Keywords:TasmanianCentralPlateau;Galaxiidae;lacustrinepopulations;nondiadromous lifehistory;threatenedspecies

68 Ageandgrowthof Galaxiasauratus

5.2. Introduction

TheGalaxiidaearefoundintheSouthernHemisphere(Allen etal. ,2002),andthefamily accountsforasignificantproportionofthefreshwaterfishfaunaofsouthernAustralia

(McDowall&Frankenberg,1981).TheislandofTasmania,insouthernAustralia,providesa regionalstrongholdforthefamilywithadiversegalaxiidfaunacontainingfivegeneraand

16species(64%ofTasmaniannativefreshwaterspecies),ofwhich11areendemic(Hardie et al. ,2006b).ThreeTasmaniangalaxiidspecies( Galaxiasmaculatus , G.truttaceus and

G.brevipinnis )arealsocommoninnearbysouthernmainlandAustraliaandinNewZealand, andsomeaspectsoftheirbiologyhavebeenreported(McDowall&Fulton,1996;McDowall,

2000).However,biologicalinformationislimitedformostTasmanianendemicspeciesand

10ofthe11speciesareconsideredtobe‘threatened’(i.e.protectedunderStateorFederal

Australianthreatenedspecieslegislation)(Hardie etal. ,2006b).

Thegoldengalaxias( Galaxiasauratus Johnston)isendemictotheinterconnectedlakes

CrescentandSorellandtheirassociatedstreamsandwetlandsinthesoutheastofthe

TasmanianCentralPlateau(TCP)(Hardie etal. ,2004).Thisspecieshasanondiadromous lifehistorywithspawningoccurringduringlateautumn–winterandlarvaeemergingin winterspringandremainingpelagicuntil45monthsofage(Hardie etal. ,2004;Hardie et al. ,inpress;Chapter8).ItisalsooneofthelargestgalaxiidspeciesoftheTCPgrowingto

279mminlength(Johnston,1883). Galaxiasauratus closelyresemblesboththespotted galaxias, G.truttaceus ,andsaddledgalaxias, G.tanycephalus ,andisthoughttobealand lockedgeneticderivativeoftheancestralversionof G.truttaceus (Johnson etal. ,1981;

Johnson etal. ,1983;Ovenden etal. ,1993).Sincebeingdescribedover120yearsago

(Johnston,1883),thebiologyof G.auratus hasremainedlargelyunstudied.Thisspeciesis listedunderState(Tasmanian ThreatenedSpeciesProtectionAct1995 )andFederal

69 Ageandgrowthof Galaxiasauratus

(Commonwealth EnvironmentProtectionandBiodiversityConservationAct1999 )threatened specieslegislationduetoitshighlyrestricteddistribution,andthreatsassociatedwith alterationstowaterlevelregimesandintroducedfishspecies(i.e. Salmotrutta , Oncorhynchus mykiss and Cyprinuscarpio )(Hardie,2003).

Clearly,knowledgeofgrowthparametersandagestructureisneededtoeffectivelymonitor andprotectpopulationsof G.auratus andotherTasmanianendemicgalaxiids,whichare currentlymanagedunderathreatenedspeciesrecoveryplan(ThreatenedSpeciesSection,

2006);withoutthisinformation,thestatusofpopulationsandtheirviabilitycannotbe accuratelyaccessed.Calcifiedbodyparts,suchassagittalotoliths,areoftenusedtoage teleostfishspeciesastheyincorporategrowthrelatedincrementalstructure(DeVries&Frie,

1996).Researchershavehighlightedtheneedtovalidate(Beamish&McFarlane,1983)and identifytheprecisionandaccuracy(Campana,2001)ofageestimates.Severalfactors includingseasonalwatertemperaturecycles,feedingpatterns,andreproductivecycles influencesomaticandotolithgrowthaswellastheformationofannualgrowthrings(annuli)

(Beckman&Wilson,1995).

Severalstudiesfocusingonbothadult(Eldon,1978;Humphries,1989;Bonnett,1990;Pen&

Potter,1991b;Morgan,2003)andjuvenile(Cussac etal. ,1992;McDowall etal. ,1994;

McDowall&Kelly,1999)galaxiidshaveexaminedotolithstoderiveageestimates.However, toourknowledgeexaminationofthinsections,asopposedtowholeorcrackedotoliths,has notpreviouslybeenundertakenongalaxiids.Thistechniqueiscommonlyusedtoestimatethe ageoflargersizedAustralianfreshwaterfishes(MallenCooper&Stuart,2003;Brown etal. ,

2004;McDougall,2004)andmaybeapplicabletosmallerspecies.Insomefishes,otolith measurements(e.g.weight,lengthandwidth)aremorestronglycorrelatedwithagethanfish

70 Ageandgrowthof Galaxiasauratus length(Boehlert,1985)and,therefore,mayalsobeusedtoestimateageandgrowthmore cheaply(Pawson,1990;Francis&Campana,2004).Thesealternativemethodshavenot previouslybeenassessedingalaxiidspecies.

Theaimsofourstudywereto:( i)useanotolithsectioningtechniquetoderiveageestimates for G.auratus fromLakeCrescentandLakeSorellbasedonotolithincrementalstructure,( ii) validatethatthenumberofopaquezonesontransverseotolithsectionsisrelatedtoage,( iii ) examineagesomaticgrowth,andageotolithgrowthrelationshipsforsexesfromboth populations,and( iv)determinetheagestructureofpopulations.Basedonthesefindings,we discussimplicationsforconservationbasedmanagementstrategiesfor G.auratus andassess thefeasibilityofthistechniqueforexaminingtheageandgrowthofothergalaxiidspecies.

5.3. Materials and methods

Study site

TheinterconnectedLakeCrescent(42°10’S,147°10’E)andLakeSorell(42°6’S,147°10’E) lie1kmapartandaresituatedat~800ma.s.l.inthesoutheastoftheTCP,Australia(Fig.1).

Bothlakeswerenaturallenticwatersthathavehadtheirlevelsraisedonnumerousoccasions sincethe1830sforwaterstoragepurposes.LakesCrescentandSorellhaveareasof23and

52km2,respectively,meandepths<3.5matfullsupplylevels),andduringthisstudytheyhad meanturbiditiesof~130NTU(Uytendaal,2003).Thelakesareverysimilarphysicallyand chemicallyandarelocatedinanareaofuniformgeology,climate,soilsandvegetation

(Cheng&Tyler,1973).However,thetrophicstatusoftheselakesdiffers,withLakeSorell beingmesotrophicandLakeCrescentmoderatelyeutrophic(Cheng&Tyler,1976a).Lake

Crescenthasaphytoplanktonstandingcropbiomass10timesthatofLakeSorell(Cheng&

Tyler,1976b).

71 Ageandgrowthof Galaxiasauratus

Fig. 1. Locationofadultandjuvenile Galaxiasauratus samplingsitesinlakesCrescentand Sorell,Tasmania,Australia.Lakeperimetersareatfullsupplylevels.Wetlandareasare depictedbydarkshading.

72 Ageandgrowthof Galaxiasauratus

Thefishcommunitiesoftheselakescomprisetwonativespecies,theendemic G.auratus and indigenousshortfinnedeel( Anguillaaustralis ),andthreeexoticspecies,browntrout( Salmo trutta ),rainbowtrout( Oncorhynchusmykiss )andcommoncarp( Cyprinuscarpio ). Salmo trutta and O.mykiss werefirstintroducedintothelakesin1868and1922respectively,and

C.carpio wasfirstdiscoveredinthelakesin1995(IFS,2004).Salmonidsareroutinely stockedintoLakeCrescentand A.australis intobothlakestosupporttheirrespective recreationalandcommercialfisheries,whilst C.carpio areregardedasapestandcurrently subjecttoaneradicationprogram(IFS,2004).ThesalmonidpopulationsinLakeSorell, whichareselfsustaining,areseveralordersofmagnitudemoreabundantthanthepopulations inLakeCrescent(InlandFisheriesService,Tasmania,unpubl.data).

Water temperature

MeandailyinlakewatertemperaturewasmeasuredfromOctober1997toDecember2002in

LakeCrescentandLakeSorellusingOpticStowAwayTemperatureloggers(ModelWTA).

Temperatureloggersweredeployedatadepthof0.5matcentralsitesineachlake.The differencebetweenthewatertemperatureregimesofthelakeswasexaminedusingapaired ttestofthemeanmonthlytemperatures.

Pelagic sampling

Juvenile G.auratus weresampledmonthlyfromLakeCrescentandLakeSorellbetweenJuly

2000andDecember2002.Juvenileswerecollectedatfoursitesineachlake(Fig.1)by towingaconicalichthyoplanktonnet(400mmdiameter,1.25mtailwith500 mmesh)for

10min,approximately15mbehindaboatataspeed(~8kmh 1)thatensuredthenetwas samplingthetop1mofthewatercolumn.Catchesfrompelagicsitesweregenerally comprisedoflarvaeandjuveniles(<70mmforklength,FL).Allmaterialcollectedin

73 Ageandgrowthof Galaxiasauratus ichthyoplanktonsampleswaseuthanasedinananaestheticsolution(Aquis™)andpreserved in70%ethanol.

Littoral adult fish sampling

Juvenileandadult G.auratus (>40mmFL)weresampledmonthlyfromlittoralhabitatsin

LakeCrescentandLakeSorellbetweenJuly2000andDecember2002.Fishwerecollectedat threesitesineachlake(Fig.1)whichrepresentedoneofthedominantlittoralhabitats(fine sand,cobblerockandsediment)inbothlakesatthetimeofthestudy.Onthefirstthree samplingoccasionsfishweresampledbyelectrofishing100mofshorelineateachsitewitha backpackelectrofisher(SmithandRoot12BPOW).Duetothepoorefficiencyof electrofishingintheturbidwateroftheselakes(i.e.difficultyindetectingstunnedfish),on theremainingsamplingoccasionsfishweresampledusingfykenets.Fourfykenets(two

3m×0.6mwingandtwo5m×0.6mwingnetswith600mmDshapedentranceand2mm stretchedmesh)weresetintandemateachsite(12netsperlake).Allnetshada84×70mm aluminiumscreenintheentrancetoavoidthecaptureofplatypus( Ornithorhyncusanatinus ), waterbirdsandlargerfishspecies(e.g.salmonids).Netsweresetovernight(meansoaktime of18hours)inshallowmargins(depths≤1.2m).Catchesof G.auratus wereanaesthetisedin ananaestheticsolution(Aquis™)priortohandling.Asubsampleoffishfromeachlake

(LakeCrescent: n=43to77;LakeSorell: n=10to70)representingthesizerangeoffish captured,waseuthanasedinananaestheticsolution(Aquis™)andpreservedin70%ethanol.

Theremainingcapturedfishwererevivedinfreshwaterandreleasedatthesiteofcapture.

Laboratory procedures

TheFL(tothenearest1mm)ofthefirst100 G.auratus larvaeandsmalljuveniles

(≤35mmFL)andalllargejuveniles(≥36mmFL)ineachichthyoplanktonsamplewas

74 Ageandgrowthof Galaxiasauratus measured(LakeCrescent: n=3912,LakeSorell: n=4242).TheFL(tothenearest1mm)and totalweight(TW,tothenearest0.1g)of G.auratus collectedfromthelittoralhabitatswas measured(LakeCrescent: n=1624,LakeSorell: n=1354),andfishweresexedby microscopicexaminationofgonads.Dissectedfishfrombothpopulationscoveredlargesize ranges:LakeCrescent,38235mm(FL)and0.3173.4g(TW);LakeSorell,31179mm(FL) and0.163.3g(TW).Thesagittalotoliths(hereafterreferredtoasotoliths)of10fish representingthesizerangeofeachmonthlylittoralsamplefromeachlakewereremoved, cleanedin70%ethanolanddried.Bothotolithsfromeachfishwereweighedandtheaverage weight(OW,tothenearest0.1mg)wasrecorded.Oneotolithfromeachfishwasrandomly selectedandsectionedusinglapidarydiamondsawandanalysedfollowingthemethodsof

Ewing etal .(2003).Uptosixtransversethinsections(widths~300m)wereobtainedfrom eachotolith.Allspecimenmaterial,exceptremovedotoliths,waslodgedattheTasmanian

MuseumandArtGalley,Hobart,Tasmania(cataloguenumbersD3756D3774andD3778

D3825).

Otolith reading procedures

Aprimaryreaderexaminedallotolithsections( n=600)onasingleoccasionandarandom selectionofsections( n=200)onasecondoccasion.Asecondaryreaderexaminedhalf

(n=100)oftheselectedsectionsthatwereanalysedtwicebytheprimaryreader.Completed opaquezonesinotolithsectionswerecountedalonganaxisparalleltotheventralsideofthe sulcusacusticusat×31magnificationwithoutreferencetosizeoffishnordateofsampling.

Eachotolithreadingwasgivenaclarityscorefrom1to5,with1being100%reliableand5 beingunreadable.Allgrade5sectionswereomittedfromfurtheranalysis(10%ofotolith sections).Thelocationofthefirstopaqueringinolderfish(>2opaquezones)wasoften difficulttoidentifyasitsseparationfromtheprimordiumwasunclear.Therefore,toguide

75 Ageandgrowthof Galaxiasauratus ringcountsinolderfish,theradiusfromthecentreoftheprimordiumtothefirstopaquezone wasmeasured(alongthesameaxisasopaquezonecounts)onasubsampleofsections

(n=60)with1or2opaquezoneswhichhadclarityscoresof1.Theprecisionofage estimates(bothinterreaderandintrareadervariability)werequantifiedusingtheindexof averagepercenterror(APE)(Beamish&Fournier,1981).Readervariabilitywasalso examinedvisuallyusingagebiasplots(Campana etal. ,1995)andslopeestimatesofthese relationshipswerederivedbyregressionanalysis.

Validation of aging technique

Theperiodicityoftheformationofopaqueandtranslucentzonesinotolithsectionswas examinedalongthesameaxisasopaquezonecountsat×63magnificationusingtwoformsof marginalincrementanalysis(MIA):(i)qualitativescoresofthestatusoftheotolithouter margin(MallenCooper&Stuart,2003),and( ii )quantitativemeasuresofthemarginal incrementindexofcompletion(Campana,2001).Otolithsectionswererandomisedpriorto

MIAandtheseanalyseswereundertakenwithoutreferencetosizeoffishnordateof sampling.Themonthlyproportionsoffishwithopaquematerialontheoutermarginofotolith sectionswerecalculatedtodefinetheperiodofannulusformationanditscorrelationwiththe watertemperature.Temporalpatternsinmeanmonthlymarginalincrementindiceswereused toexaminetheperiodicityofannuluscompletionindifferentageclasses.Theperiodswhen incrementcompletionoccurredinpooleddataforfishwith29opaquezoneswereexamined byanalysisofvariance(ANOVA)withyearandmonthasfixedfactors.

Age and growth analyses

Thegrowthofjuvenile G.auratus (age0+)wasexaminedbylengthfrequencyplotsoffish capturedmonthlyinpelagichabitatsinbothlakes.Visualinspectionoftheseplotsfoundwell

76 Ageandgrowthof Galaxiasauratus definedrecruitmenteventsinbothpopulations;therefore,themonthlyprogressionofmean cohortlengthswasusedtoestimatethegrowthof0+fish.Progressivemonthlygrowthrates werecalculatedasthedifferencebetweenconsecutivemeanlengthsofpresumedcohorts dividedbythenumberofdaysbetweensampling.

Therelationshipsbetweenlength(FL)andweight(TW)ofsexesinbothpopulationswere examinedusingthefunction:

log10 (FL) = a + blog10 (TW) where aand bareconstants.Birthdatesofthe1 st ofSeptemberand1 st ofOctoberwere assignedtotheLakeSorellandLakeCrescentpopulations,respectivelybasedonpeaksinthe emergenceoflarvaeinbothlakes(S.A.Hardie,unpubl.data).Opaquezonecountswere convertedtodecimalagesusingassignedbirthdatesforeachpopulation,theperiodicityof incrementcompletion(31 st ofDecemberwasusedasthedateofopaquezonecompletion;see

Resultsforrationale)andsampledates.TheusuallylinearrelationshipbetweenageandOW

(Pawson,1990)wasanalysedtodetermineifgrowthintheotolithsof G.auratus was proportionaltosomaticgrowth.Fewfish<60mmFLwereabletobesexedandagedvia otolithanalysis;therefore,theageofunsexedpelagic0+fishbelongingtothepresumed2000 and2001cohorts(forthefirst7monthsinLakeSorellandfirst8monthsinLakeCrescent) wascalculatedusingsampledatesandthedesignatedbirthdatesforeachpopulation.The growthofsexesineachpopulationwasinvestigatedby:( i)fittingstandardvonBertalanffy growthmodelstoadult,and( ii )acombinationofadultandjuvenilelengthatagedata,and also( iii )fittingatwophaseversionofvonBertalanffygrowthmodel(Hearn&Polacheck,

2003)tothecombinedadultandjuveniledata.ThevonBertalanffyequationis:

−K [t−t0 ] Lt = L∞ (1−e )

77 Ageandgrowthof Galaxiasauratus

where Ltisthelengthatage t(years), L∞istheasymptoticlength, Kisthegrowthcoefficient and t0isthehypotheticalageatwhichmembersofapopulationwouldhavelengthzero.

StandardvonBertalanffygrowthmodelsforeachsexandpopulationwerecomparedusing likelihoodratiotests(Kimura,1980).Theagestructureofthelittoraldwellingproportionof eachpopulation(i.e.largerjuvenilesandadults)wasestimatedbyapplyingthesexspecific lengthatagerelationships(standardvonBertalanffygrowthmodels)foreachpopulationto lengthfrequencydataoffishcapturedinlittoralhabitats.Agefrequencydistributionsforeach populationwerecomparedusingKolmogorovSmirnovtwosampletests(Quinn&Keough,

2002).AllanalyseswerecarriedoutinRversion2.2.0(RDevelopmentCoreTeam,2005), andgrowthmodellingincludedfunctionsinthepackagenlme(linearandnonlinearmixed effectsmodels)(Pinheiro etal. ,2005).Thesignificancelevelforhypothesistestswas

P=0.05.

5.4. Results

Growth of juveniles

Lengthdataofmonthlycatchesof G.auratus frompelagicsites(Fig.2)showannual recruitmenteventsinlakesCrescentandSorellduringeachyear.During2000and2001,

G.auratus larvae(<10mmFL)weremostabundantinthewatercolumnsofbothlakesfrom latewintertospring,whilstduring2002larvaeoccurredasearlyasMayinLakeSorelland werepresentinrelativelylownumbersthroughwinterandspringinbothlakes.Themonthly progressionoflengthrelatedgrowthisevidentinthestrong2000(first14months)and2001

(first16months)cohortsinLakeCrescent.Meanmonthlygrowthratesofthepresumed2000 and2001cohortsinLakeCrescentweregreatestduringtheirfirstsummer(0.240.48mm day 1)comparedtotheproceedingwinterwheregrowthbasicallyceased(0.000.07mm

78 Ageandgrowthof Galaxiasauratus day 1).Juvenilefishreached~40mmFLbytheendofsummerand~60mmFLbytheendof theirfirstyear.

Fishthatclearlybelongedto2000and2001age0+cohortsalsooccurredinlittoralfykenet catchesduringtheirfirstsummers(generallyfromJanuaryonwardsinbothlakes).Someof thesespecimenshavebeenincludedintheotolithanalysesthatwereperformedonlargerfish toidentifywhenthefirstopaquezoneformsintheotolithsectionsofjuveniles.

79 Ageandgrowthof Galaxiasauratus

(a) 100 2000 cohort n = 4242 80 2001 cohort Other cohorts 60

40

20

(b) 100 n = 3912 80 Fork length (mm) length Fork

60

40

20

0 1 1 1 1 2 2 -00 0 0 01 01 0 0 0 02 0 v-00 v-0 -02 -02 Jul ct-00 eb- ar-01 ay- Jul-01 ct-01o eb-02 ay-02 Jul-02 ug- ct Aug-00Sep-00O No Dec- Jan-F M Apr-01M Jun- Aug-01Sep-01O N Dec-Jan-02F Mar Apr-02M Jun- A Sep-02O Nov-Dec-02 Month

Fig. 2. Lengthof Galaxiasauratus collectedmonthlyfrompelagicsitesin(a)LakeSorelland(b)LakeCrescentbetweenJuly2000and December2002.Presumed2000and2001cohortsofjuvenilefishareshownbysolidsymbols.

80 Ageandgrowthof Galaxiasauratus

Otolith structure

Viewedundertransmittedlight,otoliththinsectionsfrom G.auratus ofallsizeshadadense opaqueprimordiumanddistinctalternatingtranslucentandopaquezoneswereclearlyvisible onotolithsoflargerfish(>60mmFL)(Fig.3).Opaquezonesweregenerallynarrowerthan thetranslucentzones;however,theinnermostopaquezonewasoftenequalinwidthtothe adjacentinnerandoutertranslucentzonesandmuchwiderthantheotheropaquezonesona givenotolithsection(seeFig.3).Examinationofthepositionofthefirstopaqueringina selectionofotolithsectionswith1or2opaqueringsfoundthemean(±S.E.)incrementradius fromtheprimordiumtothefirstannulustobe191±0.9m.

Fig. 3. Transversethinsection(viewedundertransmittedlight)ofasagittalotolithfroma female Galaxiasauratus (148mmFLand33.6gTW)fromLakeCrescent.Opaquezonesare numberedandthealignmentshowstheaxisalongwhichzonecountswereread.The estimatedageis5years.

Timing of opaque zone formation LakesCrescentandSorellhadverysimilarannualwatertemperaturecyclesbetween1997 and2002,withonlyamarginallysignificantdifferencebetweenthelakes( t=2.025,d.f.=41,

P=0.049).However,themeandifferenceintheaveragemonthlytemperaturesofthelakes

81 Ageandgrowthof Galaxiasauratus wasverysmall(<0.1 °C)andnotbiologicallymeaningful.Therefore,watertemperaturedata forbothlakesandinformationonthestatusofotolithsectionoutermarginsforboth populationswerepooledtoexaminecorrelationsbetweenwatertemperatureregimesandthe formationofotolithincrementalstructure.Mean(±S.D.)monthlytemperaturesshowed strongseasonalvariation(Fig.4)withtemperaturesbeing<5 °Cduringwinter(minimumof

4.0±1.0 °CduringJuly)and>14 °Cduringsummer(maximumof17.0 °C±2.1 °Cduring

January).Thestatusoftheoutermarginwasinterpretableon69%of G.auratus otolith sections.Opaquematerialwasdepositedontheoutermarginsof>40%ofotolithsections with0to9opaquezoneswhilemeanmonthlywatertemperaturesincreasedfromtheJuly minimumto12.7±2.3 °CinNovember(Fig.4).Theoccurrenceofopaquematerialonthe outermarginspeakedduringSeptemberandOctober(>75%)whilsttranslucentmaterialwas presentontheoutermarginofmost(>93%)otolithsectionsfromfishsampledbetween

JanuaryandMay.

Annualtrendsinmarginalincrementindicesofcompletionforotolithsectionswith

≥2opaquezones(Fig.5)wereconsistentwiththeperiodicityofopaquezoneformation.

Whilstlowsamplessizesoffishwith>4opaquezoneslimitedthisanalysisforolderage classes,dataforfishwith2,3and4opaquezonesshowacommonpattern.Pooleddatafor fishwith29opaquezonesindicatethatopaquezoneswerecompletedinearlysummer during2000and2001withsharpdecreasesinthemeanindicesofcompletionbetween

NovemberandDecemberJanuary.Inbothyears,themeancompletionindexforDecember wassignificantlyless( P<0.01)thanthemeanofpooleddataforSeptembertoNovember.

82 Ageandgrowthof Galaxiasauratus

100 16

50 43 80 14 42

60 12

44 34 10 40 43 8 Opaque margin (%) margin Opaque 20 30 26 6

30 (°C) temperature water Mean 24 22 24 0 4

JFMAMJJASOND

Month

Fig. 4. Proportionofotolithsectionswithopaquematerialonthegrowingedge(solid triangles)andmeanmonthlywatertemperatureoflakesCrescentandSorell(opencircles). Marginalstatusdataoffishwith09opaquezonesfromtheentiresamplingperiodfromboth lakesarepooled.Otolithsectionsamplesizesareshownabovedatapoints.

TheresultsfrombothformsofMIAindicatethatsingleopaqueandtranslucentzonesare depositedannuallyinotolithsof G.auratus and,hence,opaqueringcountsareavalidmethod forestimatingageinthisspecies.Thefirstopaquezoneiscompletedearlyinthesecond summerafteremergence(i.e.at14monthsofageinLakeCrescentand15monthsinLake

Sorell).

83 Ageandgrowthof Galaxiasauratus

2 opaque zones 100 80 60 40

3 opaque zones 100 80 60 40

4 opaque zones 100 80 60 40

Mean index of completion (%) completion of index Mean 2 to 9 opaque zones 100 80 60 40

1 1 00 00 01 01 02 02 02 02 p- n-0 n- y-02 - p- Jul-00 ov- a ay- Jul-0 ov- a a Jul e Se N J Mar-01M Sep-01 N J Mar- M S Nov-02 Month

Fig. 5. Trendsinmean(±1S.E.)monthlymarginalincrementindicesofcompletionforotolithsectionsof Galaxiasauratus (solidcirclesand lines)collectedbetweenJuly2000andDecember2002.DatafromlakesCrescentandSorellarepooled.The31 st ofDecemberofeachyearis alsoshown(verticaldashedlines). 84 Ageandgrowthof Galaxiasauratus

Precision of age estimates

Ageestimateswererecordedfor90%ofthe600otolithsexamined.Otolithssectionsthat wereunreadablehaduncertainincrementalstructurewhichwascausedbypoorsectioning.

Thiswasparticularlyevidentwithotolithsectionsfromsmallerfish(<60mmFL),where sectioningwasmorelikelytonotcutthroughtheprimordiumofsmallersizedotoliths resultinginsectionswithnoncompleteincrementalstructure.TheAPEforageestimatesby theprimaryreaderwas3.4%with90%ofestimatesinagreement,and16.6%forbothreaders with75%ofestimatesinagreement.Themaximumdifferenceinestimateswithinand betweenreaderswas1and2years,respectively.Agebiasplotsillustratedahighlevelof agreementbetweenageestimates(Appendix2).Slopeestimates(±S.E.)oftherelationships betweenagereadings,bothwithin(slope=0.95±0.01)andbetween(slope=1.00±0.03) readers,closelyapproximatedthe1:1ratiothatwouldoccurifvariationwasequalforallyear classes.

Growth of adults and population structure

ThereweresignificantdifferencesbetweentheFLandTWrelationshipsofsexesinLake

Crescent( P<0.05)butnotinLakeSorell( P=0.857),andbothsexesdifferedsignificantly betweenthepopulations( P<0.001)(Table1;Appendix3).Theoldestfemale G.auratus analysedwas10yearsoldand34%offemaleswereolderthan3years,whereastheoldest malewas7yearsoldandonly13%ofmaleswereolderthen3years.Agehadastrong associationwithOW( r>0.88;seeTable1;Appendix4)andtherewerenosignificantinter populationdifferencesbetweenageandOWrelationshipswithsex( P=0.245),butthere weresignificantdifferencesbetweensexes( P<0.001).

85 Ageandgrowthof Galaxiasauratus

Table 1. Regressionparametersandstandarderrors(S.E.)offishlength(FL)totalweight (TW)andestimatedageotolithweight(OW)relationshipsformaleandfemale Galaxias auratus .DatafromlakesCrescentandSorellarepooled. Sex Relationship n Intercept±S.E. Slope±S.E. R2

Male log 10 (FL)~log 10 (TW) 925 13.45±0.13 3.41±0.03 0.93

Age~OW 190 0.46±0.12 1.47±0.05 0.80

Female log 10 (FL)~log 10 (TW) 1771 13.79±0.08 3.47±0.02 0.95

Age~OW 308 0.32±0.13 1.61±0.04 0.84

Combinedjuvenileandadultlengthatagedataforbothpopulations(Fig.6)showeddistinct phasesinthegrowthtrajectoriesofjuvenilesandadultswithrapidgrowthin0+fishupto

~60mmFL.Growthofadults(>60mmFL)wasslowerandmoregradualanddidnot approachasymptoticlengths,withtheexceptionoffemalesinLakeSorell.Becauseofthis growthpattern,boththestandardandtwophasevonBertalanffygrowthfunctionsfitted poorlytocombinedjuvenileandadultlengthatagedata.Thetwophasefunctiondidnot convergeonestimates,whilstthestandardfunctionfittedthegrowthofjuveniles,butnotthe growthofadults.ThestandardvonBertalanffyfunctiondid,however,fitlengthatagedataof adultsontheirown(Fig.6),butwiththeexceptionoffemalesinLakeSorell, L∞estimates werelarge(comparedtomaximumlengths:male=179mmFL,andfemale=235mmFL) andhadsignificanterrors(>25%)(Table2).Thesegrowthmodelsweresufficienttoenable comparisonsbetweensexes,whichdifferedsignificantlybothbetween( P<0.001)andwithin

(P<0.001)thepopulations.Thegrowthmodelsindicatedthatfemalesgrowfasterthanmales, andbothsexesinLakeSorellgrowfasterthanthoseinLakeCrescentwherethegrowthof adultsfollowedanearlineartrajectory.

86 Ageandgrowthof Galaxiasauratus

(a)

250 Males (n = 93) Females (n = 151) Juveniles (n = 1355) 200

150

100 Fork length(mm) Fork 50

0

0 2 4 6 8 10

Estimated age (years)

(b)

250 Males (n = 97) Females (n = 158) Juveniles (n = 2306) 200

150

100 Fork length(mm) Fork 50

0

0 2 4 6 8 10

Estimated age (years)

Fig. 6.Estimatedageandlengthof Galaxiasauratus from(a)LakeSorelland(b)Lake CrescentwithfittedvonBertalanffygrowthmodelsforfemalesandmales(fittedtoadultdata only).GrowthmodelparameterestimatesaregiveninTable2.

87 Ageandgrowthof Galaxiasauratus

Table 2. VonBertalanffygrowthmodelparametersandstandarderrors(S.E.)formaleand female Galaxiasauratus fromlakesCrescentandSorell.Growthmodelswerefittedtoadult lengthatagedataonly. 1 Lake Sex n L∞±S.E.(mm) K±S.E.(years ) t0 ±S.E.(years)

Crescent Male 97 934.98±3673.25 0.02±0.08 3.00±1.35

Female 158 308.14±77.82 0.08±0.03 2.14±0.50

Sorell Male 93 216.69±125.54 0.15±0.15 1.44±0.77

Female 151 187.96±17.18 0.32±0.07 0.39±0.21

Whilst G.auratus werefoundtoattainagesofupto~10years,fishinthe0+,1+and2+year classesdominatedtheestimatedagestructureofpopulationsinLakeCrescent(76%)and

LakeSorell(94%)basedonfishcapturedbyelectrofishingandfykenettinginlittoralhabitats

(Fig.7).Agedistributionsofthepopulationsdifferedsignificantly( P<0.001)withtheLake

Crescentpopulationhavingfewer1+fishandgreaterproportionsofolderfish(i.e.3+,4+and

5+).

5.5. Discussion

Evaluation of aging technique

Transversethinsectionsof G.auratus otolithsprovidedaninterpretableviewofincremental structurewhichenabledrobustageestimatesforalargesizerangeoffishtobederivedwith reasonableprecision.Toourknowledge,thisisthefirsttimeotoliththinsectionshavebeen usedtostudytheageandgrowthofagalaxiidfishaspreviousstudieshaveexaminedwhole otoliths(Humphries,1989;Bonnett,1990;Pen&Potter,1991b;McDowall&Kelly,1999;

Morgan,2003).Duringinitialtrialsusingwhole,groundandpolished G.auratus otoliths, theirthicknessobscuredincrementalstructureandthestatusofthegrowingmarginwas unclear.Theuseofotolithsectionsnotonlyprovidedaclearviewofincrementalstructure,

88 Ageandgrowthof Galaxiasauratus butalsoenabledthepositionofthefirstannulustobequantified.Thisprotocolgreatly improvedtheprecisionofopaquezonecountsasageunderestimationwaslikelywithoutthis measurementowingtothefirstzonebeingoverlookedinotolithsectionsfromolderfish.

Otherresearchershavealsofoundsimilarprotocolstobeusefulinfishaging(Ewing etal. ,

2003;Stevens etal. ,2005;Tracey&Lyle,2005).Thestatusofthegrowingmargincouldalso beaccuratelyassessedon G.auratus otolithsections,hence,thetiminganddurationofthe formationofopaqueandtranslucentmaterialwasabletobedetermined.

(a) 60

50 n = 1208 40

30

20 10

(b) 0 60

50 n = 1488 Frequency(%) 40

30 20

10

0 0+ 1+ 2+ 3+ 4+ 5+ 6+ Age class (years)

Fig. 7. Agefrequencydistributionsof Galaxiasauratus in(a)LakeSorelland(b)Lake CrescentbasedonfishcapturedinlittoralhabitatsbetweenJuly2000andDecember2002. Ageclasseswereassignedusingestimatedlengthatagerelationshipsformalesandfemales ineachlake.The6+yearclassincludesfishaged≥6years.

89 Ageandgrowthof Galaxiasauratus

Otolithsfrom G.auratus <60mmFLweredifficulttosectionsuccessfullyduetotheirsmall size(OWs≤1.3mg)withonly20%ofotolithsectionreadingsfromfish<60mmFLbeing recordedas100%reliable.Sectioningoftenmissedcuttingthroughtheprimordiumofthese smallerotoliths;therefore,incrementalstructurewasnotcomplete.Most G.auratus <60mm

FLthatwereagedsuccessfully(89%)wereage0+,sothislimitationdidnothinderour growthanalyses.However,thislimitationmayreducethesectioningtechnique’sapplicability toageandgrowthstudiesonsmallsizedgalaxiidspecies(suchas Paragalaxias spp.)which mayhaveannualincrementalstructureinsmallsizedotoliths.Werecommendfurtherstudies onotherlargersizedgalaxiids(i.e.commonly>80mmFL)examinetheincrementalstructure ofotolithsectionstoderiveageestimates.Inthecaseofsmallersizedspecies(i.e.commonly

<80mmFL),theuseofotolithweightordimensionsmayprovideadequaterelationshipswith somaticgrowthtoconductageandgrowthanalyses.Techniquescommonlyusedindaily agingstudiesofage0+fish,suchasgrinding(Humphries,2005)andscanningelectron microscopy(Smith&Walker,2003),mayalsobeeffectiveforexaminingannualincrements intheotolithsofsmallsizedgalaxiids.

Age and growth

Whileseveralexogenousandendogenousfactorseffectfishgrowth(Wootton,1998),water temperatureisimportantinbothsomatic(Goolish&Adelman,1984;Forseth&Jonsson,

1994)andotolith(Lombarte&Lleonart,1993;Barber&Jenkins,2001)growth.Inourstudy, trendsinbothsomaticgrowthof0+fishandincrementformationinotolithsectionsofolder ageclasseswerecorrelatedwithwatertemperaturecycles.Thepeakintheoccurrenceof opaquematerialdepositiononthegrowingmarginofotolithsections(Septemberand

October)occurred23monthsafterthecoldestmeanmonthlywatertemperatureinthelakes

(July:~4.0 °C)andalsothewinterspawningperiodof G.auratus (Hardie etal. ,inpress).

90 Ageandgrowthof Galaxiasauratus

Therefore,theperiodicityofopaquematerialformationin G.auratus islikelytobelinkedto periodsofslowsomaticandotolithgrowthassociatedwithlowwatertemperatures.Phasesof reproductiveinvestmentmayalsoinfluencethegrowthofotolithsinmaturefish.Other studieshavefoundsimilarrelationshipsbetweenopaquematerialformationingalaxiid otolithsandspawningseason(Morgan,2003),andbothwatertemperatureandspawning season(Pen&Potter,1991a,b;Pen etal. ,1991).

Lengthatagedataforjuvenileandadultfishshowedcleargrowthpatternsinboth populations.Thetwodistinctgrowthphasesmaybeassociatedwiththisspecies’pelagicto epibenthicontogenetichabitatshift(between40to70mmFL;Chapter8)andsexual maturation,withmostmalesmaturinginthefirstyearandfemalesintheirsecond(Hardie et al. ,inpress).WewereunabletofitstandardortwophasevonBertalanffygrowthmodelsto thecombinedjuvenileandadultdatasuccessfully;however,standardvonBertalanffygrowth modelsdidfit(somewhatpoorly)adultdata.Thetwophasemodelwasattemptedasitwas thoughttobeabletoaccountforthetransitioningrowthrate,givenithasbeensuccessfully fittedtolengthatagedataoflongerlivedmarinespecieswhichundergosimilargrowth patterns(Hearn&Polacheck,2003;Tracey&Lyle,2005).However,combinationsofthetwo distinctphasesofgrowth,lackofdataaroundthetransitionperiod,andnearlineargrowthof adults(whicharerelativelyshortlived)wereproblematicinthefittingofbothmodels.We suggestthatforsimilarreasonsinsomepreviousgalaxiidagingstudies,vonBertalanffy growthmodelshavealsonotapproximatedtruegrowthpatternswell(Pen&Potter,1991b;

Pen etal. ,1993;Morgan,2003).

Otolithweightcorrelateswellwithageinsomespecies(Boehlert,1985;Pawson,1990),and itsusemayhelprefinethecosteffectivenessofprocedurestoestimatelengthatage

91 Ageandgrowthof Galaxiasauratus distributions(Francis&Campana,2004;Francis etal. ,2005).Itwasagoodindicatorofage for G.auratus ,butunlikefunctionssuchasthevonBertalanffygrowthmodel,theOWage linearrelationshipdoesnotincludeinformationaboutchangesingrowthratesduringthe developmentalstagesofaspecies’lifehistory.However,OWmaybeusefulwhere quantifyingintraannualchangesingrowthisunimportant.Clearly,thereisaneedtofurther investigategrowthmodellingofspeciessuchasgalaxiidswhicharelikelytoberelatively shortlived,havedistinctjuvenileandadultgrowthphases,anddon’tapproachanasymptotic lengthasadults.

Thegrowthpatternsandlongevityofgalaxiidsvaryfromannual,smallsized(maximumof

~40mmFL)speciessuchas Galaxiellapusilla (Humphries,1986)tothelargestspecies,

G.argenteus (commonly>300mmFL),whichhasbeenspeculatedtolivefor>20years

(McDowall,2000).Similarlytoothergalaxiidspecies(Pollard,1971;Humphries,1986,

1989;Bonnett,1990;Pen&Potter,1991b;Rowe etal. ,2002a),female G.auratus grow largerandlivelongerthanmales,whilebothsexeshavegreaterlongevitythanthe30months previouslyspeculatedforthisspecies(Fulton,1990).Thegrowthpatternsof G.auratus are comparabletoriverine G.truttaceus insouthwesternAustralia(Morgan,2003)whichalso appearedtohavetwodisjointedgrowthphaseswithtransitionsattheendofthefirstyear

(4560mmintotallength).WhilstvonBertalanffycurvesfittedtheadultdata,some parameterswerepoorlyestimatedandbiologicallyimprobable.Forexample, L∞formalesin

LakeCrescentwasoverfivetimeslargerthanthemaximumrecordedlengthformalesduring thisstudyandhadaverylargestandarderror.However,thepredictedlengthsofjuvenilesat theendoftheirfirstyear(range:66.5to71.9mmFL,formalesinLakeSorellandLake

Crescentrespectively)andpredictedageofthelargestfishcollected

92 Ageandgrowthof Galaxiasauratus

(235mmFL=15.86years)wererealistic.Thisprovidessomeconfidenceinthegrowth curvesfordescribingthegrowthofadults.

VonBertalanffygrowthcurvesforadultsdifferedbetweenthelakeswithbothsexesinLake

SorellgrowingfasterthanthoseinLakeCrescent.Therewasnosubstantialdifference betweenthewatertemperatureregimesofthelakes;therefore,thecontrastinggrowthpatterns ofthepopulationsareduetootherfactors.Thequantityofsuitablefoodresourcesforvarious developmentstagesiscriticaltofishgrowth(Wootton,1998),andlimitedavailabilityrefuge habitatsisknowntochangesocialbehaviourandalsodecreasesomaticgrowth(Fischer,

2000;Fischer&Öhl,2005).Duringthefouryearspriortoandduringthestudy,bothlakes hadverylowwaterlevels.Thiscausedareductionintheavailabilityoflittoralandinlake complexhabitats(e.g.rockysubstrates)inLakeCrescent,whichproviderefugeandfood resourcesforadult G.auratus ,whereaslargeareasofthesehabitatswerestillpresentinLake

Sorell(Hardie,2003;Hardie etal. ,inpress;Chapter8).Thestandingcropofphytoplankton inLakeCrescentis10timesgreaterthanthatinLakeSorell(ChengandTyler1976 b;A.

Uytendaal,unpubl.data)andduringthisstudy,the G.auratus populationinLakeCrescent was7.7timesgreaterinrelativeabundancethantheLakeSorellpopulation(Hardie etal. ,

2005).Therefore,thegreaterfoodresources(i.e.zooplankton)forpelagicjuvenilesinLake

Crescentmayresultinincreasedsurvivalthroughtomaturity,butthegrowthofadultsmaybe reducedbydensitydependentconstraintsassociatedwithlimitedareasthatproviderefuge andsuitablefoodresources(i.e.macroinvertebrates).

Population structure

Ourresultsareconsistentwiththoseofotherstudieswhichindicatethatlacustrine populationsof Galaxias spp.generallyhavegreaterproportionsoflargerolderfishthan

93 Ageandgrowthof Galaxiasauratus riverinepopulations(McDowall,1968;Pollard,1971;Humphries,1989;Bonnett,1990;Pen

&Potter,1991b;Morgan,2003),withtheexceptionofsomelargersizedandlongerlived riverinespeciessuchas G.argenteus (David etal. ,2002)and G.fasciatus (West etal. ,2005).

Theagestructureofthe G.auratus populationinLakeCrescentissimilartothatoflacustrine populationsof G.truttaceus oftheTCP(Humphries,1989)withmanyfish>2yearsofage; however,thestructureoftheLakeSorellpopulationismorecomparabletoriverine

G.truttaceuspopulationsinTasmaniawithfewfish>2yearsold.

ThefishcommunitiesinlakesCrescentandSorelltypifymanylakesoftheTCP,with populationsofgalaxiids(includingsomeendemicspecies)coexistingwithintroduced salmonids.Salmonidsnegativelyimpactonthedistributionandabundanceofgalaxiidsin severalregions(Crowl etal. ,1992). Salmotrutta and O.mykiss areknowntopreyheavilyon

G.auratus inbothLakeCrescentandLakeSorell(StuartSmith etal. ,2004);however,the moreabundantsalmonidsinLakeSorellarelikelytoinfluencethesizeandagestructureof the G.auratus populationthroughincreasedpredationonsmalltomediumsizedfishand directcompetitionwithlargerfish.

Conservation and management

Conservationandrecreationalfisheriesmanagementprogramsneedtotakeintoaccountthe longevityofthisthreatenedspeciesandtheagestructureofitspopulationswheninterpreting

G.auratus catchdataanddesigningfisheriesmanagementstrategiesforlakesCrescentand

Sorell.While G.auratus islongerlivedthanmanyothergalaxiidspecies,theshortlifespan ofmostfish,especiallymales,meansignificantdeclinesinabundancecouldoccurin<3years inresponsetoeventssuchasrecruitmentfailuresorsuddenincreasesintheabundanceof salmonids.DifferencesintheagestructureoftheG.auratus populationsinlakesCrescent

94 Ageandgrowthof Galaxiasauratus andSorell,whichareexposedtodifferentlevelsofcompetitionandpredationfrom salmonids,furthersupportsthebodyofliteraturethatillustratesthenegativeimpactsof salmonidsongalaxiids.Thisstudyhighlightstheneedtoquantifythegrowthpatternsandage structureofpopulationsofotherthreatenedTasmanianendemicgalaxiidstoenablethe developmentofeffectiveconservationbasedfisheriesmanagementstrategies.

95 Reproductivebiologyof Galaxiasauratus

6. Reproductive biology of the threatened golden galaxias,

Galaxias auratus Johnston 1883 (Galaxiidae) and the influence of lake hydrology*

*Accepted(withminoradjustments)asHardieS.A.,WhiteR.W.G.&BarmutaL.A.inthe

JournalofFishBiology .

6.1. Abstract

Goldengalaxias Galaxiasauratus (31235mmforklength LF)werecollectedmonthlyfrom littoralhabitatsinlakesCrescentandSorell,Tasmania,Australia,betweenJuly2000and

December2002.Spawninghabitatswereidentifiedandmonitoredinbothlakes,andthese areasweresurveyedinLakeCrescent.Trendsingonadosomaticindicesandreproductive stagesofdevelopmentindicatedthatgonaddevelopmentinbothsexesbeginsinmidsummer andpeaksinlateautumn–earlywinter.Malesmatureatsmallersizes(fiftypercentat

52mm LF)thanfemales(fiftypercentat76mm LF),largerindividualsarepredominately females(ninetyfivepercentoffish≥138mm LF),andoverallmaletofemaleratiosare femalebiased( c.1:2).Spawningoccurslateautumn–earlyspring(watertemperatures=1.4

9.7°C)withpeaksinspawningactivityinwinter(meanwatertemperatures<5°C).Demersal adhesiveeggs( c.1.5mmdiameter)werefoundoncobblesubstrates( c.20250mmdiameter) inlittoralareas( c.0.20.6mdeep)andfecundityoffish71181mm LFrangedfrom619to

14478eggs.Therateofchangeinwaterleveloverthe20dayspriortomonthlysamplingwas importantinexplainingtheoccurrenceofspentfishandthisaccountedfortemporal differencesinspawningbetweenthepopulations.Lakehydrologyinfluencesthereproductive cycleof G.auratus bypossiblyprovidingastimulusforspawning,anditcontrolsthe

96 Reproductivebiologyof Galaxiasauratus availabilityofspawninghabitatinLakeCrescent.Seasonalhydrologicalcycles(i.e.rises duringlateautumn–winter)andaminimumwaterlevelof802.20mAHDinLakeCrescent duringautumn(abovewhichlittoralareasofcobblesubstrateareinundated)arecriticalto

G.auratus populations.

Keywords:TasmanianCentralPlateau;highlandlakes;nondiadromous;spawning;water levels;threatenedspecies

6.2. Introduction

Identifyingvulnerableaspectsofthelifehistoriesofthreatenedfreshwaterfishesisimportant totheirconservation(Angermeier,1995),andknowledgeofthereproductivebiologyofthese speciesisacriticalcomponentoftheirmanagement.Coupledwithbiologicalresearchisthe needtodeterminetheecologicalrequirementsoffishes,includinghowtheyusespecific habitats.Effectivemanagementstrategiesrecognisethatspeciesnotonlydependonthe existenceofsuitablehabitat,butonitsavailabilityintherighttimeandplace(Naiman&

Latterell,2005).

Waterlevelfluctuationscaninfluencetheabundance,distributionandlifecyclesoflacustrine fishes(Gasith&Gafny,1990;Winfield,2004a).Thereproductivesuccessofsomelittoral spawningspeciesispositivelycorrelatedwithwaterlevelincreasespriorto,andduring spawning(Maceina&Stimpert,1998;Sammons etal. ,1999;Sammons etal. ,2001;Ozen&

Noble,2005).Whilstthegoverningmechanismsareoftennotunderstood,insomesystems greaterreproductivesuccesshasbeenlinkedtotheinundationofsuitablespawninghabitats

(Beam,1983;Miranda etal. ,1984;Gafny etal. ,1992;Rowe etal. ,2002b).Theseresults

97 Reproductivebiologyof Galaxiasauratus suggestvariationintheavailabilityofspawninghabitatsinlenticwaterscanstrongly influencefishproduction.

FishesintheGalaxiidaearefoundonseverallandmassesintheSouthernHemisphere,where theygenerallyoccurincooltemperateregions(McDowall&Fulton,1996).Galaxiids dominatethenativefreshwaterfishfaunaoftheTasmanianCentralPlateau(TCP),southern

Australia,becauseoftheoccurrenceofsevenendemiclacustrinespecies(Hardie etal. ,

2006b).Whilstthefamilyexhibitstwolifehistorystrategies(diadromousandnon diadromous),allendemicspeciesoftheTCParenondiadromous(McDowall&Fulton,

1996).However,knowledgeoftheirlifecyclesislimitedandallsevenspeciesarecurrently consideredthreatenedduetotheirhighlyrestricteddistributions(fivespecieshave≤2natural populations),impactsfromintroducedfishes,andalterationstowaterlevelregimes(Hardie et al. ,2006b).

Thegoldengalaxias, Galaxiasauratus Johnston,isthelargestoftheendemicTCPspecies, growingto~280mminlength(Johnston,1883).Onlyfourpopulationsof G.auratus exist: twonaturalpopulationsintheinterconnectedlakesCrescentandSorellandtwotranslocated populationsinsmalloffstreamagriculturalwaterstoragesintheClydeRivercatchment

(Hardie,2003;Hardie etal. ,2004).Thereproductivebiologyof G.auratus hasnotpreviously beenstudiedindetail.Ithasbeensuggestedthatspawningoccursduringspringonrocky shores(Fulton,1990;McDowall&Fulton,1996;Allen etal. ,2002).However,the occurrenceoffertilisedeggsonfykenetsbetweenMayandOctober(Hardie etal. ,2005), suggestsalongerandmorewinterbasedspawningperiod.

98 Reproductivebiologyof Galaxiasauratus

Ifthisspeciesisawinterspawner,itwouldbeunusualamongstlacustrinegalaxiids.Todate, lacustrinegalaxiidpopulationsinPatagonianArgentina(Barriga etal. ,2002),NewZealand

(Rowe&Chisnall,1996a;Rowe etal. ,2002a)andsoutheasternAustralia(Pollard,1971;

Fulton,1982;Humphries,1989)havebeenfoundtoinspringsummer.Spawning habitatsincludesubmergedvegetationinlittoralareas(Humphries,1989)orinflowing tributaries(Pollard,1971),androckyshores(Fulton,1982).Hydrologicconditionssuchas highflowsininflowingstreams(Pollard,1971),andalsoincreasesinwatertemperature

(Humphries,1989)arethoughttobeimportantspawningcuesforsomelacustrinespecies.

TheonlyothercomprehensiveaccountsofgalaxiidreproductioninAustraliaaremostlyfor riverinespecies(Humphries,1986;O'Connor&Koehn,1991;Pen&Potter,1991a;Pen et al. ,1991;Pen etal. ,1993;Shirley&Raadik,1997;O'Connor&Koehn,1998;Morgan,2003) anddataforAustralianlacustrinepopulationsaremorelimited(Pollard,1971,1972a;Fulton,

1982;Humphries,1989;Chapman etal. ,2006).

TheuniqueTCPgalaxiidfaunaiscurrentlyexposedtoimpactsfromalteredhydrologycaused byhydroelectricpowerschemes,andagriculturalandmunicipalwaterallocations.These impactsarelikelytobefurtherexacerbatedbytheeffectsofclimaticchange(e.g.more frequentandintense ElNiño induceddroughts(Kershaw etal. ,2003))inthefuture.

Therefore,linksbetweenthereproductivecyclesofthreatenedlacustrinegalaxiids,suchas

G.auratus ,andlakehydrologyneedtobedocumentedsothatwatermanagementstrategies fortheregioncanincorporatetheirrequirements.Accordingly,thisstudyexaminedthe reproductivebiologyof G.auratus inlakesCrescentandSorellontheTCPandinvestigated theinfluenceoflakehydrologyonthereproductivecycleofthisspecies.Theaimswereto:

(1)examinethesexratioandsizeofmaturationformalesandfemalesinbothpopulations,(2) describegonadalcyclesbyexaminingthegonadosomaticindex( IG)anddevelopmentof

99 Reproductivebiologyof Galaxiasauratus gonadsovera30monthperiodandquantifyfecundity,(3)locateandsurveyspawning habitatsandmonitorspawningactivity,and(4)definespawningperiodsandinvestigatethe timingofspawningeventsinrelationtotemperatureandwaterlevelfluctuations.

6.3. Materials and methods

Study site

TheinterconnectedLakeCrescent(42°10’S;147°10’E)andLakeSorell(42°6’S;147°10’E) lie1kmapartandaresituatedat c.800ma.s.l.attheheadoftheClydeRivercatchmentin thesoutheastoftheTCP(Fig.1).Bothlakesarequitelargeincomparisontoother

Tasmanianlakes(surfaceareasof23and52km 2,respectively)andrelativelyshallow(mean depthsof2.3and3.1matfullsupply,respectively)andoriginatefromnaturallakesthathave hadtheirlevelsraisedonseveraloccasionssincethe1830sforwaterstoragepurposes.The

CrescentSorellsystemhassixephemeraltributaries,thelargestbeingMountainCreek(mean annualdischarge=11767ML;Uytendaal(2003))whichflowsinatthenorthernendofLake

Sorell,andasingleoutflow,theClydeRiver,whichflowsoutofLakeCrescenttothesouth west.Thehydrologyofthesystemislargelycontrolledbyrelativelylowrainfall(annual mean=699mm),smallcatchmentarea(206km 2)andhighevaporationratesduringsummer

(mean=4.5mmday 1).Waterreleasesfordownstreamusers(annualmean=10000ML), whicharemanagedbysluicegatesintheInterlakenCanalandattheClydeRiveroutflow, alsoalterwaterlevelfluctuations(DPIWE,2004).Historically,fluctuationshavebeen seasonal(minimumsoccurMarchAprilandmaximumsinOctoberNovember)andtypically rangefrom c.0.2to0.9minbothlakes(InlandFisheriesService,Tasmania,unpubl.data).

100 Reproductivebiologyof Galaxiasauratus

Fig. 1. Locationofsamplingsites(●)for Galaxiasauratus inlakesCrescentandSorell,

Tasmania,Australia.Lakeperimetersareatfullsupplylevels.Wetlandareasaredepictedby darkshading.

101 Reproductivebiologyof Galaxiasauratus

Extensivelittoralwetlands(Fig.1),accountingfor17%ofthesurfaceareaofLakeCrescent and8%ofLakeSorellatfullsupplylevels(Heffer,2003),connecttothemainbodiesofthe lakesathighwaterlevels(Fig.2).However,duringthisstudythesewetlandswerenot inundated(Fig.3)andlittoralhabitatsconsistedofdefinedregionsofthreesubstratetypes

(finesediment,rockandsand)andinlakehabitatsbyeitherfinesedimentorrock.

Historically,bothlakeshavealsocontainedinlakemacrophytebeds,butnonewerepresent duringthisstudybecauseoflowwaterlevelsandconsequentincreasedexposureofbed sedimentstowaveactionandelevatedturbidity(Uytendaal,2003,2006).

Thefishassemblageinbothlakesconsistsoftwonativespecies,theendemic G. auratus and indigenousshortfinnedeel Anguillaaustralis Richardson,andthreeexoticspecies,brown trout Salmotrutta L.,rainbowtrout Oncorhynchusmykiss (Walbaum)andcommoncarp

Cyprinuscarpio L. Galaxiasauratus are~8timesmoreabundantinLakeCrescentthanin

LakeSorell,possiblyduetodifferencesinsalmonidpredationratesandlakeproductivity

(Hardie etal. ,2005).

Environmental variables

MeandailyinlakewatertemperaturesbetweenJanuary2000andDecember2002were measured(depth0.5m)usingOpticStowAwayTemperatureloggers(ModelWTA).Mean dailywatertemperatureinbothlakesduringthisperiodwasalsomodelledwiththeDynamic

ReservoirSimulationModel(DYRESM)(Antenucci,2001)usingmeteorologicaldata suppliedbyHydroTasmania,TasmanianBureauofMeteorologyandtheTasmanianInland

FisheriesService.Modelledtemperaturescloselyapproximatedobservedvalues( R2≥0.95) andwereusedtofillinoccasionalgapsinobserveddatacausedbyequipmentfailure.Daily

102 Reproductivebiologyof Galaxiasauratus waterleveldataforbothlakesduringthestudywassuppliedbytheTasmanianInland

FisheriesServiceandphotoperioddatabyGeoscienceAustralia(GeoscienceAustralia,2006).

Fig. 2. TypicalvegetatedhabitatofashallowtemporarywetlandintheInterlakenregion (HazelwoodsLagoon,2001).

103 Reproductivebiologyof Galaxiasauratus

Fig. 3.DewateredwetlandhabitatonthesouthernshoreofLakeCrescent(BulliesMarsh) during2001.

Fish sampling and biological analysis

Galaxiasauratus weresampledmonthlyfromlittoralhabitatsinlakesCrescentandSorell betweenJuly2000andDecember2002.Oneachsamplingoccasion,fishwerecollectedat threesitesineachlake(Fig.1)whicheachrepresentedoneofthedominantlittoralhabitats

(finesediment,sandandrocksubstrates)inbothlakes.Onthefirstthreesamplingoccasions, fishweresampledbyelectrofishing100mofshorelineateachsitewithabackpackelectro fisher(SmithandRootInc,12BPOW).Ontheremainingsamplingoccasions,fishwere sampledusingfourtandemsetfykenets(2mmstretchedmesh)ateachsite(i.e.12netsper lake).Allnetshadan84×70mmaluminiumscreenintheentrancetoavoidthecaptureof platypus( Ornithorhyncusanatinus ),waterbirdsandlargerfishspecies(e.g.salmonids).Nets weresetovernight(meansoaktime=18hours)inshallowmargins(depths≤1.2m).Asub sampleof G.auratus fromeachlake(LakeCrescent: n=4377;LakeSorell: n=1070)was

104 Reproductivebiologyof Galaxiasauratus euthanasedinalethalanaestheticsolution(Aquis™)andpreservedin70%ethanolfor furtheranalysis.Theremainingcapturedfishwereallowedtorecoverfromanaesthesiaand releasedatthesiteofcapture.

Each G.auratus (LakeCrescent: n=1624,LakeSorell: n=1354)wasmeasured,forklength

(LF,mm),andweighed( M,g).Gonadswereremovedandweighed( Mg,mg)andthegonado

1 somaticindex( IG,%)wascalculated( IG=100 MgM ).Sexwasdeterminedbymacroscopic andmicroscopicexaminationofgonadsandgonadalstagesofdevelopmentofovariesand testes(Table1)wererecorded.Thefecundity( F)ofstage4femalefishintheJuneandJuly

2001samplesfrombothlakes( n=87)wasexamined.Thenumberofeggsina200mgsub sampleofovaryfromeachfishwascountedmicroscopicallyandthetotalnumberpresentin ovarieswasextrapolated.Themean(±S.E.)subsampleproportionof Mgwas10.9±0.8%.

Foreightfish, Fanalysiswasreplicated( n=5)todeterminetheconsistencyoftheovaries and,hence,theprecisionofthetechnique(S.E.ofeachreplicationwas<16eggs).

105 Reproductivebiologyof Galaxiasauratus

Table 1. Volumeandappearanceof Galaxiasauratus ovariesandtestesatfivestagesofdevelopment*

Stage Volume†(%) Macroscopic/microscopic ‡appearance

1.Immature/ <25 Lobesoftestesandovariesthinandtransparentandnotmeetingeachotherattheventralendof Restingmature visceralcavity.Oocytesonlyvisibleuponraptureoftunicaalbuginea.Oocytestransparentand smalltoindistinct.

2.Immaturedeveloping/ 2650 Lobesoftestesandovariesclosetomeetingeachotherattheventralendofvisceralcavity. matureredeveloping Testeswhiteincolourwithvermicularappearance.Oocytesdistinct,andvariableinsize,some (early) white,someyellow.

3.Immaturedeveloping/ 5175 Lobesoftestesandovariesmeetingeachotherattheventralendofvisceralcavity.Testeswhite matureredeveloping incolourwithvermicularappearance.Alloocytesyelloworangeincolourbutsmallinsize. (late)

4.Ripe >76 Bodywallslightly–verydistendedwithtestesandovariesfillingthevisceralcavity.Testes whiteincolour.Oocytesuniforminsizeandyelloworangeincolour.Sexesmaybedetermined externallywithsmooth v. nodularpatternsvisibleonthebodywallofmalesandfemales respectively.

5.Spent Variable Lobesoftesteshaveslackappearancewithflaccidtunicaalbuginea.Testesmayhavegreycolour. Anobviousdecreaseintheamountofripeoocytespresentinvisceralcavity.Remainingoocytes maybedisfiguredandmorepaleincolourthanviableoocytes.Thisstagealsoincludesfishwith verysmallnewlyformedrestingstagegonadswithresidualoocytesandtestesstillpresent. *StagesofdevelopmentaremodifiedfromFulton(1982). †Estimatedvolumeofvisceralcavityoccupiedbygonads. ‡Viewedatx25magnification.

106 Reproductivebiologyof Galaxiasauratus

Spawning site survey and rocky substrate mapping

RegularsearchesforspawningsiteswereperformedinlakesCrescentandSorellduringthe

2000and2001spawningperiods(winter–earlyspring).Littoralareasweresearchedby visualexaminationofsubmergedhabitatsuchasrocksandwoodydebris,andkicknet sweepsusinghandnets(250 mmesh)wereperformedoverdifferentsubstratetypes(Fig.4).

Whereeggswerefound,waterdepthwasmeasuredandthecompositionofthehabitatwas recorded.Subsequently,spawningactivitywasmonitored c.fortnightlyatknownspawning sitesineachlake(sites2and4;Fig.1)duringthe2001and2002spawningperiods(lateApril

–lateSeptember).Therelativeabundanceofeggsateachsite(eggssweep 1)wasassessedby

30kicknetsweeps(handnet,250 mmesh)of30sduration.Theseresultsestimatedthe densityofeggsincubatingatthesiteand,hence,indicatedrecentspawningactivity.

LittoralareasofrockysubstrateinLakeCrescentweresurveyedduringMarch2002,when thewaterlevelwasnearanhistoricallow(c.802.445mAustralianHeightDatum(AHD)), andsignificantproportionsoftheseareaswheredewatered.Theextentoftheregionsofrocky substratewasrecordedalongtransects(intervalsof100m)at90°totheshoreusingaglobal positioningsystem(GPS).Waterdepth(±10mm)attherocksedimentinterfacewas recordedanddailywaterlevelswereusedasreferencelevelsforsubmergedsites.These surveydatawereusedtoconstructamapoftherockyshorehabitatinLakeCrescent(using

MapInfo®)anddeterminetheinfluenceoflakelevelsonitsavailability.

107 Reproductivebiologyof Galaxiasauratus

Fig. 4. Kicknetsweeptomonitorspawningactivityof Galaxiasauratus atsite4inLake Sorell,July2002(seeFig.1forlocation)(sampler:BrettMawbey).

Statistical analyses

Lengthfrequencydistributionsofsexesineachpopulationwerecomparedusing

KolmogorovSmirnovtwosampletestsandtheunityofsexratioswasanalysedusing

2 Pearsonχ proportionstests.Sizesatwhichtheproportionoffemalesaccountedfor50%( P50 ) and95%( P95 )ofsampledfish,andatwhich50%( LF50 )and95%( LF95 )ofbothmalesand femalesreachedsexualmaturitywereestimatedusingbinarylogisticregression(Roa etal. ,

1999).Formaturityanalyses,fishwithgonadsatstages3to5wereconsideredsexually matureandonlyfishcollectedduringthe2001and2002spawningseasons(AprilJuly)were included.Additionally,unsexedfish<80mm LFwereregardedasimmatureandusedto constructregressioncurvesforbothsexes.

108 Reproductivebiologyof Galaxiasauratus

Toinvestigatetherolesoftheenvironmentalvariablesinprovidingstimuliandsuitable conditionsforspawningduringthe2000,2001and2002breedingseasons,multimodel proceduresasdescribedbyBurnhamandAnderson(2002)wereusedonasetof apriori regressionmodels.Thisapproachissuperiortoconventionalvariableselectionproceduresin multipleregressionbecauseinformationtheoreticmeasures(basedonAkaike’sInformation

Criterion(AIC))ratherthan Pvaluesareusedtoassessthefitofeachmodeltothedata.This measureisthenusedtorankallthemodelsand,usually,asuiteofmodelsmaybejudgedto beequallycompetitive.Inferencesarethenbasedonthissuiteofbestfittingmodelsrather thanselectingasingle‘bestfit’modelandestimatesofparameterscanbeaveragedacrossall models.Theseproceduresyieldresultsthatarelessbiasedandmorerobustthanthesingle

‘bestfitted’modelselectedbyconventionalapproachestomultipleregression.

Thesuccessfuluseoftheseproceduresrequiresasmallsetofcarefullyconsidered apriori models.Inthisstudy,theresponsevariablewastheproportionoffishinasamplethatwas spent(spent (%)),andallmodelsincludedthemean IGoffemalesintheprevioussample

(IGf(%))asanexplanatoryvariablesincespawningcanonlyoccurifasubstantialnumberof femalesinthepopulationhavesubstantialovarianmass.Thefulllistofcandidatemodels

(M 1M6)ispresentedinTable2(seeResults),andtheirrationaleisasfollows.Temperatureis oftencitedasacueforspawningofteleosts(Jobling,1995).Changesinlakelevelwere potentiallyimportantsincesustained,rapidrisesinwaterlevelwouldlikelyinundate spawninghabitat(rockylittoralareas,seeResults)andkeepitclearoffinesediments, whereasmodestrisesresultedinslowinundationofspawninghabitat,whichwasusually accompaniedsignificantsedimentationofotherwisesuitablespawningsubstrata;fallsinlake levelusuallyresultedindepositionofsedimentsordewateringofspawninghabitat.Forboth temperature(temp20 (°C)),andlakelevel(level20 (mm)),therateofchangeoverthe20d

109 Reproductivebiologyof Galaxiasauratus priortofishsampling(estimatedaslinearregressionovertime)wasusedsinceitwas suspectedthatthefishwouldmorelikelyrespondtothesevariablesintegratedovertime ratherthanashorttermevent(i.e.risesinwaterlevelsaregradualintheselakes).

Additionally,sincetheshortesttimespanbetweenconsecutivesampledateswas21d,20d wasusedforthesetrends.Theremaybeotherhabitatfeaturesineachlakethatcouldgenerate differencesbetweenthelakesinthetimeofspawning,sothelakeeffect( lake )wasincluded asafactor.Finally,thebathymetryandhabitatmapsofthetwolakessuggestedthatthe availabilityofspawninghabitatwouldbemoresensitivetowaterlevelinLakeCrescentthan inLakeSorell.Therefore,themostcomplicatedmodel(M 6)thatcouldbejustifiedforthis sizeddataset(termedthe‘globalmodel’byBurnhamandAnderson(2002))alsoincludedthe interactionbetweenlakelevelandlake( lake :level20 ).

Noneoftheexplanatoryvariableswerestronglycorrelatedwithanyoftheothers(all| r|

<0.43)andinspectionofthediagnosticplotsofM 6suggestedanarcsinesquareroot transformationoftheresponsevariablewasneededtoimprovethenormalityofresiduals.

Severalotherexplanatoryvariableswereconsidered,butwerenotincludedinthemodelset becausetheydidnotvaryfromyeartoyearorbetweenthelakes(e.g.photoperiodand lake×temperatureinteraction).Thisisnottoassertthatthesevariablesmightneverprove importanttothesefish;however,itisdesirablenottooverparameterisetheglobalmodel giventhesizeofthedataset(Burnham&Anderson,2002).

Torankthemodels,avariantoftheAICcorrectedforsmallsamplesizes(AIC c)wasused.

ThemodelwiththesmallestAIC c(AIC min )istheclosestfitwiththedata,andthustorank eachofthe i models,AIC cdifferences( ic)arecomputedas ic=AIC ciAIC c min .Akaike weights( wi )werethencomputedaccordingto:

110 Reproductivebiologyof Galaxiasauratus

exp(− 5.0 i ) wi = ∑exp(− 5.0 r ) whichquantifiestheweightofevidencegiventoeachmodel.Becausethe wisumto1across themodelset,modelswithsubstantiallysmaller wiarepoorfitstothedata.Itisunusualin ecologicaldataforasinglemodeltobeclearlybetterthanalltheothers(i.e. wi>0.9),and severalmodelsmayhavesimilar wi,thusbeequallylikelytofitthedata.Tojudgetherelative importanceoflakelevelandtemperature,the wiweresummedacrossallmodels( w+)that containedeachofthesetwovariables(Burnham&Anderson,2002).Thevariablewiththe greater w+isthemoreimportant.Thevaluesoftheindividualparameterestimatesforeach explanatoryvariablewereaveragedacrosstheentiremodelsetforreporting,althoughthe differentunitsofthesevariablesimplythatmostinterestisintheirsignsratherthanrelative magnitudes.AllstatisticalanalyseswerecarriedoutinRv.2.2.0(RDevelopmentCoreTeam,

2005)andthesignificancelevelforhypothesistestswas P=0.05.

6.4. Results

Environmental variables

Abnormalclimaticconditionsjustpriorto,andearlyinthestudy,withanextended ElNiño induceddroughtbetween1997and2001,causedbelowaverageandunseasonalrainfallinthe catchment.Asaresult,lakesCrescentandSorellexperiencedextremelylowlevels(maxima

<0.6mbelowfullsupplylevels)duringthisstudy,includingrecordminimain2000inSorell

(802.620mAHD)andin2001inCrescent(801.770mAHD).Waterlevelfluctuations followedsimilartrendsinbothlakesandtherewasconsiderableinterannualvariationwith seasonalrisesrangingfrom0.200to0.970mandfallsfrom0.280to0.640m.Minimumand maximumlevelsinbothlakesoccurredduringMarchMayandOctoberDecember, respectively.Whilstfluctuationsinbothlakesweresimilar,levelsinLakeSorellusually

111 Reproductivebiologyof Galaxiasauratus begantoriseslightlyearlierthanthoseinLakeCrescentinresponsetolateautumn–winter rainfallduetodirectseasonalinputfromtheprimary,MountainCreek.Fluctuations inLakeSorellwerealsotypicallymorerapidbecauseofthisinput,andregulationofflows betweenthelakesanddischargefromLakeCrescent.

Watertemperaturesinbothlakesweresimilarbetween2000and2002withonlyamarginally significantdifferencebetweenthemonthlymeansofeachlake(paired ttest;d.f.=35,

P=0.045).However,themeandifferenceintheaveragemonthlytemperaturesofthelakes wassmall(<0.2 °C)andnotbiologicallymeaningful.Temperaturecycleshadstrongseasonal fluctuationswithmean(±S.D.)monthlytemperaturesbeing<5 °Cduringwinter

(minimum=4.2±0.9 °CduringJune)and>14 °Cduringsummer

(maximum=16.4 °C±1.7 °CduringFebruary).Daylengthinthestudyregionvariedfrom

9.08to15.27hinJuneandDecemberrespectively.

Sexual dimorphism and sex ratio

Atotalof2978 G.auratus wereexaminedandfishfrombothpopulationscoveredlargesize ranges(LakeCrescent=38235mm LF;LakeSorell=31179mm LF).Sexualcompositionof pooledlakesampleswasdominatedbyfemales(60%)followedbymales(31%)andunsexed

(mostlyimmature)fish(9%).Femalesizerangedifferedsignificantlyfromthatofmalesin

LakeCrescent(KolmogorovSmirnovtest; n=1488, P<0.001)andLakeSorell

(KolmogorovSmirnovtest; n=1208, P<0.001)andinbothlakes,mean(±S.D.)female LF

(LakeCrescent=95±21mm;LakeSorell=92±22mm)wasgreaterthanmales(Lake

Crescent=80±17mm;LakeSorell=77±14mm).Thelargestfemalemeasuredwas

235mm LFmax andlargestmalewas179mm LFmax .

112 Reproductivebiologyof Galaxiasauratus

Overallmaletofemaleratioswerefemalebiasedanddifferedsignificantlyfromunityin

LakeCrescent(1:2.0)(Pearsonχ 2proportionstest;d.f.=1, n=1488, P<0.001)andLake

Sorell(1:1.8)(Pearsonχ 2proportionstest;d.f.=1, n=1208, P<0.001).Inpooledpopulation data,theproportionoffemalesincreasedinprogressivelengthclasses(Fig.5a),with P50

(±S.E.)=71±1mm LFand P95 =138±3mm LF.

Sexual maturation

Overthe30monthstudyperiod,47%offishsampledhadgonadsatstage3(latephaseof development)orbeyond.Thesmalleststage4(ripe)malemeasured51mm LFandsmallest female60mm LF.The LF50 (±S.E.)ofpooledpopulationdataformaleswas52±2mmand females76±1mm,whilethe LF95 formaleswas75±3mmandfemales87±1mm

(Fig.5b).Individualsappearedtoremainsexuallyactiveatlargesizes,withthelargeststage4 malemeasuring171mm LF(100%of LFmax )andlargestfemale181mm LF(77%of LFmax ).

However,themean LF(±S.D.)ofstage4fish(males:78±15mm;females:103±19mm) were<50%oftheirrespective LFmax .

113 Reproductivebiologyof Galaxiasauratus

Total = 56 311 407 471 524 406 254 142 68 27 15 5 4 2 1 1 1 1 100 (a)

75

50

Percentage female Percentage 25

0

30 50 70 90 110 130 150 170 190 210 230

LF (mm)

Male = 3 23 77 56 67 64 19 7 3 2 Female = 3 22 34 36 56 120 115 98 61 37 11 5 3 1 2 1 100 (b)

75

50

Percentage mature Percentage 25

0

30 50 70 90 110 130 150 170 190 210 230

LF (mm)

Fig. 5.Percentageof(a)femalesand(b)maturemales()andfemales(–)asafunctionof LF of Galaxiasauratus .MaturityanalysesarebasedonfishcollectedfromlakesCrescentand SorellbetweenAprilandJulyof2001and2002,whilstsexualproportionsarefromfish collectedbetweenJuly2000andDecember2002.Theproportionofsexuallymaturefishor femaleswithineachsequential10mmlengthclassisplottedusinglogisticregression. Samplessizesforlengthincrementsareshown.

114 Reproductivebiologyof Galaxiasauratus

Gonadal cycle and fecundity

Annualcyclicpatternsinmaleandfemalemeanmonthly IGvaluesweresimilarinboth populations,althoughthetimingandextentofperiodswhenmaximum IGvalueswere recordedvaried(Fig.6).Mean IGofmalesandfemalesweregenerally<3%betweenOctober andDecember(exceptfemalesinLakeSorellduringOctober2000).Inbothpopulations, mean IGofbothsexesincreasedfromJanuaryonwardswhilewatertemperaturesand photoperiodweredecreasing,andmalesdevelopedearlierthanfemalesinbothpopulations.

InLakeCrescent(Fig.6b),during2001,peak IGvaluesformales(>16%)occurredfrom

MarchtoJulyandfromMaytoJulyforfemales(>15%).During2002,thepeakperiods

(>13%)forbothsexesrespectivelybeganinthesamemonths,butextendedintoAugust.

Conversely,inLakeSorell(Fig.6a)theperiodswherepeak IGvaluesoccurredwereshorterin duration.MalesinLakeSorellmaintained IGvalues>14%betweenFebruaryandMayduring

2001and IGvalues>16%betweenAprilandJulyduring2002.Sorellfemaleshad IGvalues

>12%betweenAprilandJuneduring2001andanabruptpeak IGof16.1%duringApril2002.

Themaximumandminimumindividual I Gvalueswere0.06%and37.8%,and0.09%and

33.2%formalesandfemales,respectively.

Trendsin IGwerecomplementedbysynchronousprogressionofgonadalstagesof developmentinpooledsexdatainbothpopulations(Fig.7).Minimaldevelopmentoccurred betweenOctoberandDecember,with>85%offishhavingstage1(resting)gonads(withthe exceptionoffishinLakeSorellduringOctober2000).Theprominence(547%)of transitionaldevelopingstages2and3wasbrief(JanuaryMarch)andthemajority(49100%) offishwerestage4(ripe)inAprilJune.Stage5(spent)fishappearedasearlyasAprilinboth lakes,butweremostcommon(>22%)duringJulySeptemberof2001and2002.

115 Reproductivebiologyof Galaxiasauratus

25 (a) 20

15

10

5

0 (%) G I 25 (b) 20

15

10

5

0

0 1 1 1 1 1 2 2 2 2 2 0 00 0 0 0 0 0 0 - - -0 l-0 - - -02 l-0 - ul-00 p b y u g b r u g J e ec-00 a J u ov-01ec-01 p ay-02 J u ov-02ec-0 Aug-S Oct-00Nov-00D Jan-01Fe Mar-01Apr-M Jun-01 A Sep-01Oct-01N D Jan-02Fe Mar- A M Jun-02 A Sep-02Oct-02N D Month

Fig. 6.Mean(±1S.E.)monthlygonadosomaticindices( IG)ofmale(○)andfemale(●) Galaxiasauratus in(a)LakeSorelland(b)Lake CrescentbetweenJuly2000andDecember2002.

116 Reproductivebiologyof Galaxiasauratus

(a) 50 42 55 38 42 42 40 27 30 36 49 57 41 69 49 38 10 24 20 14 26 49 49 67 50 57 39 33 39 29 100

80

60

40

20

0 (b) 50 42 49 39 42 36 41 40 41 43 47 49 63 51 61 54 45 64 53 51 44 50 71 77 56 52 56 46 46 33 100 Frequency (%) Frequency 80

60

40

20

0 0 1 1 1 1 1 1 2 2 2 2 2 2 0 0 0 0 0 l-00 -00 -0 -00 -0 - -0 -0 -02 -0 - u g p t n-01 b- r-0 y-0 n t n b r-0 n v-02 J a ar- p a Jul-01 c a Jul o Au Se Oc Nov-00Dec-00J Fe M A M Ju Aug-01Sep-01O Nov-01Dec-01Ja Fe M Apr-02May-02Ju Aug- Sep-02Oct N Dec-02 Month

Fig. 7.Frequencyofpooledmaleandfemale Galaxiasauratus in(a)LakeSorelland(b)LakeCrescentateachgonadalstageofdevelopment ( ,1; ,2; ,3; ,4; ,5),July2000–December2002.Samplesizesareshownforeachmonth.

117 Reproductivebiologyof Galaxiasauratus

Thefecundity( F)offish( n=87)ranginginsizefrom71to181mm LFvariedfrom619to

3 2 14478.Therelationshipbetween Fand LFwas: F=0.0018 LF ( R =0.72)(Appendix5).

Spawning

Habitat

Inbothlakes,spawningsiteswerefoundinlittoralareas(0.20.6mdeepandusually<10m fromtheshore)ofcobblesubstrate( c.20250mmdiameter)mostlyduringwinter–early springin20002002.Otherdominantlittoralhabitatssearchedincludedareasofsandand sedimentsubstratesandsubmergedwoodydebris,butnoeggswerefoundinhabitatsother thanthosedominatedbyrockysubstrates.Onasingleoccasion,3eggswerefoundadheredto asinglestemoftheaquaticmacrophytecommonwatermilfoil Myriophyllum sp.,whichwas growinginanareaofrockysubstrate.

Fertilisedeggs( c.1.5mmindiameter)weretransparentandadhesive,anddeveloping embryoswereclearlyvisibleinadvancedeggs.Eggswerescatteredonthetopandsidesof rocks,positionedindividuallyandoccasionallyinsmallclustersof25.Thelocationsof spawningsitesmovedprogressivelyfurtherinshoreaswaterlevelsrose,meaningthedepth ofspawningsitesremainedreasonablyconstantandeggswerecontinuallydepositedonnew areasofsubstrate.Sedimentationofsuitablespawningsubstratumandsomespawningsites wasevidentfollowingperiodsofstrongwinds,particularlyinLakeCrescent.Algalgrowthon rocksatspawningsitesincreasedaftertheincubationofmosteggshadbeencompleted(i.e. earlyOctoberonwards).

118 Reproductivebiologyof Galaxiasauratus

Theavailabilityofsuitablespawninghabitatdifferedbetweenthelakes.InLakeCrescent, littoralareasofrockysubstratewereonlyfoundatfourdefinedsites(Fig.8)andatall locationsthishabitatwasinundatedatwaterlevels>802.20mAHD(Fig.9).Conversely,in severalregionsinLakeSorell(whilstnotquantitativelysurveyed)containedvastlittoralareas ofrockysubstratewhichgenerallyextendedwellintothelake’sbasin.

Timingandenvironmentalconditions

Peaksandsubsequentdecreasesinmean IGvalues(Fig.6),frequenciesofstage5fish

(Fig.10),andthedensityofeggsatspawningsitesin2001and2002indicate G.auratus spawnoverprotractedperiodsbetweenlateAprilandearlySeptember.Femalesappearedto determinethetimeofspawning,withmalesdevelopinggonadmassmuchearlierthanfemales andmaintainingitforlonger(Fig.6).FishinLakeSorellgenerallyspawnedearlierthanthose inLakeCrescent.Duringboth2001and2002,decreasesinmean IGvalues(Fig.6)and increasesinproportionsofspentfish(Fig.10)occurredduringMayAugustinLakeSorell andJuneSeptemberinLakeCrescent.Maximumdensities(range=2067eggssweep 1)of eggsatspawningsitesin2001and2002wereobservedinlateAugust–earlySeptemberin

LakeCrescentandearlyJulyinLakeSorell.Atthesetimes,averagedailymeanwater temperatureswere4.8°C(range=1.49.7°C)andwaterlevelswererising(Fig.10),andday lengthwas<11.8h.

119 Reproductivebiologyof Galaxiasauratus

Fig. 8.Littoralareasofrockysubstrate(regionsfilledwithdiagonallines)inLakeCrescent surveyedduringMarch2002.Lakeperimetersareatfullsupplylevels.Wetlandsareasare depictedbydarkshading.

120 Reproductivebiologyof Galaxiasauratus

Fig. 9.DewateredlittoralareaofrockysubstrateonanorthernshoreinLakeCrescentduring 2001.Thisareawouldprovidesuitablespawninghabitatfor Galaxiasauratus when inundated.

121 Reproductivebiologyof Galaxiasauratus

60 (a) 25 802.6 50 20

40 802.4 15 30 802.2 10

Spent fish (%) fish Spent 20

802.0 AHD) levelLake (m 5 (°C) temperature Water 10

801.8 0 0

JMMJSNJMMJSNJMMJSN

Month

60 (b) 25 803.8

50 20 803.6

40 803.4 15

30 803.2 10 Spent fish (%) fish Spent 20 803.0 Lake level (m AHD) levelLake (m 5 (°C) temperature Water 10 802.8

0 0 802.6

JMMJSNJMMJSNJMMJSN

Month

Fig. 10.Percentofspent(stage5) Galaxiasauratus (■)anddailymeanwatertemperatures ()andwaterlevels(–)in(a)LakeCrescentand(b)LakeSorellbetweenJanuary2000and December2002.WaterlevelsaremeasuredinmetresofelevationaccordingtotheAustralian HeightDatum(mAHD).

122 Reproductivebiologyof Galaxiasauratus

Theproportionofspentfishonasamplingoccasionwasbestexplained( w+=0.984)by models(M 3,M 4,M 5andM 6),whichincludedtherateofchangeinwaterlevelsoverthe previous20days( level20 )(Table2).Thebestperformingmodel(M 3)includedonly level20 ; however,allothermodelsincludingthisvariablealsohada icof<2,therefore,their performancewasapproximatelyequal(Burnham&Anderson,2002).Thesignofthe averagedestimateforthisparameterwaspositive(valueof0.0177)showingthatthe proportionofspentfishispositivelyrelatedtotherateoflakelevelchange.Althoughtherate ofchangeintemperature( temp20 )wasalsopositivelyrelatedtotheproportionoffish spawned(averageparameterestimate=0.1140),itwaslessimportant( w+=0.644)than level20 .Overall,LakeSorellhadslightlygreaterproportionsofspentfishacrossallsampling occasionsthanLakeCrescent(averageparameterestimate=0.0383).Theinclusionofthe lake:level20 interactioninthesubsetofcompetitivemodels(Table2)suggesteddifferential responsesbetweenthepopulationstochangesinlakelevel.Thisisconsistentwiththeknown differencesinavailablehabitatsbetweenthetwolakes:Sorellhasanabundanceofsuitable rockyspawningareasevenatlowlevels,whereasthesehabitatsaremorelimitedinCrescent andnotavailableuntillevelsriseabove802.20mAHD.

123 Reproductivebiologyof Galaxiasauratus

Table 2. Multiplelinearregressionresultsofmodelsofenvironmentalconditionsusedtopredictthetimingof Galaxiasauratus spawningin lakesCrescentandSorellduring20002002basedontheoccurrenceofspentfish.ModelsarerankedinorderofbestfitaccordingtoAkaike

InformationCriterion(AIC c),icisthedifferenceinAIC cand wiistheAIC cweight.

Rank Model Model* AIC c ic wi

1 M3 spent ~ IGf+ level20 30.53 0.000 0.349

2 M5 spent ~ IGf+ level20 + temp20 + lake 30.17 0.362 0.292

3 M4 spent ~ IGf+ level20 + temp20 29.17 1.360 0.177

4 M6 spent ~ IGf+ level20 + temp20 + lake + lake :level20 29.04 1.489 0.166

5 M2 spent ~ IGf+ temp20 23.23 7.300 0.009

6 M1 spent ~ IGf 22.61 7.923 0.007

*Modellingvariablesincludetheoccurrenceofspentfish(spent (%)),mean IGoffemalesinprevioussample(IGf(%)),changeindailywater levelovertheprevious20days(level20 (mm)),changeinmeandailywatertemperatureovertheprevious20days(temp20 (°C)),differences betweenlakes( lake ),andthelake×waterlevelinteraction( lake :level20 ).

124 Reproductivebiologyof Galaxiasauratus

6.5. Discussion

Sexual dimorphism, sex ratio and maturation

Inthisstudy, Gauratus females( v. males)maturedlaterandattainedgreatersizes,and overalltheyappearedtobemoreabundant.Baseduponageandgrowthdatafromarelated study(Chapter5),lengthatmaturityestimates(males v. females: LF50 =52 v. 76mm,

LF95 =75 v. 87mm)indicatesomemalesmatureintheirfirstyearandtheremainderintheir second,whereasfemalesmatureintheirsecondyear.Ageatmaturityvariesamongstgalaxiid species,fromshortlived Galaxiella spp.withpredominantlyannuallifecycles(Humphries,

1986;Pen etal. ,1991;Pen etal. ,1993),tolongerlived(commonly>3years)speciessuchas bandedkokopu Galaxiasfasciatus Graywithmalesandfemalesmaturingat2and4years respectively(Hopkins,1979b).Inbothalacustrinepopulationofthecloselyrelatedspotted galaxiasGalaxiastruttaceus (Valenciennes)ontheTCP(Humphries,1989)andadiadromous populationinsouthwesternAustralia(Morgan,2003),somemalesmaturedintheirfirstyear andtheremainderofthepopulationsintheirsecond.

Larger G.auratus werepredominatelyfemalesinlakesCrescentandSorell(i.e.

P95 =138mm LF)andsexratiosofsampledfishfrombothpopulationswerestronglyfemale biased( c.2:1).Severalotherresearchershavefoundlargerfishtendtobefemalesin lacustrine(Pollard,1971;Rowe etal. ,2002a),nondiadromousriverine(Bonnett,1990;

O'Connor&Koehn,1991;Pen&Potter,1991b),andsomediadromous(McDowall,1968;

Hopkins,1979a;Morgan,2003)populationsof Galaxias spp.Femalebiasedsexratioshave alsobeenreportedfordwarfinanga Galaxiasgracilis McDowall(Rowe&Chisnall,1996a) andlacustrinepopulationsofcommongalaxias Galaxiasmaculatus (Jenyns)(Pollard,1971;

Chapman etal. ,2006).Sexratioestimatescanbebiasedbymethodsofcapture,timeof sampling,andsubsamplingoffishfromcatches.However,giventhelargesizerangeof

125 Reproductivebiologyof Galaxiasauratus

G.auratus collectedusingfykenets(31235mm LF)andrelativelylargemonthlysample sizes(mean=50fish),theoverallfemalebiasedsexratiosineachpopulationarelikelytobe reasonableestimatesofproportionality.Thesefindingssuggestgreaterlongevityorgrowthin femalesisduetoeitherphysiologicaldifferencesormechanismswhichincreasemortalityin malesatsmallersizes(e.g.aggressivespawningbehaviour).Thetestesofteleostsfrequently representamuchlowerproportionofthebodyweightthanovaries(Wootton,1998); however,male G.auratus hadlargergonads( v.bodyweight)thanfemaleswhichthey maintainedforlongerperiods.Thegreaterreproductiveinvestmentofmalesmaydecrease theirlongevity(orgrowth)byreducingfeedingratesduringgonaddevelopmentand spawning.Impairedlocomotionatthesetimesduetolargesizedtestes(i.e. IGvalues>30%) wouldalsoincreasetheirvulnerabilitytopredationbyintroducedsalmonids.

Gonadal cycle and spawning

Previously, G.auratus werethoughttospawnduringspring(Fulton,1990;McDowall&

Fulton,1996;Allen etal. ,2002).However,thisstudyshowsthatwhilstthepeakinvestment periodinthegonadalcycleof G.auratus issimilartothatoflacustrinepopulationsof

G.truttaceus (Humphries,1989)and G.maculatus (Pollard,1971)insoutheasternAustralia, spawningoccursmostlyduringwinter.Bothsexesof G.auratus begintodevelopgonadmass whendaylengthisnearitsmaximumandtherateofdevelopmentisrapidbetweenJanuary andMay(mean IGvaluesincreasefrom<7%to>13%inbothsexes),whendaylengthand watertemperaturedeclinemarkedlysuggestingtheseareimportantstimuli.Development duringthistimewouldallowfishtoutilisetherelativelyshortperiodsofwarmerwater temperatures(i.e.>10°C)inthesehighlandlakesandtheirlikelyincreasesinfoodresources.

Similarlytolacustrine G.truttaceus oftheTCP(Humphries,1989),male G.auratus develop gonadmassandreachripeconditionearlierthanfemales(somerunningripeinlateFebruary)

126 Reproductivebiologyof Galaxiasauratus indicatingthatfemalesdictatewhenspawningoccurs.ByApril,manymalesandfemalesare ripeandsomespawningactivitywasrecordedinbothpopulations,butmostfishspawn2

4monthslaterduringwinter.Whilstthisdelaywouldgivefirstyearmalesfurthertimeto mature,allowingthemtocontributetospawning,itislikelytobeassociatedwithawaitfor suitableenvironmentalconditions.

Whilst G.auratus intheseneighbouringlakeshadextendedwinterbasedspawningperiods, peaksinspawningactivityoccurredearlierinLakeSorellthaninLakeCrescentduringboth

2001and2002.Multipleregressionmodellingindicatedthatrisesinwaterlevelsoverthe

20dayspriortomonthlysamplingwasthemostimportantfactorinpredictingtheoccurrence ofspentfishinbothlakes.Thesetemporalvariationsinspawningarelikelytobeassociated withthedifferinghydrologicalregimesofthelakes(e.g.levelsriseearlierinLakeSorell).

Changesinwatertemperaturedidnotappeartobeanimportantspawningcuewithspawning periodsencompassingalargerangeoftemperatures(1.49.7°C);however,furtherfinerscale temporalsamplingwouldbeneededtoevaluateitsimportance.

Thewinterspawningof G.auratus isunusualforanondiadromousgalaxiid.Selective pressuresinfreshwaterteleostpopulationsusuallyensurespawningoccursattimesthat providesubsequentoptimalconditions(i.e.abundantfoodresourcesandfavourable temperatures)forlarvaeduringtheirfirstgrowingseason(Wootton,1998).Thetwolife historystrategiesofgalaxiidfishesillustratethispattern;generallydiadromousgalaxiid populationsspawninlateautumn–earlywinter,whilstnondiadromouspopulationsinlotic andlenticwatersspawninlatewinter–earlysummer(Humphries,1989;Pen&Potter,

1991a).Thesestrategiesallowlarvaeandjuvenilestoencounterconditionsthatare advantageoustotheirgrowthandsurvivalintheirrespectiveestuarine/marineandfreshwater

127 Reproductivebiologyof Galaxiasauratus nurseryhabitats.OtherlacustrinegalaxiidpopulationsontheTCPfollowtheusualpatternof nondiadromousgalaxiidswith G.truttaceus (Humphries,1989)andGreatLakeparagalaxias

Paragalaxiaseleotroides McDowallandFulton(Fulton,1982)spawninginspringand

Shannonparagalaxias Paragalaxiasdissimilis (Regan)insummer(Fulton,1982).Whilst

G.auratus larvaeoccurinthewatercolumnduringwinter,thepeakhatchingperiodisearly midspring(Chapter8).Therefore, G.auratus appeartorespondtodifferentspawningstimuli

(i.e.risingwaterlevels)tothoseofothergalaxiidsontheTCP,whichlengthensincubationof theireggs.However,theiroveralllifecyclefollowstheusualpatternofanondiadromous lacustrinegalaxiid.

Fecundity and spawning site

Eggsizeandfecundityofgalaxiidsvarybothbetweenandwithinspecieswhichfolloweither diadromousornondiadromouslifehistorystrategies(seePen&Potter(1991a)).Generally, fecundityisproportionaltobodysize(Humphries,1989)withsmallersizedspecies

(commonly<80mm LF)havingfewereggs(commonly<1000),whilstlargersizedgalaxiids

(particularlythosewhicharediadromousorhaveclosediadromousancestry)aremorefecund

(c.100020000eggs).Theresultsofthisstudyindicatethatthefecundity(71to181mm LF fishhadfrom619to14478eggs)andeggsize( c.1.5mmdiameter)of G.auratus are consistentwithvaluesfordiadromousandlacustrinestocksofthecloselyrelated

G.truttaceus inTasmania(Humphries,1989)andalsoshowsimilaritiestootherlargersized speciessuchas G.fasciatus (Hopkins,1979b)andclimbinggalaxias Galaxiasbrevipinnis

Günther(O'Connor&Koehn,1998).

Althoughthenegativeimpactsofintroducedsalmonidsongalaxiidshavebeenwell documented(Crowl etal. ,1992;McDowall,2003),thereisstilllimitedinformationaboutthe

128 Reproductivebiologyof Galaxiasauratus mechanismsassociatedwiththeseinteractions.Interestingly,someothergalaxiidsin

Tasmaniathathavemuchlowerfecundityhavealsohadtheirdistributionsseverelyreduced byintroducedsalmonids(e.g.Swangalaxias Galaxiasfontanus Fulton(Crook&Sanger,

1998a)andClarencegalaxias Galaxiasjohnstoni Scott(Crook&Sanger,1998b)).Therefore, therelativelyhighfecundityof G.auratus mayhavecontributedtothisspeciescoexistence withintroducedsalmonidsforoveracenturydespiteheavypredation(StuartSmith etal. ,

2004).Basedonthisinformation,studyingthebiologyofotherthreatenedgalaxiidsmayalso provideinsightintotheresilienceoftheirpopulationstoimpactsfromintroducedfishes.

Depositionofeggsinshallowmarginalhabitatsiscommonamongstgalaxiidswhichoccupy bothlotic(O'Connor&Koehn,1991;Allibone&Townsend,1997;O'Connor&Koehn,

1998;Moore etal. ,1999;Charteris etal. ,2003)andlentic(Pollard,1971;Fulton,1982;

Humphries,1989)environments. Galaxiasauratus spawneddemersaladhesiveeggsover cobblesubstratesinlittoralareas.Whilstspawningbehaviourwasnotobserved,thedispersed arrangementofeggsatspawningsitesindicatesthatspawningtakesplacemidwaterandeggs settleontothesubstrateratherthanbeinglaidindefinednests.Theoccurrenceofeggsona stemofaquaticvegetationonasingleoccasioninLakeSorellandonsubmergedvegetationin anoffstreamagriculturalwaterstoragecontainingarefugepopulationofthisspecies(S.A.

Hardie,unpubl.obs.),suggestthat G.auratus willuseaquaticvegetationwhenavailable.

Furthermore,theoccurrenceofspawnedeggsonfykenets(Hardie etal. ,2005)alsoshows flexibilityinspawningsiteselectionandperhapstheprimarilyrequirementforsurfacesfor whicheggscanadhere.Other Galaxias spp.alsospawnonrocks(O'Connor&Koehn,1991;

Allibone&Townsend,1997;Moore etal. ,1999)andsubmergedvegetation(Pollard,1971;

Humphries,1989;Charteris etal. ,2003).

129 Reproductivebiologyof Galaxiasauratus

Influence of lake hydrology

Hydrologicalvariablesplayimportantrolesinthereproductionofsomegalaxiids.For example,highflowsinrivers(Pen&Potter,1991a;O'Connor&Koehn,1998;Charteris et al. ,2003)orinflowingtributariesoflakes(Pollard,1971)havebeenassociatedwiththetime ofspawning.Thisstudysuggeststhatlakehydrologystronglyinfluencesthereproductive cycleof G.auratus bypossiblyprovidingastimulusforspawningandcontrollingthe availabilityofspawninghabitat.Duetorelativelylowwaterlevels,thequantityofsuitable spawninghabitatfor G.auratus wasmuchlessinLakeCrescentthaninLakeSorellandits availabilitytherewassignificantlyinfluencedbywaterlevelfluctuations.Someteleost speciesdelayspawninguntilsuitablespawningsubstrateisavailable(Lam,1983;Jobling,

1995).ThisappearedtooccurinLakeCrescentduring2001,whenspawningoccurred2

3monthslaterthaninLakeSorell,duringwhichtimealmostnospawninghabitatwas submerged(i.e.levelswere<802.200mAHD).Thetimingandmagnitudeofrisesinwater levelmaybeimportantforsuccessfulrecruitmentofthisspeciesasdelayscouldcausethe uncouplingoflarvalemergenceandavailabilityofsuitablefoodresources(Cushing,1990), resultinginslowergrowthinlaterspawnedfish(Ludsin&DeVries,1997;Pine etal. ,2000).

Basedonthisinformation,theproductionoftheLakeCrescentpopulationislikelytobe significantlyconstrainedbylimitedavailabilityofspawninghabitatduringperiodsof relativelylowwaterlevels.

Similartoother Galaxias spp.whichhavepermanentlyinundatedspawningsites(O'Connor

&Koehn,1991;Allibone&Townsend,1997), G.auratus didnotappeartoshowparental careofeggs(infactcannabismofeggsoccurred(Hardie,2003));therefore,eggsurvival dependsonenvironmentalconditions.Therelativelyshallow(2060cm)spawningsitesof

G.auratus meantheireggsarepronetomortalityviadisturbancefromwindinducedwave

130 Reproductivebiologyof Galaxiasauratus action(Johnson,1961;Rupp,1965)includingtranslocationtounsuitablehabitats(Ventling

Schwank&Livingstone,1994),anddesiccationduetodecreasesinwaterlevelsduring incubation(Rupp,1965).Cleanrockysubstratesmayalsobeimportantforspawningandthe survivalofeggs.Loadsofparticulate(mostlyorganic)materialinthewateroftheselakesare inverselyrelatedtothewaterlevels(Uytendaal,2003,2006).Duringthisstudy,sedimentation atspawningsiteswasobservedfollowingstrongwindevents,particularlyinLakeCrescent during2001whenlevelswereverylow(S.A.Hardie,unpubl.obs.).Eggmortalitywasnot assessed,butsedimentationisknowntocausemortalityofteleosteggs(Bruton,1985).Algal growthonrocksinlittoralareaslateinthespawningseason(earlyOctoberonwards)could alsoreduceeggsurvival(Gafny etal. ,1992)forcing G.auratus tospawninwinterbefore algalgrowthoccurs.Whenavailable,aquaticvegetationinadjacentwetlandstolakes

CrescentandSorellmayprovidemoresecurespawninghabitat(i.e.notinfluencedby sedimentation),andconnectionoftheselargeareaswouldsignificantlyincreasetheamountof spawninghabitatinbothlakes.

Thisstudysuggeststhatwaterlevelsstronglyinfluencethespawningof G.auratus ;however, furtherexplicittestingoftherelativeimportanceofproximalenvironmentalcuesvia controlledexperimentsisrequiredtodefinetherolesoftemperatureandthosedrivenbylake level.ManagementoptionsfortheseandothershallowlakesontheTCParelimitedto manipulationofwaterlevelregimes,andthisstudyprovidesevidencethatseasonal hydrologicalcycles(i.e.risesduringlateautumn–winter)andabase‘environmentallevel’of

802.20mAHDinLakeCrescentduringautumnarecriticalto G.auratus populations.

Comparedwithinteractionswithexoticspecies(e.g.predationbysalmonids),stressors associatedwithlakehydrologyhavepreviouslybeenoverlookedasthreatsto G.auratus .

FuturechangesinlacustrinehydrologicalregimesoftheTCPcausedbyclimatictrends,

131 Reproductivebiologyof Galaxiasauratus episodicdroughtsandincreasedhydroelectricandagriculturaldemandsarelikelytopose seriousthreatstogalaxiidsinthisregion.Detailedbathymetriescoupledwithmappinglittoral habitatshavebeenusefulinlinkingfishbiologyandhydrologicalchangeselsewhere(see

Rowe etal. ,(2002b)).ThisisaprominentinformationgapfortheTCPthaturgentlyneedsto befilledbeforemoresophisticatedriskanalysescanbeattemptedforthisregion’sgalaxiid fauna.

132 Galaxiasauratus fungalinfection

7. Spawning-related fungal infection of golden galaxias, Galaxias auratus (Galaxiidae)*

*Published(withminoradjustments)asHardieS.A.,Pyecroft,S.B.,BarmutaL.A.&White

R.W.G.(2007)inJournalofFishBiology 70,12871294.

7.1. Abstract

Goldengalaxias Galaxiasauratus withdermalfungallesionsoccurredperiodicallyin monthlysamplescollectedover2.5yearsfromlakesCrescentandSorell,Tasmania,

Australia.Affectedfishweremostabundantlateinspawningseasons(JulySeptember)and theiroccurrencewaseffectivelymodelledbytheprogressionofgonadalstagesof development.Histopathologicalandmicrobiologicalexaminationofsamplesofaffectedfish foundskinlesionstobecharacteristicoffungaldermatitisanda Saprolegnia sp.was identifiedasthecausativeagent.Theperiodicityofinfectionislikelytobelinkedto spawningrelatedfactors(e.g.aggressivesocialinteractions)anditisprobablethat saprolegniasisisassociatedwithseasonalmortality.However,furtherworkisrequiredto determinemechanismswhichinfluencefungalcolonisationandthemortalityratesofinfected

G.auratus .

Keywords:Galaxiidae;dermatitis; Saprolegnia ;reproduction;mortality

7.2. Introduction

FishesofthefamilyGalaxiidaearelargelyrestrictedtofreshwaterandestuarinehabitatsin cooltemperateregionsofseverallandmassesintheSouthernHemisphere(Allen etal. ,

2002),andareparticularlyprominentinthenativepiscinefaunaofsouthernAustraliaand

133 Galaxiasauratus fungalinfection

NewZealand(McDowall&Fulton,1996;McDowall,2000).Whilstvariousaspectsofthe biologyandecologyofmanygalaxiidspecieshavebeenexamined,sourcesofmortalityhave receivedlittleattention,andthereislimitedinformationaboutdiseasesandparasitesthat affectgalaxiids(Blackburn,1950;Pollard,1974;Smith&Hickman,1983;Viozzi etal. ,

2000;Morgan,2003).Thelifespanofgalaxiidfishesvaries(1to>20years),butmostare relativelyshortlived(commonly<6years),andfemalesoftenachievegreateragesthanmales

(Pollard,1971;Bonnett,1990;Pen&Potter,1991b).Thelattersuggeststhatmechanisms whichresultinmortalitymaybesexspecific.

Physicochemical,physiologicalandsocialstressorscanpredisposefreshwaterteleoststo infectiousdiseases(Austin&Austin,1987)andspawningisknowntobeacriticalperiod whentheriskofinfectionincreases(Wootton,1998).Someshortlivedmigratorygalaxiid speciesarethoughttoincurmasspostspawningmortality(Blackburn,1950;McDowall,

1968);furthermore,spawningrelatedmortalityofdiadromous(O'Connor&Koehn,1998) andnondiadromous(Pollard,1971)populationshaspreviouslybeenreported.

Thenondiadromousgoldengalaxias Galaxiasauratus JohnstonisendemictolakesCrescent

(42°10’S;147°10’E)andSorell(42°6’S;147°10’E)ontheCentralPlateauofTasmania,

Australia.Thesehighlandlakes( c. 800ma.s.l.)arerelativelyshallow(meandepths<3.5m) andturbid(meanof c. 130NTUduringstudy). Galaxiasauratus isconsideredtobe

‘threatened’(Hardie etal. ,2004)andhasrecentlybeenthesubjectofanextensivelifehistory study(Hardie,2003;Hardie etal. ,inpress;Chapters5and8)duringwhichmonthlysamples werecollectedfromlittoralhabitatsinbothlakesbetweenJuly2000andDecember2002.

Duringthiswork,individualswithfocaldermatitisperiodicallyoccurredinbothpopulations.

134 Galaxiasauratus fungalinfection

Thisstudyaimedtoidentifythepossibleaetiologicalagent(s)andinvestigatethetimingofits occurrenceinrelationtothereproductivecycleof G.auratus .

7.3. Materials and methods

Randomsubsamplesof G.auratus ( n=1077)takenfrommonthlycatchescollectedusing electrofishing(JulySeptember2000)andfykenetting(October2000–December2002)were euthanased(Aquis™)andpreserved(70%ethanol).Eachfish(LakeCrescent: n=1624,

LakeSorell: n=1354)wasmeasured,forklength( LF,mm),andsexwasdeterminedby macroscopicandmicroscopicexaminationofgonads.Gonadalstagesofdevelopment( DS)of ovariesandtestes(ordinalscalefrom1=restingto6=spentadults)wereassignedwhere gonadswerevisible,andthepresenceandlocationofdermatitislesionswasalsorecorded.

Loglinearmodelling,withgeneralizedlinearmodels(GLM)(poissondistribution,loglink), wasperformedinRversion2.2.0(RDevelopmentCoreTeam,2005)toanalysetheresulting threewaytableoffrequenciesdefinedbythepresenceorabsenceofskinlesionscrossedwith lakeand DS(Venables&Ripley,2002).Subsamplesofinfectedfishwereexaminedfrom monthswheretheyweremostabundantineachlakeduringallthreeyears(LakeCrescent: n=8,LakeSorell: n=32)usingstandardhistopathologicalmethods.Afurthersampleof affectedfish(LakeCrescent: n=8,LakeSorell: n=4),collectedbyfykenettinginAugust

2005,wasalsoanalysedusinghistopathologicalandmicrobiologicalmethodsinorderto characterisemorefullythelesionsandallowidentificationofaetiologicalagent(s).

7.4. Results

Theskinlesionsonall12fishcollectedin2005werecharacteristicofafungaldermatitisand thefunguswasidentifiedasa Saprolegnia sp.(Saprolegniaceae).Pathologywascharacterised byfungalhyphalmats(Fig.1a)overlyingareasofscalelossandepithelialerosion.Fungal

135 Galaxiasauratus fungalinfection hyphaepenetrateddeeperlayersofthedermisandtrackeddownfascialplanesofskeletal muscles(Fig.1b,c).Hostinflammatoryresponsetothefungalhyphaewasminimaland markedmyonecrosis(Fig.1b)wasobservedinsomeareas.Fungalelementsmorphologically similarto Saprolegnia werealsoassociatedwithskinlesionsfromfishsampledatasimilar timeinpreviousyears.Dermallesionswerefoundon70individualsinthe2000to2002 temporalsamples(LakeCrescent: n=12,LakeSorell: n=58),including20males,

49femalesandoneunsexedfish.Thesizeofinfectedfishrangedfrom56to149mm LF,and infectedmalesweresmaller(mean±S.E.=87±4mm LF)thanfemales(105±3mm LF).

Lesionswerefoundatarangeofbodylocationsonindividualswhichdidnotdifferbetween sexes,otherthan6femaleshavinglesionsontailfinswhereasnonewerefoundinthisareaon males.Infectionsweremostcommonontheabdomen(23%ofinfectionsites),lateralflanks

(22%),analfinandvent(18%),pectoralfin(15%),andpelvicanddorsalfins(both<10%).

Theextentoflesionsvariedfrom2060%amongstaffectedfishand,therefore,inmanycases waslikelytohavecaused,orbeenassociatedwith,mortalityinduecourse(Bruno&Wood,

1999).Overall,affectedfishoccurred(inclusive)fromMaytoOctoberinsamplesfromLake

SorellandJulytoSeptemberinLakeCrescent(Fig.2),butweremostabundantinJulyand

Augustinbothpopulationswhen>70%ofaffectedfishineachlakewererecorded.In additiontothefishinsubsampleswhichpresentedwithdermatitis,manyotheraffectedfish wereobservedincatchesatthesetimes.Onseveraloccasionsduringspawningseasons,small numbers(<10fish)ofdeceasedindividuals(mostlyspentfish)withextensivedermatitis lesionswerealsofoundinthelittoralwashatknownspawningsites(rockyshores)inboth lakes(Fig.3).Theseobservations,coupledwiththeextensivenatureofmanylesionsonlive fish,indicatethattheiroccurrencewasnotassociatedwithskinabrasionduringcapture,butto otherpredisposingfactors.

136 Galaxiasauratus fungalinfection

Fig. 1a. Wetpreparationof Saprolegnia fungalmatandorganicdebrisfromtheskinof Galaxiasauratus .Zoosporangia(Z)andnonseptatefungalmycelium(FM)areindicated (×100).

Fig. 1b. Sectionofskinlesionfrom Galaxiasauratus showingepitheliallosswithan overlyingfungalmat.Fungalhyphae(FH)arepenetratingthestratumcompactum(SC)ofthe dermisandmarkedmyonecrosisispresentwithintheunderlyingskeletalmuscle(M). Hematoxylinandeosin(×40).

137 Galaxiasauratus fungalinfection

Fig. 1c. Fungalmycelium(FM)penetratingtheskinandmuscletissueof Galaxiasauratus . Hyphaearehighlighted(black)withGrocott'sMethenaminesilver(×40).

50 (a) 40 n = 58

30

20

10

0 50 (b) 40 n = 12 Frequency (%) Frequency 30

20

10

0 May Jun Jul Aug Sep Oct Month

Fig. 2. Frequencyofoccurrenceof Galaxiasauratus withfocaldermatitisinmonthly samplesfrom(a)LakeSorelland(b)LakeCrescent(July2000toDecember2002).

138 Galaxiasauratus fungalinfection

Fig. 3. Deceased,spent Galaxiasauratus withextensivedermatitislesionsfoundinthe littoralwashataspawningsiteonthewesternshoreofLakeCrescentduringAugust2005.

GLManalysesshowedthatboth DSandlakeweresignificantlyassociatedwiththe occurrenceofdermatitis( DS×Dermatitis, P<0.0001;Lake ×Dermatitis, P<0.0001)andthe

3wayinteractionwastheonlytermnotneededinthemodel( P=0.24,andthusthefinal modelwasnotoverdispersedsincetheresidualdeviancewassimilartotheresiduald.f.).The patternofprobabilitiesoffindingfishwithdermatitis(Table1)showthatfishweremost frequentlyaffectedinthelaterstagesofdevelopment( DS=4to6),withapeakat DS=5

(spentfish);affectedfishwerealsomorelikelytooccurinLakeSorellthanLakeCrescent.

139 Galaxiasauratus fungalinfection

Table 1. Fittedprobabilitiesoffinding Galaxiasauratus withfocaldermatitisforeach gonadalstageofdevelopmentinlakesCrescentandSorell.Observedprobabilitieswere identical(tothenearest0.001)tofittedprobabilities.

DS*

1 2 3 4 5 6

LakeCrescent 0.010 <0.001 <0.001 0.003 0.027 0.008

LakeSorell 0.011 0.044 <0.001 0.036 0.121 0.082

n 7 2 0 15 29 17

*Gonadstagesofdevelopment( DS)are:1=immatureresting,2=earlydeveloping,3=late developing,4=ripe,5=spent,and6=matureresting.

7.5. Discussion

Saprolegnia spp.arecommonpathogenicfungiwhichinfectlivinganddeadfreshwater teleostsandtheireggsglobally(Bruno&Wood,1999;Hussein&Hatai,2002),including severalspeciesunderaquacultureinAustralia(Lategan etal. ,2004a,b;S.B.Pyecroft, unpubl.obs.).Susceptibilitytosaprolegniasisisincreasedbyphysicalstressanddamageto theepidermiswhichmayresultfromaggressivesocialinteractionsorovercrowding(Bruno&

Wood,1999).Forexample,Richards&Pickering(1978)speculatedthatphysicaldamageto theepidermisassociatedwithspawningbehaviour(e.g.redddiggingandaggressivesocial interactions)andchangesinthestructureoftheepidermis(i.e.reductioninmucouscells)of spawningbrowntrout Salmotrutta L.mayincreasevulnerabilityto Saprolegnia infection.As inmanyspecies,salmonidsareknowntohavereducedconditionduringspawning(Jamet,

1995)whichcouldalsocontributetoincreasedratesofinfection.InAustraliaduringwinter,

Saprolegniasishasbeenfoundtoincreaseinsilverperch Bidyanusbidyanus (Mitchell)

(Lategan etal. ,2004a),shortfinnedeel Anguillaaustralis Richardson(Lategan etal. ,2004b) inaquaculturesituationsandintroducedsalmonidsinhatcheriesandwildpopulations(S.B.

140 Galaxiasauratus fungalinfection

Pyecroft,unpubl.obs.),suggestingstressorsrelatedtocoldwatertemperaturesmayincrease thelikelihoodofinfection.Poorwaterqualityincludinghighorganicloadingscanalso increasethechancesofinfection(Bruno&Wood,1999).

Itispossible,therefore,thatseveralunderlyingfactorsmaybeassociatedwiththeoccurrence offungaldermatitisin G.auratus populationsandtheobservedrelationshipbetweenthe chanceofinfectionandthereproductivecycleofthisspecies.Atthetimeofthisstudy,Lake

CrescentandLakeSorellbothhadlowwaterlevels(Hardie etal. ,inpress;Chapter8);hence, suspendedorganicloadswereconstantlyveryhighduetowindinducedsuspensionof sedimentandorganicmaterial(Uytendaal,2006).Thiscouldhaveincreasedthelikelihoodof infection,butdoesnotaccountforitsseasonaloccurrence.Infectionwasmoreprevalentin

JulyandAugust(australwinter)whenwatertemperatures(monthlymeans±S.D.)arevery lowintheselakes(July=4.0±0.9°C,August=4.8±1.1°C).Whilstthereproductive physiologyandspawningbehaviourof G.auratus islargelyunknown,severalspawning relatedfactorsarelikelytoincreasethechancesofinfection.Theseincludeovercrowding(i.e. spawningaggregations(Hardie etal. ,2005)),physicaldamagefromaggressivesocial interactions(i.e.finnipping)orspawningactivity(i.e.abrasiononrocks),andphysiological changes(i.e.poorcondition,whichhasbeenfoundtooccurinlacustrinecommongalaxias

Galaxiasmaculatus (Jenyns)inAustralia(Pollard,1972b)).Collectively,thesefactors accountfortheobservedincreasedratesofinfectioninfishthatwerefullydevelopedand waitingforspawningcues( DS=4),recentlyspent( DS=5),andthosethatspawnedearlierin theseasonandwererecoveringandbeginningtoredevelopgonads( DS=6)duringsub optimalconditions(i.e.winter).

141 Galaxiasauratus fungalinfection

Mortalityatspawningsiteshaspreviouslybeenobservedfordiadromousclimbinggalaxias

Galaxiasbrevipinnis Günther(O'Connor&Koehn,1998)andnondiadromous G.maculatus

(Pollard,1971)inAustralia.Bothstudiesrecordedliveanddeceasedspentfishwithfocal dermatitisatspawningsiteswhichPollard(1971)suggestedtobeasaresultof Saprolegnia infection.TheselowlandpopulationsspawnedinAprilMayandAugustOctober respectively,hence,watertemperaturesweresignificantlywarmer( c. >9°C)thanthosein lakesCrescentandSorellduringthetime G.auratus presentingfungaldermatitiswere recorded.Thissuggeststhatspawningactivityratherthanlowtemperatureisthemaincause offungaldermatitisingalaxiids;however,furtherresearchusingcontrolledtreatmentswould berequiredtoevaluatethishypothesis.

Itisuncertainwhetherthereissexualbiasinthesusceptibilityof G.auratus toinfection.

Whilstthereweremorethandoublethenumberofaffectedfemalesthanmales(49to20),the overallmaletofemaleratio(includingimmaturedevelopingandmaturefish)inthese populationsisalsostronglyfemalebiased( c. 1:2;Hardie etal. ,inpress).However,male

G.auratus haveashorterlifespanthanfemales(Chapter5)somalesmaybemore susceptible.As Saprolegnia infectionsproceed,lethargyandlossofequilibriumfollow

(Bruno&Wood,1999);therefore,mortalityof G.auratus withsaprolegniasisislikelytobe furtherexacerbatedbyanincreasedriskofpiscine(e.g.introducedsalmonids)andavian predation.

Saprolegnia sp.arealsoknowntoinfecteggsofCanterburygalaxias Galaxiasvulgaris

Stokell(Cadwallader,1976)and G.maculatus (Benzie,1968)inaquaria.Afunguswith similarmorphologicalappearancetothatofthe Saprolegnia sp.recordedonadult G.auratus wasalsofoundondeadeggsatspawningsitesduringthestudy.Thiswasparticularly

142 Galaxiasauratus fungalinfection prevalentatsitesinLakeCrescentthathadbeensmotheredbysedimentduringstrongwind events(S.A.Hardie,unpubl.obs.).Therefore, Saprolegnia infectionsmayalsobeassociated withthemortalityof G.auratus eggs.

Strategiestomanagewaterlevelswhichalleviatetheprolongedoccurrenceoflowlevelsin lakesCrescentandSorell,andhencereduceorganicloads,maylessenthechancesof

Saprolegnia infectionin G.auratus .However,theresultsofthisstudyindicatethatspawning relatedstressorsincreasetherateofinfection.Itisprobablethatsaprolegniasisisassociated withseasonalmortalityin G.auratus populationsinlakesCrescentandSorell;however, furtherworkisrequiredtodeterminemechanismswhichinfluencefungalcolonisationandthe mortalityratesofinfectedfish.

143 Galaxiidrecruitmentandwaterlevels

8. Recruitment dynamics of a non-diadromous lacustrine galaxiid fish: the roles of water level fluctuations and habitat availability*

*Tobesubmittedto FreshwaterBiology asan AppliedIssues paperfollowingminor adjustments.

8.1. Abstract

1.Thisstudyexaminedtheearlystagesofrecruitmentingoldengalaxias( Galaxiasauratus ) populationsinLakeCrescentandLakeSorell,centralTasmania,Australiaoverfiveyears.

Thesehighlandlakeshavesimilarhydrology,andphysicalandchemicalattributes,butin contrasttoLakeSorell,LakeCrescenthaslimitedareasofspawninghabitat(rockylittoral substrate)for G.auratus andaccesstothesehabitatsiswaterleveldependent.Thisenabled therolesofwaterlevelfluctuationsandhabitatavailabilityinrecruitmenttobeinvestigated.

2.Periodsoflarvalemergencevariedannuallywithinandbetweenthepopulationsofthetwo lakes,despiteconsistentandhighlyseasonalwatertemperatures.Monthlypatternsinlarval emergenceandabundancewereassociatedwiththetimingofinundationofspawninghabitats duringlateautumn–spring.

3.InLakeCrescent,seasonalabundancesoflarvaewerestronglyrelatedtothemagnitudeof waterlevelrisesduringspawningandeggincubation(i.e.MaySeptember),whereasthere wasnosuchrelationshipinLakeSorell.

4.Despitetheoccurrenceoflarvaeinpelagichabitatsduringwinter,theydidnotbeginto growuntilspringwhenwatertemperaturesroseabove~10°C.Thissuggestscouplingof waterlevelandwatertemperatureregimesisimportantforthesurvivalandgrowthoflarvae.

Lowwaterlevelsalsoreducedtheavailabilityoflittoralnurseryhabitatsforjuveniles.

144 Galaxiidrecruitmentandwaterlevels

5.Waterlevelfluctuationsplayakeyroleintherecruitmentof G.auratus whichrelieson accesstocomplexlittoralhabitatsforspawning.Becausemanylacustrinegalaxiidsuse littoralhabitatsduringtheirearlylifestages,alterationstowaterlevelsandseasonal hydrologicalregimesmayimpactontheirrecruitmentbyrestrictingaccesstothesehabitatsat criticaltimes.

Keywords:Galaxiidae;lakes;fishlarvae;hydrology;littoralhabitats

8.2. Introduction

Hydrologicalvariables,suchaswaterlevelfluctuations,arecrucialtothelifehistoryofmany lacustrinefishes,especiallythosethatusethelittoralduringtheirlifecycle.Thishabitatis stronglyaffectedbyhydrologicalvariability(Gasith&Gafny,1990;Winfield,2004a).

Similartothemorewidelystudiedinfluenceofflowsonriverinefishes(Freeman etal. ,2001;

Humphries etal. ,2002;LobónCerviá&Rincón,2004),waterlevelfluctuationsmayalso affectfishinlenticwatersbycontrollingspawningsuccess(Gafny etal. ,1992;Sammons et al. ,1999)andrecruitment(Sammons&Bettoli,2000;Havens etal. ,2005).Anthropogenic manipulationofwaterlevelsinimpoundednaturallenticsystemscanalterthetiming, magnitude,durationandperiodicityoffluctuations.Forthesereasons,knowledgeof relationshipsbetweenwaterlevelregimesandtherecruitmentdynamicsoflacustrinefishesis importanttothemanagementoffishassemblagesinwaterswithalteredhydrology.

Manylacustrinefishesusestructurallycomplexhabitats(e.g.aquaticvegetation)for spawning,incubationofeggs,andnurseryenvironmentsforyoungoftheyear(YOY)fish

(Chambers&Trippel,1997a;Wootton,1998).However,minorchangesinwaterlevelsin shallowlakescanalterhabitatquality.Forexample,theabundanceandspeciesrichnessof

145 Galaxiidrecruitmentandwaterlevels aquaticvegetation(Boulton&Brock,1999)andstabilityofconditionsoverlittoralsubstrates

(Imboden,2004)canbealteredbyhydrologicalmanipulation.Furthermore,abnormallylow levelsmaypreventaccesstolittoralzonesandincreasesedimentationrates(Scheffer,2004) and,thus,reducethesuitabilityofremaininghabitatsforspawning(Bruton,1985).Sudden changesinhydrologycanalsoalterinteractioninfoodwebsandthetrophicstatusoflakes

(Scheffer etal. ,1993)causingYOYtoencounteradverseconditionsforgrowthandsurvival.

Severalabiotic(e.g.watertemperature)andbiotic(e.g.competitiveinteractions)factorsaffect yearclassstrength(YCS)(Helminen etal. ,1997;Ludsin&DeVries,1997;Fulford etal. ,

2006),andthetimingofrecruitmenteventscanbemoredependentonendogenousrhythms thanambientconditions(Munro etal. ,1990;Jobling,1995).However,thesearchfor environmentalpredictorsofrecruitmentstrengthhasreceivedmuchattentionfrom researchers(Myers,1998).Thelifehistoryanddemographicparametersofaspeciesmay determinewhetheritsabundancesarelikelytoberelatedtoenvironmentalvariables

(Chambers&Trippel,1997b).Indeed,speciesoccurringindiscretegeographicalregionsthat donothaveflexiblereproductivestrategiesaremorelikelytoexhibitenvironment recruitmentcorrelationsduetotheirspecialiseduseofhabitatsandrelianceonspecific conditions.

Despitebeingcomplicatedbyfactorssuchasdensitydependentprocesses(Cowan etal. ,

2000)andtheavailabilityoffoodresources(Cushing,1990),highlarvalabundancemay producehighnumbersofrecruits(Mooij,1996;Karjalainen etal. ,2000).Furthermore, relativelysmallfluctuationsinthesurvivaloflarvaecanresultinlargeinterannualvariations inYCS.ThedynamicsofYCShasoftenbeenstudiedinspeciesthatareexploited commercially(Chambers&Trippel,1997a);however,itisalsoimportanttotheconservation

146 Galaxiidrecruitmentandwaterlevels ofthreatenedspeciesasitmayprovideaearlymeasureofpopulationviability.Quantifiable relationshipsbetweenhydrologicalvariablesandrecruitmentforseverallacustrinespeciesare knowntooccur(Miranda etal. ,1984;Maceina&Stimpert,1998).However,whilst mechanismscausingtheserelationships,suchastheavailabilityofsuitablespawning(Ozen

&Noble,2005)ornursery(Sammons&Bettoli,2000;Havens etal.,2005)habitats,are sometimessuggested,theyareseldomrobustlytestedinnaturalwaters.Moresubtlefactors includingphysiologicalcuesprovidedbyhydrologicalvariablesmayalsobeimportantfor reproduction(Lam,1983),butaredifficulttoinvestigate.Clearly,iffishrelyuponcuesor conditionsassociatedwithhydrologicalcycles,thenalterationstowaterlevelregimesmay affectrecruitmentandcontrolYCS,butthegoverningmechanism(s)needtobeidentifiedif theserelationshipsaretobeincorporatedintolakespecificmanagementstrategies.

TheGalaxiidaearerelativelysmallsized(adultsusually<300mmlong)fisheswhichoccur inadiverserangeoffreshwaterhabitatsintheSouthernHemisphere(McDowall&Fulton,

1996).ThefamilyisparticularlyprevalentininlandwatersinsouthernAustraliaandNew

Zealand(McDowall&Frankenberg,1981),whereseveralnondiadromousformsoccur, manyindiscretelenticsystems.Lacustrinegalaxiidstypicallyspawnintheaustralspring– earlysummer,theirlarvaearefreeswimmingandpelagic,andjuvenilesrecruitintoadult epibenthichabitatsbeforethefollowingwinter(seeMcDowall&Fulton,1996;McDowall,

2000).GalaxiidspeciesdominatethenativefreshwaterfishfaunaoftheTasmaniaCentral

Plateau,southernAustralia,owingtotheoccurrenceofsevenendemiclacustrinespecies,all ofwhichhaverestricteddistributionsandareconsideredtobethreatened(Hardie etal. ,

2006b).Thehydrologicalregimesofmostofthelargerwatersinthisregion,includingthose occupiedbysixendemicgalaxiidspecies,havebeenalteredbyschemestosupplywaterfor hydroelectricpowergeneration,andagriculturalandmunicipalpurposes.These

147 Galaxiidrecruitmentandwaterlevels manipulationspotentiallythreatentheregion’sgalaxiidfauna(Hardie etal. ,2006b),and, currently,localwaterlevelmanagementstrategiesdonotconsidertheneedsofindigenous fishes.

Whilstaspectsoftheontogenyofsomelacustrinegalaxiidshavebeenexamined(Cussac et al. ,1992;Rowe&Chisnall,1996a),recruitmentprocesseshavenotpreviouslybeenstudied overmorethantwoseasons.Forthepurposesofthischapter,theterm‘recruitment’refersto theabundanceoftheearliestageatwhichtheYOYcohortcanbedetermined(Myers,1998); forthisspeciesitisthepelagiclarvaejuvenilestage.Inthisstudy,wecomparetheinter annualrecruitmentdynamics(timingofemergence,abundanceoflarvae,growthofYOYand timingofhabitatshifts)ofgoldengalaxias( Galaxiasauratus Johnston)populationsinLake

CrescentandLakeSorell,centralTasmaniaoverafiveyearperiod. Galaxiasauratus is endemictotheseinterconnectedhighlandlakesandhasanondiadromouslifehistorywith spawningoccurringduringlateautumn–winterinlittoralhabitats(Hardie etal. ,2004).Our objectivewastodefinetheecologyoftheearlylifestagesof G.auratus andinvestigatethe rolesofhabitatavailabilityandwaterlevelfluctuationsinrecruitment.Ourhypotheseswere that:(1)larvalabundancewillbegreaterduringyearsofhigherwaterlevelsinLakeCrescent duetoincreasedavailabilityofspawninghabitat,and(2)thetimingandmagnitudeof seasonalrisesinwaterlevelsmayalsoinfluencetheoccurrenceandabundanceoflarvae.

Basedonourfindings,weassessthreatstootherlacustrinegalaxiidsanddiscussmanagement issues.

148 Galaxiidrecruitmentandwaterlevels

8.3. Materials and methods

Study site and hydrology

TheinterconnectedLakeCrescent(42°10’S,147°10’E)andLakeSorell(42°6’S,147°10’E) lie1kmapartandaresituatedat~800ma.s.l.inthesoutheastoftheTasmanianCentral

Plateau,Australia(Fig.1).Bothlakesareimpoundednaturalwatersthathavehadtheirlevels raisedonseveraloccasionssincethe1830sforwaterstoragepurposes.LakesCrescentand

Sorellarequitelarge(surfaceareasof23and52km 2,respectively),relativelyshallow(mean depths<3.5matfullsupplylevels),andturbid(meanof~100NTUinbothlakesduringthis study;Uytendaal,2003).Thelakesareverysimilarphysicallyandchemicallyandarelocated inanareaofuniformgeology,climate,soilsandvegetation(Cheng&Tyler,1973).

Physicochemicalpropertiesofthewatercolumnsofbothlakesaretypicallywell homogenisedduetotheirshallownessandprevailingwindaction.Thetrophicstatusofthese lakesdiffers,withLakeSorellbeingmesotrophicandLakeCrescentmoderatelyeutrophic

(Cheng&Tyler,1976a),andLakeCrescenthasaphytoplanktonstandingcropbiomass

10timesthatofLakeSorell(Cheng&Tyler,1976b).Thefishassemblagesofbothlakes includetwonativespecies,theendemic G.auratus andindigenousshortfinnedeel( Anguilla australis Richardson),andthreeexoticspecies,browntrout( Salmotrutta L.),rainbowtrout

(Oncorhynchusmykiss Walbaum)andcommoncarp( Cyprinuscarpio L.). Galaxiasauratus are~8timesmoreabundantinLakeCrescentthaninLakeSorellpossiblyduetodifferences insalmonidpredationratesandlakeproductivity(Hardie etal. ,2005).

149 Galaxiidrecruitmentandwaterlevels

Fig. 1. Locationoflittoral(●)andpelagic(▲)samplingsitesfor Galaxiasauratus inlakes CrescentandSorell,Tasmania,Australia.Lakeperimetersareatfullsupplylevels.Wetland areasaredepictedbydarkshading.

150 Galaxiidrecruitmentandwaterlevels

TheCrescentSorellsystemhasarelativelysmallcatchmentarea(206km 2)andsix ephemeraltributaries(Fig.1.).Thelargesttributary,MountainCreek(meanannual discharge=11767ML;Uytendaal,2003),flowsinatthenorthernendofLakeSorell,whilst thesingleoutflow,theClydeRiver,flowsoutofLakeCrescenttothesouthwest.The hydrologyofthissystemisprimarilycontrolledbyclimaticvariablesincludingrelativelylow rainfall(annualmean=699mm),andhighevaporationratesduringsummer(mean4.5mm day 1),whilstwaterreleasesfordownstreamusers(annualmean=10000ML)alsoalter waterlevels(DPIWE,2004).Historically,waterlevelfluctuationshaveoccurredseasonally

(minimumsoccurMarchAprilandmaximumsinOctoberNovember)andtypicallyrange from c.0.2to0.9minbothlakes(Fig.2).Since1970,bothlakeshavemaintainedrelatively highlevels,exceptduring ElNiño induceddroughtsin19821984and19971999(Fig.2).

Theavailabilityofthespawninghabitats(e.g.littoralareasofrockysubstrateoraquatic vegetation)for G.auratus differssubstantiallybetweenthelakes(Hardie etal. ,inpress).In

LakeCrescent,therearefourdefinedrockyshorelinesandatalllocationsthishabitatis inundatedatwaterlevels>802.2mAustralianHeightDatum(AHD).Conversely,LakeSorell containsvastlittoralareasofrockysubstratewhichextendwellintothelake’sbasininmany regions.Extensiveadjacentwetlandareas(Fig.1),accountingfor17%ofthesurfaceareaof

LakeCrescentand8%ofLakeSorellatfullsupplylevels(Heffer,2003),connecttothemain bodiesoftheselakesathighwaterlevels(LakeCrescent≥802.6mAHDandLakeSorell

≥803.7mAHD;Fig.2).

151 Galaxiidrecruitmentandwaterlevels

(a) 804.5

804.0

803.5

803.0

802.5

804.5 (b)

Lake level (m AHD) levelLake (m 804.0

803.5

803.0

802.5

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 5 6 7 8 9 -7 -7 -7 -7 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 n n n n n n n n n n n n n n n an an an an an an an an Ja Ja Ja Ja Jan-74Jan-75Jan-76Jan-77Jan-78Jan-79J J J J J J J Ja Ja Ja Ja Ja Ja J Jan-94Ja Ja Ja Ja Ja Month

Fig. 2. Waterlevelsin(a)LakeCrescentand(b)LakeSorellbetween1970and1999.Waterlevelsaremeasuredinmetresofelevation accordingtotheAustralianHeightDatum(mAHD).Levelsatwhichlittoralwetlandsconnecttothelakesareshownbyhorizontaldashedlines. WaterleveldatawereprovidedbytheInlandFisheriesService,Tasmania.

152 Galaxiidrecruitmentandwaterlevels

Inthepast,bothlakeshavealsocontainedinlakemacrophytes,butnosignificantstandswere presentduringthisstudyowingtolowwaterlevelsandconsequentincreasedexposureofbed sedimentstowaveactionandelevatedturbidity(Uytendaal,2006).Therefore,inlakebenthic areasconsistedprimarilyoffinesedimentinLakeCrescentandamixtureoffinesediment androckinLakeSorellduringthisstudy.

Water temperature

MeandailywatertemperaturewasmeasuredinlakesCrescentandSorellbetweenJanuary

2000andDecember2002(depth0.5m)usingOpticStowAwayTemperatureloggers(Model

WTA).Meandailywatertemperatureinbothlakesduringthisperiodwasalsomodelled usingDynamicReservoirSimulationModel(DYRESM)(Antenucci,2001)with meteorologicaldatasuppliedbyHydroTasmania,BureauofMeteorologyandtheTasmanian

InlandFisheriesService(allHobart,Australia).Modelleddatacloselyapproximatedobserved temperaturesinbothlakesduringthisperiod( R2≥0.95)andtheresultantmodelswereusedto estimatemeandailywatertemperaturesineachlakebetweenJanuary2002andDecember

2004withmeteorologicaldataforthisperiod.Thedifferencebetweenthewatertemperature regimesofthelakeswasexaminedusingapaired ttestofmeanmonthlytemperatures.

Pelagic fish sampling

PelagicYOY G.auratus weresampledmonthlyfromLakeCrescentandLakeSorellbetween

July2000andDecember2003toexaminethedurationofemergenceperiodsandtimesat whichpeaksinhatchingoccur.YOYwerealsosampledinFebruary2004toaidgrowth modellingofthe2003cohortandbetweenAugustandDecember2004togainameasureof thepeakabundanceforthatyear.Fishwerecollectedatfourspatiallydistributedsitesineach lake(Fig.1)bytowingaconicalichthyoplanktonnet(400mmdiameter,1.25mtailwith

153 Galaxiidrecruitmentandwaterlevels

500mmesh)for10minapproximately15mbehindaboatataspeed(~2ms 1)thatensured thenetwassamplingthetop1mofthewatercolumn.Forthepurposesofthispaper,fish capturedinpelagichabitatsduringthecalendaryearoftheirbirth(i.e.≤40mmforklength,

FL)arereferredtoas‘larvae’andallotherYOY(typically4170mmFL)as‘juveniles’(at

~40mmFL,themajorityoffirstyear G.auratusbegintodevelopadultpigmentation

(Frijlink,1999)andundergoanontogeneticshiftfrompelagictolittoralhabitats(see

Results),bothofwhicharedecisiveeventsintheearlydevelopmentofteleosts(Balon,

1984)).Allmaterialcollectedinichthyoplanktonsampleswaseuthanasedinananaesthetic solution(Aquis™)andpreservedin70%ethanol. Galaxiasauratus larvaewereidentified followingunpublishedkeys(Frijlink,1999),thenumberoflarvaeandjuvenilesineach samplewerecounted(fishtow 1),andthefirst100larvaeandalljuvenilesineachsample weremeasured(mmFL).

Littoral fish sampling

Juvenileandadult G.auratus weresampledmonthlyfromlittoralhabitats(depths≤1.2m)in

LakeCrescentandLakeSorellbetweenOctober2000andDecember2002.Fishwere collectedatthreesitesineachlake(Fig.1)whichrepresentedoneofthedominantlittoral habitats(finesediment,sandandrock)inbothlakesatthetimeofthestudy.Fishwere sampledovernight(meansoaktimeof18hours)usingfourfykenets(two3m×0.6mwing andtwo5m×0.6mwingnetswith600mmDshapedentranceand2mmstretchedmesh)at eachsite(i.e.12netsperlake).Allnetshadan84×70mmaluminiumscreenintheentrance toavoidthecaptureofplatypus( Ornithorhyncusanatinus ),waterbirdsandlargerfishspecies

(e.g.salmonids).Catchesfromlittoralhabitatswereanaesthetisedinananaestheticsolution

(Aquis™)andarandomsubsampleof50fishfromeachsiteweremeasured(mmFL).Fish werethenrevivedinfreshwaterandreleasedatthesiteofcapture.

154 Galaxiidrecruitmentandwaterlevels

Data analysis

YOY G.auratus frompelagichabitatswereassignedtocohortsbasedontheyearoftheir birth,whichwasclearlydefinedbylengthclassesintemporalcatches.Thetimingof emergencewasanalysedbyexaminingthevariabilityintheoccurrenceofnewlyhatched larvae(≤8mmFL)inpelagicsamplesusingKolmogorovSmirnovtwosampletestswith pooledmonthlylengthdataforeachlake.Datafor2004wereexcludedfromtheseanalyses becausesamplingdidnotbeginuntilAugust(i.e.theinitialoccurrenceoflarvaeineachlake wasprobablymissedinthisyear).LarvalcatchdataforsitessampledbetweenAugustand

Decemberofeachyearwerelog 10 ( x+1)transformedtohomogenisevariancesandnormalise residuals,andrepeatedmeasuresANOVAswereusedtotestfordifferencesinmean abundancesbetweenlakesandyears.Intheseanalyses,lakesweretreatedasbetweensubject factors,yearsasthewithinsubjectfactor,andsamplesiteswerethesubjects.Regression analysiswasusedtoassessrelationsbetweenlakehydrology(i.e.magnitudeofrisebetween

MayandSeptemberwhen G.auratus spawnandeggincubationoccurs)andmeanabundance oflarvaebetweenAugustandDecemberinbothlakesacrossyears.

GrowthofYOYinthe20002003cohortsineachpopulation,wherefishwerecapturedin townetsamplesbeyondtheirfirstDecember,wasexaminedbyfittinglogisticgrowthmodels tomeanmonthlylengthsforeachcohort.Thelogisticgrowthequationis:

−1 −K[]t+t0 Lt = L∞ [1+ e( )] where Ltisthelengthatage t(days), L∞istheasymptoticlength, Kistheagespecificgrowth rate,and t0isashiftparametertoallowtheextrapolatedlengthatage0tobenonzero

(Kaufmann,1981;McCallum,2000).Growthmodelsforeachcohortandlakewerecompared usinglikelihoodratiotests(Kimura,1980).Theperiodswhengrowthbegantooccurin cohortsineachlakewerealsoexaminedbyonewayANOVAswithyearandmonthasfixed

155 Galaxiidrecruitmentandwaterlevels factors.Finemeshedfykenetscapturedalargesizerangeof G.auratus inlittoralareas

(31235mmFL);therefore,themonthlysamplingregimebetweenOctober2000and

December2002enabledthetimingofthepelagiclittoralhabitatshiftofYOYfishtobe investigated.Thetiminganddurationofthehabitatshiftsineachlakewereassessedby lengthfrequencyhistogramsofmonthlydatafrompelagicandlittoralhabitatsduringthis period.AllanalyseswerecarriedoutinRversion2.2.0(RDevelopmentCoreTeam,2005), andgrowthmodellingincludedfunctionsinthepackagenlme(linearandnonlinearmixed effectsmodels)(Pinheiro etal. ,2005).Thesignificancelevelforhypothesistestswas

P=0.05.

8.4. Results

Hydrology, habitat availability and water temperature

Incomparisontohistoricalwaterlevels(19701999;Fig.2),bothLakeCrescentandLake

Sorellexperiencedverylowlevelsduringthisfiveyearstudy,includingrecordminimain

2000inSorell(802.620mAHD)andin2001inCrescent(801.770mAHD)(Fig.3).This waslargelyduetoabnormalclimaticconditionsjustpriortoandearlyinthestudywithan extended ElNiño induceddroughtbetween1997and2001causingbelowaverageand unseasonalrainfallinthecatchment.Duringthestudy,annualbaselevelsinlakesCrescent andSorellroseprogressivelyandwaterlevelfluctuationsfollowedsimilartrendsinboth lakes(Fig.3)whichwerecomparabletohistoricalseasonalpatterns(Fig.2).Therewas considerableinterannualvariationinfluctuationswithseasonalrisesrangingfrom0.200to

1.050mandfallsfrom0.280to0.650m.Minimumandmaximumlevelsgenerallyoccurred duringMarchMayandOctoberDecember,respectively;however,thefirstsubstantial seasonalrise(0.1m)occurredasearlyas30Januaryin2004inLakeSorell,andaslateas

18AugustinLakeCrescentin2002.

156 Galaxiidrecruitmentandwaterlevels

25 803.0 (a)

802.8 20

802.6 15

802.4 10 802.2 Lake level (m AHD) levelLake (m Water temperature (°C) temperature Water 802.0 5

801.8 0

2000 2001 2002 2003 2004 2005

Year

804.2 (b) 25

803.8 20

15 803.4 10 Lake level (m AHD) levelLake (m

803.0 (°C) temperature Water 5

802.6 0

2000 2001 2002 2003 2004 2005

Year

Fig. 3. Dailywaterlevelsandmeandailywatertemperaturesin(a)LakeCrescentand(b) LakeSorellbetween2000and2005.Waterlevelsaremeasuredinmetresofelevation accordingtotheAustralianHeightDatum(mAHD).Levelsatwhichlittoralwetlands connecttothelakesandthelevelatwhichrockyshoresbegintobeinundatedinLake Crescentareshownbydashed,anddashedanddottedhorizontallinesrespectively.

157 Galaxiidrecruitmentandwaterlevels

Whilstfluctuationsinbothlakesweresimilar,levelsinLakeSorell(Fig.3b)usuallybeganto riseslightlyearlierthanthoseinLakeCrescent(Fig.3a)inresponsetolateautumn–winter rainfallduetodirectseasonalinputfromtheprimarytributary,MountainCreek.Fluctuations inLakeSorell(Fig.3b)(bothrisesandfalls)werealsotypicallymorerapidbecauseofthis input,andregulationofflowsbetweenthelakesanddischargefromLakeCrescent.

Thehistoricallylowwaterlevelsthatpersistedthroughoutthisstudyperiodicallyaltered accesstolittoralwetlandsandrockyspawninghabitatinLakeCrescent(Fig.3).Thewetlands associatedwithbothlakeswerenotinundatedsufficientlytoallow G.auratus access

(especiallyduringspawning)despitemarginalflooding(≤0.55m)overthresholdlevelslatein

2003and2004inLakeCrescent,andlatein2001,2002,2003andthroughout2004inLake

Sorell(Fig.3).RockyshoreswerecompletelydewateredinLakeCrescentonthreeoccasions; briefly(~61days)in2003,andforextendedperiodsin2000(~121days)and2001

(~235days)(Fig.3a).Whilstthe2003dewateringoccurredpriortothespawningperiodof

G.auratus ,theavailabilityofthishabitatforspawningwaslimitedbythelowlevelsin2000 and2001withinundationbeingdelayeduntillateJuly–earlyAugustineachseason respectively.Therefore,duringthisstudy,littoralhabitatsinLakeCrescentconsistedmostly offinesedimentandsandwithonlylimitedareasofrock,whereasinLakeSorellextensive areasofallthreesubstrateswerepresent,withrockdominatingthelittoral(>60%of shoreline).

Overall,watertemperaturesinlakesCrescentandSorellweresimilarbetween2000and2004

(Fig.3)withnosignificantdifferencebetweenmonthlymeans(paired ttestforallmonthsfor

20002004: t=1.513,d.f.=59, P=0.136).However,temperaturesvariedmarginally(mean differencesintheaveragemonthlytemperatures<0.5 °C)betweenthelakesduring2001

158 Galaxiidrecruitmentandwaterlevels

(paired ttestforallmonthsfor2001: t=2.481,d.f.=11, P<0.05)and2003(paired ttestfor allmonthsfor2003: t=2.874,d.f.=11, P<0.05),probablyduetoincreaseddisparityin depthsofeachlakeatthosetimes(seeFig.3).Temperaturecyclesinpooledlakedatahad strongseasonalvariationwithmean(±S.D.)monthlytemperaturesbeing<5 °Cduringwinter

(minimumof3.6±1.1 °CduringJuly)and>15 °Cduringsummer(maximumof

16.5 °C±2.1 °CduringJanuary).

Timing and duration of larval emergence

Galaxiasauratus larvaewerecollectedinpelagichabitatsinLakeCrescentandLakeSorell duringallyearsofthestudy;however,therewasconsiderableinterannualvariationinthe occurrenceofnewlyhatchedlarvae(<8mmFL)bothwithin(KolmogorovSmirnovtwo sampletestsforLakeCrescentallyears: P<0.001,except2002vs2003 P=0.4989;forLake

Sorellallyears: P<0.0001)andbetween(KolmogorovSmirnovtwosampletestsforyears acrosslakes: P<0.0001)thelakes(Fig.4).Inbothlakes,duringmonthlysamplingbetween

July2000andDecember2003(withtheexceptionofAugust2000inLakeSorell),newly hatchedlarvaeoccurredasearlyasMayandaslateasDecember.Acrossseasons,theperiods overwhichnewlyhatchedlarvaewerecollectedweresimilarinbothpopulationswithnew recruitsappearingprogressivelyearlierbetween2000and2003.Peaksintheoccurrenceof newlyhatchedindividualstendedtobeearlierandlessdefinedinLakeSorellthanLake

Crescent.InLakeSorell>68%ofnewlyhatchedlarvaewerecapturedduringSeptemberin

2000and2004,whereasbetween2001and2003hatchingdidnotappeartopeakas dramaticallyand>50%ofnewlyhatchedlarvaeoccurredinJulySeptember.Conversely,in

LakeCrescentinfourofthefiveyears,>82%ofthenewlyhatchedlarvaewerecaptured duringSeptemberOctober.

159 Galaxiidrecruitmentandwaterlevels

Lake Crescent Lake Sorell

80 n = 396 n = 166 60 40 2000 20 0

80 n = 124 n = 634 60 40 2001 20 0 *

80 n = 453 n = 1873 60 40 2002 20 0 * Frequency (%) Frequency 80 n = 510 n = 810 60 40 2003 20 0

80 n = 531 n = 575 60 40 2004 20 0 * MJJASOND MJJASOND Month

Fig. 4. Frequencyofoccurrenceofnewlyhatched Galaxiasauratus larvae(<8mmFL)inpelagicsamplesforeachspawningseason(May December)inlakesCrescentandSorellbetween2000and2004.Monthsnotsampled(horizontalbars)andproportions<1%(*)areindicated.

160 Galaxiidrecruitmentandwaterlevels

Abundance of larvae

Duringemergenceperiods(MayDecember),theabundanceoflarvaeinLakeCrescent generallyincreasedfromwintertospringwithpeaksinSeptemberorOctober(Fig.5).

Conversely,inLakeSorell,larvaeusuallyremainedabundantfromwinteronwards,although slightpeaksdidoccurduringlatewinter–springin20022004(Fig.6).Maximummonthly mean(±S.E.)abundancesoflarvaeoccurredinNovember2003inLakeCrescent

(1754±564fishtow 1)andSeptember2004inLakeSorell(1364±90fishtow 1).Many juvenileswerealsocapturedinpelagichabitatsinLakeCrescentbetweenMayandDecember ineachyear(Fig.5),althoughtherewerenoticeablyfewerfishduring2003(meanfor period=0.28fishtow 1)thaninotheryears(rangeofmeans=3.68.4fishtow 1).Incontrast, onlysmallnumbersofjuveniles(≤2fishpermonth)weresporadicallycollectedinpelagic samplesinLakeSorell(Fig.6).

MaximummeanabundancesoflarvaeduringAugustDecemberoccurredin2001inLake

Crescent(92.1±0.3fishtow 1)and2004inLakeSorell(276.4±0.3fishtow 1).Therewasa highlysignificantlake ×yearinteraction(ANOVA, F4,24 =20.319, P<0.0001)onmeanlarval abundance,indicatingthatlarvalabundancesinthetwopopulationswereinfluencedby differenttemporalfactors.Thisinterannualvariationinlarvalabundanceshadastrong relationshipwithlakehydrologyinLakeCrescent;however,nosuchassociationwas observedinLakeSorell(Fig.7).InLakeCrescent(Fig.7b),themagnitudeoftheriseinwater level(WL)betweenMayandSeptember,whenspawningisknowntooccur,wasstronglyand positivelyrelatedtothemeanabundanceoflarvae(AL)ineachspawningseason(August

2 December)(log 10 AL=0.981+1.905WL, R =0.97).InLakeSorell(Fig.7a),duringall years,except2001,meanabundancesoflarvaeweresimilareventhoughannualwaterlevel increasesrangedfrom0.145to0.695m.

161 Galaxiidrecruitmentandwaterlevels

Larvae Juveniles 3.50 3.50 2000 1.75 1.75

0.00 0.00

3.50 3.50 2001

1.75 1.75

0.00 0.00

3.50 3.50 2002 1.75 1.75

0.00 0.00 +1) number of fish of number +1) x ( 3.50 3.50 10 2003

1.75 1.75 Log

0.00 0.00

3.50 3.50 2004 1.75 1.75

0.00 0.00

May Jun Jul Aug Sep Oct Nov Dec May Jun Jul Aug Sep Oct Nov Dec Month

Fig. 5. Mean(±1S.E.)catchof Galaxiasauratus larvae(≤40mmFL)andjuveniles (>40mmFL)inpelagicsamplesforeachspawningseason(MayDecember)inLake Crescentbetween2000and2004.

162 Galaxiidrecruitmentandwaterlevels

Larvae Juveniles 3.50 3.50 2000 1.75 1.75

0.00 0.00

3.50 3.50 2001

1.75 1.75

0.00 0.00

3.50 3.50 2002 1.75 1.75

0.00 0.00 +1) number of fish of number +1) x ( 3.50 3.50 10 2003

1.75 1.75 Log

0.00 0.00

3.50 3.50 2004 1.75 1.75

0.00 0.00

May Jun Jul Aug Sep Oct Nov Dec May Jun Jul Aug Sep Oct Nov Dec Month Fig. 6. Mean(±1S.E.)catchof Galaxiasauratus larvae(≤40mmFL)andjuveniles (>40mmFL)inpelagicsamplesforeachspawningseason(MayDecember)inLakeSorell between2000and2004.

163 Galaxiidrecruitmentandwaterlevels

(a) 2.5

2.0

1.5

1.0 2000 2001 (b) 2002 2003 2.5 2004 +1) number of larvae of number +1) x ( 2.0 10

Log 1.5

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 Water level rise (m)

Fig. 7. RiseinwaterlevelbetweenMayandSeptemberandthemeancatchof Galaxias auratus larvae(≤40mmFL)inpelagicsamplesforeachspawningseason(August December)in(a)LakeCrescentand(b)LakeSorellbetween2000and2004.Alinearmodel oftherelationshipinLakeCrescentisindicatedbyadashedline.

Growth of young-of-the-year fish

GrowthcurvesforYOYfishbasedonmeanmonthlylengthsofcohortsfollowedsimilar patternsinLakeCrescentandLakeSorell(Fig.8).Despitelarvaebeingpresentduringwinter inbothlakes,therewashardlyanygrowthuntilspring.Theinitialgrowthperiodgenerally occurredinSeptemberorOctober,butvariedbetweenlakesandyears.InLakeCrescent

(Fig.8a),themeanlengthforSeptemberwassignificantlygreater( P<0.0001)thanthatof

Augustduring2001,whereasthisoccurredinOctoberincomparisontoSeptemberin2000,

2002,2003and2004(all P<0.05).InLakeSorell(Fig.8b),meanlengthsweregreaterin

SeptemberthaninAugustin2001and2003(both P<0.05),OctoberthaninSeptemberin

164 Galaxiidrecruitmentandwaterlevels

2000and2004(both P<0.0001),andinNovemberthaninOctoberin2002( P<0.0001).

Meanmonthlytemperaturesofpooledlakeandyeardataincreasedfrom4.2,7.3,9.9and

13.7°CduringAugust,September,OctoberandNovemberrespectively.Inallyears,growth wasrapidoversummerinbothpopulations.InLakeCrescent,whereYOYweresometimes capturedinthewatercolumnbeyondApril(Fig.8a),growthslowedduringthefollowing autumnandtrajectoriesapproachedasymptoticlengths(5560mmFL)bywinter.

Logisticgrowthmodelsfittedwelltomonthlylengthdataforthe20002002cohortsinboth populations;however,duetofewfishbeingcapturedafterDecember(Fig.8),growthofthe

2003cohortswaspoorlyestimated(i.e. L∞estimateswerelargecomparedtomaximum lengthsandhadlargestandarderrors(>128%))(Table1).Growthofcohortsdiffered significantlybothbetween( P<0.01)andwithin( P<0.0001)thepopulations(bothwhenthe

2003cohortwasandwasnotincludedintheanalyses).Inbothlakes,excludingthe2003 cohort,asymptoticlengthsattheendofthefirstgrowingseason( L∞estimates)weresimilar acrossyears(range=56.5661.20mmFL)despiteconsiderablevariationingrowthrates( K)

(Table1).GrowthrateswerealwaysgreaterinLakeCrescentthaninLakeSorellin correspondingyearsandwerenoticeablyhigherin2000and2002( K~0.8)(Table1).

165 Galaxiidrecruitmentandwaterlevels

(a)

2000 16 60 2001 2002 50 2003 14 2004 Temperature 40 12

30 10

8

Fork length (mm) length Fork 20 Water temperature (°C) temperature Water 10 6

0 4

MJJASONDJFMAMJJ

Month

(b)

2000 16 60 2001 2002 14 50 2003 2004 Temperature 12 40 10 30 8

Fork length (mm) length Fork 20 Water temperature (°C) temperature Water 10 6

4 0

MJJASONDJFMAMJJ

Month Fig. 8. Monthlymeanlengthsofyoungoftheyear Galaxiasauratus foreachrecruitment season(MaytothefollowingJuly)andmeanwatertemperaturesin(a)LakeCrescentand(b) LakeSorellbetween2000and2004.Logisticgrowthmodelsforthe2000,2001,2002and 2003cohortsareshowninTable1.

166 Galaxiidrecruitmentandwaterlevels

Table 1. Logisticgrowthmodelparameterestimates(±1S.E.)for Galaxiasauratus cohorts inlakesCrescentandSorell. 1 Lake Cohort n L∞(mm) K(day ) t0(days)

Crescent 2000 1141 56.56±3.51 0.83±0.12 4.36±0.25

2001 1443 60.16±4.56 0.66±0.10 4.23±0.34

2002 461 60.31±6.36 0.79±0.14 5.39±0.41

2003 1522 86.15±110.36 0.52±0.26 6.45±4.57

Sorell 2000 316 60.54±8.81 0.59±0.11 5.37±0.63

2001 1040 61.20±8.80 0.58±0.12 4.14±0.63

2002 1016 57.83±7.23 0.69±0.13 5.39±0.49

2003 888 188.55±1024.58 0.41±0.28 9.64±18.55

Ontogenetic habitat shift

YOYfishinthe2000(Fig.9andFig.10)and2001cohortsbegantomovefrompelagicareas toadulthabitats(littoralareasoffinesediment,sandandrock)inJanuary(mean(±S.D.) sizes,LakeCrescent=43.5±2.8mmFL;LakeSorell=41.8±3.6mmFL).Themajorityof

YOYundertookthishabitatshiftbetweenJanuaryandAprilinLakeSorellwithfew individualsbeingcapturedintownetsamplesafterthistime(Fig.10a;seealsoFig.8b).The shiftwasgenerallymoregradualinLakeCrescentwithmanyfishremaininginthewater columnintothefollowingspring–earlysummer(sizeranges4080mmFL)(Fig.9a;see alsoFig.8a)eventhoughthesecohortswerealsoabundantinlittoralsamplesatthesetimes

(seeFig.5).

167 Galaxiidrecruitmentandwaterlevels

(a)

80 Oct-00 60 n = 411 40 20 0 80 Nov-00 60 n = 412 40 20 0 80 Dec-00 60 n = 128 40 20 0 Frequency (%) Frequency 80 Jan-01 60 n = 260 40 20 0 80 Feb-01 60 n = 23 40 20 0 0 20 40 60 80 100 Fork length (mm)

(b)

20 Oct-00 n = 150 10

0 20 Nov-00 n = 150 10

0 20 Dec-00 n = 150 10 0 Frequency (%) Frequency 20 Jan-01 n = 150 10

0 20 Feb-01 n = 150 10 0 0 40 80 120 160 200 Fork length (mm)

Fig. 9. Lengthfrequenciesof Galaxiasauratus capturedmonthlyfrom(a)pelagicand(b) littoralhabitatsinLakeCrescentbetweenOctober2000andFebruary2001.

168 Galaxiidrecruitmentandwaterlevels

(a)

60 Oct-00 40 n = 37 20 0 60 Nov-00 40 n = 70 20 0 60 Dec-00 40 n = 22 20 0 Frequency (%) Frequency 60 Jan-01 40 n = 46 20 0 60 Feb-01 40 n = 9 20 0 0 20 40 60 80 100 Fork length (mm) (b)

30 Oct-00 20 n = 150 10 0 30 Nov-00 20 n = 53 10 0 30 Dec-00 20 n = 72 10 0 Frequency (%) Frequency 30 Jan-01 20 n = 110 10 0 30 Feb-01 20 n = 103 10 0 0 40 80 120 160 200 Fork length (mm) Fig. 10.Lengthfrequenciesof Galaxiasauratus capturedmonthlyfrom(a)pelagicand(b) littoralhabitatsinLakeSorellbetweenOctober2000andFebruary2001.

169 Galaxiidrecruitmentandwaterlevels

8.5. Discussion

Larval emergence

Fluctuationsinwatertemperatureoftentriggerspawningintemperatefreshwaterfishes

(Wootton,1998).However,otherfactors,suchastheavailabilityofsuitablehabitats,may alsocontrolreproduction(Gafny etal. ,1992)andthesubsequentprogressionofearlylife stages(Sammons etal. ,1999).Inthisstudy,thetiminganddurationofemergenceof

G.auratus larvaevariedconsiderablyamongyears,bothwithinandbetweenpopulations, despiteconsistentandhighlyseasonalwatertemperatures.Newlyhatchedlarvae(<8mmFL) occurredasearlyasMayinbothlakeswhilewatertemperatureswere~6°Canddecreasing, andaslateasDecember(inLakeSorell)whenithadrisento~15°C.Surprisingly,inboth lakes,newlarvaewerepresentinpelagichabitatsfor68monthsduring2002and2003,and manywerepresentduringwinterin20012003whenwatertemperaturesweregenerally<5°C andaslowas~1°C.Thisisunusualforanondiadromousgalaxiidasotherspeciesgenerally spawnduringlatewinter–earlysummer(Humphries,1989;Pen&Potter,1991a) presumablytooptimisethechancesoflarvaeencounteringfavourableconditions(e.g.water temperaturesandfoodresources).Indeed,limiteddataforotherlacustrinegalaxiidsthat inhabithighland(i.e.>500ma.s.l.)lakesinsoutheasternAustralia(Fulton,1982;

Humphries,1989),NewZealand(Rowe etal. ,2002a)andPatagonianArgentina(Barriga et al. ,2002)indicatetheirlarvalphasesoccurduringspringorsummer.Therefore, G.auratus havemuchearlierandmoreextendedperiodsofemergence,whichsuggestearlierandmore protractedspawninginresponsetofactorsotherthanambientconditions.Thisissupportedby theresultsofHardie etal. ,(inpress).

LarvaeweremoreprevalentduringwinterinLakeSorellwhereamplespawninghabitatwas constantlyavailableandwaterlevelsroseearlierthaninLakeCrescent(i.e.initialriseof

170 Galaxiidrecruitmentandwaterlevels

0.1moccurred6130daysearlierineachyear).Therefore,thetimingofincreasesinwater levelsduringautumn–winterappearedtoinfluencetheemergenceoflarvae.Additionally, peaksintheoccurrenceofnewlyhatchedlarvae(>60%)happenedearlierinbothpopulations in2001thaninallotheryears(excluding2004wherenosamplingwasundertakenuntil

August),whentheearliest(lateMarch)substantialrise(0.1m)tookplace.Therefore,inter annualvariationinlarvalemergenceineachlakewasalsolinkedtohydrology.Whilstthese resultsreflectspawningtimes,increasingtemperaturesinlatewinter–springarelikelyto complicatethisrelationshipbyreducingtheincubationperiodoflaterspawnedeggs,thus, synchronisingthehatchingofeggsspawnedatdifferenttimes(Karjalainen etal. ,2000).This isindicatedbypeaksintheoccurrenceofnewlyhatchedlarvaeduringspringwhenwater temperatureinitiallyincreased.

Abundance of larvae and hydrology

Temporalabundancesof G.auratus larvaeinlakesCrescentandSorellalsocorrespondedto differencesinhydrologyandhabitatavailability.LarvaetendedtobemoreabundantinLake

SorellthaninLakeCrescentduringwinter,andtheirmeanmonthlyabundancesoftenpeaked earlierthaninLakeCrescent.Thisreflectsdifferencesinspawninginresponsetorisesin waterlevels:inLakeSorellfishspawnedearlierbecauseextensiveareasofhabitatwere alwaysavailable,whilstinLakeCrescentspawningwaslaterandmoreprotractedwith progressiveinundationofthelimitedhabitat.Larvalabundancesdidnotcorrelatewith increasedbasewaterlevelsineitherlake;however,themeanseasonalabundancesoflarvaein

LakeCrescentwerestronglyrelatedtothemagnitudeofrisesinwaterlevelsduringspawning andeggincubation(i.e.MaySeptember).

171 Galaxiidrecruitmentandwaterlevels

Otherresearchershavehighlightedtheinfluenceofhydrologyontheabundanceofjuvenile fishinlenticwaters(Sammons&Bettoli,2000;Maceina,2003)andsomehavesuggested thatthegoverningmechanismsarerelatedtochangesintheavailabilityofhabitatsforcertain lifestages(Hargeby etal. ,2005;Yamamoto etal. ,2006).Manylittoralspawningspeciesuse complexhabitatsforbreeding,andtheconditionorintegrityoftheseareasisalsocriticalto reproductivesuccess(Bruton,1985;Gafny etal. ,1992). Galaxiasauratus scatteradhesive eggs,forwhichthereisnoparentalcare,inshallow(0.20.6mdeep)littoralareas(Hardie et al. ,inpress).InLakeCrescent,whereloadsofsuspendedparticulatematter(mostlyorganic) varyconsiderablywhilewaterlevelsarelow(i.e.rangeinconcentrationsoftotalsuspended solidsduringstudy=401000mgL 1;Uytendaal,2006),mostofthespawninghabitatofthis speciesisperiodicallyexposedtowindinducedwaveactionand,hence,proneto sedimentation(S.A.Hardie,unpubl.obs.).Therefore,theobservedrelationshipbetween hydrologyandrecruitmentinLakeCrescent,maynotonlyberelatedtothequantityof seasonalfloodedspawninghabitat,butitsquality(e.g.degreeofsurfacesedimentation).

Historically,bothlakesCrescentandSorellhavecontainedsubmergedmacrophytesduring periodsofhigherwaterlevels(~0.8mgreaterthanduringthisstudy). Galaxiasauratus also usesubmergedaquaticvegetationasaspawninghabitatwhenavailable(S.A.Hardie,unpubl. data).Theseareasarelikelytoprovideadditionalspawninghabitatsthatarenotassusceptible asrockyshorestosedimentation.Thus,theobservedhydrologyrecruitmentrelationshipin

LakeCrescentmaybeweakerinwetteryearsaslargeareasofmorefavourablespawning habitatswouldbeavailable.

172 Galaxiidrecruitmentandwaterlevels

Growth of YOY fish and habitat shift

Coincidenseofthetimingoflarvalproduction,favourablewatertemperaturesandthe availabilityandquantityofsuitablefoodresourcesiscrucialforrecruitment(Cushing,1990;

King etal. ,2003).Despitetheoccurrenceof G.auratus larvaeinthepelagiczonesoflakes

CrescentandSorellduringwinter,theydidnotbegintogrowuntilspringwhenwater temperaturesroseabove~10°C.Therefore,thelateautumn–earlywinteremergenceofsome larvaeinbothlakesappearsdisadvantageoustotheirgrowthandsurvival.Theextended spawningperiodsinbothpopulationsdid,however,ensurethatsomeembryosemergedwhen conditions(i.e.bothtemperaturesandfoodresources)werelikelytobemorefavourable.

Thus,eventhoughlarvalemergenceofthisspecieswasprotracted,itwasfishthathatched duringlatewinter–springwhichwerelikelytocontributetotheYOYcohort.

DespitevariationsinabundanceofYOYandthetimeatwhichtheirgrowthbegan,density dependentfactorsdidnotappeartoconstraingrowthineitherlake.SummergrowthofYOY cohortsdidvaryslightly(rangein Kfor20002002cohorts=0.580.83),butcohortsinboth lakesreachedsimilarlengthsbytheendofthefirstgrowingseason( L∞estimatesfor2000

2002cohorts=56.5661.20mmFL).However,rapidgrowthbyYOYbetweenNovember andMarchislikelytobeveryimportantinthesehighlandlakes.Ifemergencewasdelayedby unseasonalwaterlevelfluctuations,YOYcouldbesmallerandinpoorerconditionattheend oftheirfirstgrowingseason,therebyincreasingmortalityduringthefollowingwinter

(Byström etal. ,1998).

Similartootherlacustrine Galaxias species(Cussac etal. ,1992;Rowe&Chisnall,1996a),

G.auratus undergolittoral–pelagic–littoralontogenetichabitatshiftsduringtheirlifecycle.

Suchhabitatshiftshavebeenrelatedtopredationriskandresourcelimitation(Werner&Hall,

173 Galaxiidrecruitmentandwaterlevels

1988;Eklöv&Persson,1996),andbotharelikelytobeassociatedwiththismovementby

G.auratus :galaxiids>40mmFLareasignificantdietitemforsalmonidsinbothlakes

(StuartSmith etal. ,2004)and G.auratus shiftfromzooplanktontoepibenthicinvertebrate preyatthistime(Hardie etal. ,2004).Inbothlakes,mostjuveniles(4050mmFL)beganthe shifttothelittoralinJanuaryand,inLakeSorell,basicallyalljuvenileswereinlittoralareas byApril.Conversely,inLakeCrescentwheretherewaslikelytobestrongcompetition betweenadultsandjuvenilesforthelimitedareasofrockyshorehabitat,manyindividuals remainedinthewatercolumnduringthefollowingwinterandspring.Juvenile G.auratus havebeenfoundtouselittoralmacrophytesforshelterwhenavailable(Hardie etal. ,2006a), therefore,higherwaterlevelswhichallowYOYtoaccesstheextensivelittoralwetlandsof theselakesarelikelytoincreaserecruitmentbyprovidingadditionalnurseryhabitatsfor juveniles.

Water levels and conservation of lacustrine galaxiids

Whilstgalaxiidsoccurinanarrayofhabitats,manyinhabitlenticwaters(McDowall,2000;

Allen etal. ,2002).Severalspeciesoccurinrelativelysmallpopulationsthatare geographicallyisolatedduetoeithernaturaloranthropogenicbarriers.Inmanycases,these restricteddistributionsandlocalisedthreatshaveledtotheirimperilledstatus(McDowall&

Rowe,1996;Koster,2003;Hardie etal. ,2006b).Unlikeriverinediadromouspopulations whichcanbereplenishedbyimmigration,nondiadromouslacustrinepopulationsmayhave limitedabilitytofacilitateinternalrecoveryfrommajorperturbationssuchasimpoundment

(Hamr,1995).

Currently,littleisknownoftherolesofhydrologicalvariablesinthelifehistoriesof lacustrinegalaxiids.Inthisstudy,theavailabilityofcomplexlittoralhabitatswascontrolled

174 Galaxiidrecruitmentandwaterlevels bywaterlevelfluctuationsandwefoundassociationsbetweenhydrology,thetimingof emergenceandabundanceof G.auratus larvae.Clearly,theobservedrelationshipbetween larvalabundancesandwaterlevelfluctuationsinLakeCrescentshowsthathydrologycan heavilyinfluencetherecruitmentofspecieswhichrelyonlittoralhabitatsforspawning.

Therefore,besidestheneedtoaddressthelackofknowledgeregardingthebiologyofmany galaxiids(Hardie etal. ,2006b),futureresearchshouldalsofocusondefiningrelationships betweenhydrologicalvariablesandlifehistorystrategies,andhabitatsthatarelimitingfor differentlifestages(Rosenfeld&Hatfield,2006).Becausemanygalaxiidspeciesuselittoral habitatsduringearlylifestages(Fulton,1982;Rowe&Chisnall,1996a),hydrological variablesmayplaykeyrolesintheirrecruitment.Furthermore,wesuggestthatalterationsto seasonalhydrologicalregimesposesignificantthreatstothegalaxiidfaunaoftheTCPand lacustrinegalaxiidsinotherregions.

175 GeneralDiscussion

9. General Discussion

Tasmaniangalaxiidspossessattributesthataretypicalofthreatenedfreshwaterfishesinmany regions:smallsize,somearemigratory,manyhaverestricteddistributions,andmosthaveno commercialorrecreationalvalue(Angermeier,1995;Economidis,2002;Fagan etal. ,2002).

Therefore,itisnotsurprisingthattheTasmanianfaunaissoimperilled(i.e.69%ofspecies areconsideredthreatened;Chapter2).SeveralTasmanianspecieshaverecentlybeenincluded inrecoveryplans(11speciesinthemostrecentplan)(Crook&Sanger,1997;Threatened

SpeciesSection,2006);however,thisdoesnotnecessarilysafeguardthefaunafromfurther decline.Currently,duetoinsufficientknowledgeoflifehistoriesandtherisksassociatedwith perceivedthreats,robustspeciesspecificrecoverytargetsforTasmanianspeciescannotbe set.

Clearly,ifmanagementoftheTasmaniangalaxiidfaunaistoensureitslongtermviability, threekeyareasneedtobeinvestigated:(1)thebiologyofspecies,(2),theirecologyand environmentalrequirements,and(3)processeswhichinfluencetheirpopulations.Thisthesis hasexaminedtheconservationbiologyof Galaxiasauratus Johnston,apreviouslyunstudied

Tasmanianlacustrinespecies,byfocusingonthesekeyareas,aswellasmethodstomonitor itspopulations.Theoutcomesofthisworkhaveprovided:(1)insightintosuitable methodologiesformonitoringlacustrinegalaxiidpopulations,(2)determinedvulnerable aspectsofthebiologyof G.auratus andcriticalphasesoftheirlifecycle,and(3)highlighted theimportanceofhydrologicalvariablesandtheavailabilityoflittoralhabitatsinthelife historyofthisspecies.Basedontheseoutcomes,issuesrelatingtotheconservationandof

G.auratus andotherlacustrinegalaxiidsarediscussed,anddirectionsformanagementof thesespeciesandfurtherresearchareoutlined.

176 GeneralDiscussion

9.1. Conservation of the golden galaxias and other lacustrine galaxiids

Population monitoring

Duetotheirsmallsizeandpreferenceforcomplex,littoralhabitats(McDowall&

Frankenberg,1981),epibenthiclacustrinegalaxiidsaredifficulttosamplequantitatively, hence,estimatesofpopulationsizearenottypicallyusedintheirmanagement.However, qualitativemonitoring(i.e.usingcatchperuniteffort(CPUE)data)isoftenusedto determinethestatusofpopulations(Rowe&Chisnall,1997b;Rowe etal. ,2002a;Threatened

SpeciesSection,2006).Withoutassessmentsoftheefficiencyofthechosensamplinggear(s) andthecatchabilityoftargetspecies,thevalueofsuchworkcanbelimited.

Forinstance,inTasmania,despitenotbeingformallyevaluated,monitoringregimesfor differentgalaxiidspeciesacrossarangeofhabitats(e.g.shallowmarshesandlargelakes)rely primarilyuponasinglemethodology:backpackelectrofishinginwadableareasduring daylight.Furthermore,thetimingofannualsamplingeventsisgovernedbyclimatic conditionsandregimentedfieldschedules,withmonitoringoccurringonasingleoccasion betweenspringandautumn.Insomecases,theseregimeshavebeenunabletodetectdeclines untilpopulationshavedisappeared(e.g. Paragalaxiasmesotes McDowallandFulton populationinWoodsLakeduringthemid1990s(ThreatenedSpeciesSection,2006)).

Therefore,otherthanprovidingsomedegreeofpresence/absenceinformation,acostbenefit analysisofthesemonitoringstrategiesislikelytobeunfavourabletotheircontinueduse.

InChapter3,thecomparisonofthreeapplicablesamplingmethods(fykenetting, electrofishingandsnorkelling)duringdaytimeandatnightshowedthattheabundanceand sizestructureofcatchesof G.auratus canvaryconsiderablydependingontheregimeused.

Bothadultsandjuvenileswerenocturnallyactivewithmanyadultsmovingintolittoralareas

177 GeneralDiscussion atnight.Additionally,monthlycatchesof G.auratus infykenetsinlakesCrescentandSorell

(Chapter4)variedseasonallywithsubstantialincreasesduringtheirextendedspawning period.Thesefindingsquestiontheeffectivenessofcurrentpopulationmonitoringstrategies inTasmania,giventhelackofinformationaboutthebiologyandactivitypatternsoftheother speciesbeing‘managed’.Clearly,theaimsofmonitoringprogramsneedtobewelldefined.If theyareintendedtodetectpopulationtrends(i.e.changesinabundanceorsizestructure), thenfundamentalrequirementsincludeknowledgeofrelevantlifehistoryattributessuchas thebiologyandhabitatuse(Chapters3and4),activitypatterns(Chapter3),andalso catchabilitytowardssamplinggear(Chapter3).

Sophisticatedpopulationviabilityanalysis(PVA)modelsareincreasinglybeingusedto assessthestatusofthreatenedspecies(Brook etal. ,2000).Theyrequiresubstantialdatafor theirparameterisation,butsuchdataareoftendifficulttoacquireforthreatenedspeciesthat occurinlowabundance.However,habitatabundance(i.e.CPUEdata)modelsmayprovidea goodstartingpointforconservationplanning(Chu etal. ,2006;Rosenfeld&Hatfield,2006).

Therefore,Iproposeanalternativeapproachwhichfocusesonhabitatconditionfor monitoringthestatusofsomegalaxiidspecies.Byquantifyingfactorsthatgovernpopulation trends(suchasaccesstocertainhabitatsorabundanceofpiscinepredators)androutinely assessingtheminconjunctionwithqualitativesamplingofthetargetspecies,moreprecise estimatescouldbemade.RosenfeldandHatfield(2006)proposedpopulationlimitation modelsfordifferentlifestages(eggs,juvenilesandadults)offreshwaterfishwhich demonstratethisapproachandthesemodelsareapplicableto G.auratus populations.During thisstudy,accesstorockylittoralareasatspawningtime(Chapters6and8)andthe abundanceofsalmonidpredators(Chapters4and5),werethemostinfluentialfactorsonthe abundanceof G.auratus populationsinlakesCrescentandSorell.Accesstospawning

178 GeneralDiscussion habitatsfor G.auratus iscontrolledbywaterlevels(particularlyinLakeCrescent)and salmonid(Salmotrutta L.and Oncorhynchusmykiss Walbaum)abundancesvaryaccordingto stockingratesandflowsintributariesduringtheirspawningtimes.Allofthesefactorsare reasonablyeasytomonitorand,infact,someofthisinformationisalreadygatheredby differentagencies.Whilstdifferentfactorsarelikelytobeimportantforothergalaxiids(e.g. theextentofsubmergedcharophytealgalbedsfor Paragalaxias spp.;Chapter2),when appliedtootherspecies,thisapproachwouldhelpdirectresearchtowardsimportant informationgapsandprovidemorepreciseestimatesofthestatusofpopulationsintheshort andlongterm.Additionally,ifsuchmodelscanbevalidatedbystandardisedpopulation surveysattimesofdifferenthabitatconditions,thecurrentregularfrequencyofqualitative monitoringcouldberefinedtotargetperiodswheretheviabilityofpopulationsisuncertain.

Inthelongterm,thiswouldmakebetteruseofthelimitedfinancialandlogisticalrecourses thatareavailableformanagingthreatenedgalaxiids.

Biology and critical life cycle phases

Suddendeclinesinfreshwaterfishpopulationsusuallyoccurduetointeractionsbetween biologicallimitationsandanthropogenicimpacts(Bruton,1995;Richter etal. ,1997).Many galaxiidspecieshavecomparablelifehistoriesandhabitatassociations(e.g. G.auratus

(Chapters3,5,6and8)andlacustrine Galaxiastruttaceus Valenciennes(Humphries,1989;

Morgan,2003)and Galaxiasbrevipinnis Günther(Rowe etal. ,2002a));therefore,similar biologicalparametersandlifecyclerequirementsmaycontributetotheriskofendangerment ofpopulationsindifferentregions.Whilst G.auratus populationsinlakesCrescentandSorell wereabundantatthetimeofthisstudy,thisresearchrevealedseveralattributesoftheir biologyandlifehistorythatmakethemvulnerable(Table1).

179 GeneralDiscussion

Table 1. Biologicalandlifehistoryattributesof Galaxiasauratus thatarelikelytocause theirpopulationstobevulnerabletosuddendeclines.

Biologicalattribute Threat

Smallsize Althoughsomeindividualsreach>200mminlength,most are<120mmlongandare,therefore,susceptibleto predationandcompetitiveexclusionfrompreferredhabitats byintroducedsalmonidsandotherlargerandmore aggressivespecies(Chapter5).

Shortlongevity Whilesomeindividualsliveforupto10years,mostfish reach≤3yearsofageandmalesgenerallylivefor≤2years (Chapter5).Therefore,theresilienceofpopulationsto majorperturbations(suchaspoorrecruitmentevents)is likelytobepoor.

Unbalancedsexratios Maletofemalesexratiosarestronglyfemalebiased( c.1:2) (Chapter6)and,therefore,reproductionmaybelimitedif males,whicharegenerallyshorterlived(≤2years)than females(Chapter5),becomelessabundantdueto consecutivepoorrecruitmentevents.

Longincubationperiod Eggsincubateinlittoralareasthatareshallow(<0.6m)and ofunguardedeggs turbulent(i.e.exposedtostrongwaveaction)for approximately3045days(Chapter6).Thismeanstheyare vulnerabletochangesintheconditionofthesehabitats(i.e. dewateringandsedimentation;Chapters6and8)and predationbyaquaticpredators.

Relianceuponcomplex Littoralhabitatsareusedforspawningandasnursery littoralhabitatsat habitatsforjuveniles,andadultsalsoperiodicallyusethese severallifestages areasduringdielmovementsforfeedingandrefuge (Chapters3,6and8).Becausetheavailabilityand conditionofthesehabitatsisinfluencedbyhydrology (Chapters6and8),populationsaresusceptibleto hydrologicalmanipulationsandclimaticvariability.

Successionoflifecycle Thetimingofspawningandrecruitmenteventsisstrongly stagesisinfluencedby influencedbyhydrologicalvariables.Seasonalwaterlevel hydrology fluctuationsmayprovidestimuliforspawning(Chapters6) andthemagnitudeofrisesduringspawningcontrolthe abundanceoflarvaeandthestrengthofrecruitment (Chapter8).Hydrologicalmanipulationsmaydecouple naturalseasonalwaterlevelandwatertemperatures regimes,thus,createadverseconditionsforspawning and/orthedevelopmentofjuveniles.

180 GeneralDiscussion

Galaxiasauratus isoneofthelargestlacustrinegalaxiids(McDowall&Fulton,1996;

McDowall,2000);however,therestrictedageandsizestructureoftheirpopulationsmake themsusceptibletoshorttermimpacts(i.e.over13breedingseasons)(Table1).Because malesgenerallyonlylivefor<3yearsandare1foldlessabundantthanfemales,the reproductivecapacityoftheirpopulationscouldbeseverelyreducedbyevents(e.g. recruitmentfailures)whichfurtherskewsexratios.Additionally,overallpopulationstructure appearedtobeconstrainedbycompetitionwithandpredationbyintroducedsalmonids

(Chapter5).Therefore,whilst G.auratus coexistswithsalmonids,theseintroducedpredators mayfurtherreducethecapacityoftheirpopulationstorecoverfromsuddenperturbations.

Similartoseveralotherlacustrinegalaxiids(Fulton,1982;Humphries,1989;Rowe&

Chisnall,1996a), G.auratus usethelittoralzoneatseverallifestages;therefore,thequantity andqualityofthishabitatiscriticaltotheirpopulations(Table1).Inparticular,the availabilityandconditionofcomplexlittoralhabitats(i.e.littoralareasofrocksubstrataor macrophytes)inshallowareas(<1mdeep)isofutmostimportance.Thesehabitatsareused forspawningandincubationofeggs(mostly0.20.6mdeep),asnurseryareasforjuvenilesin thelaterstagesofdevelopment,andbyadultsforfeedingandrefuge.Thebathymetryand dispositionofspawninghabitatsinlakesCrescentandSorellmeanthattheavailabilityof spawninghabitatisheavilyinfluencedbyhydrology,andtheinfluenceofhydrologydiffers betweenthesetwolakes(Chapters6and8).Otherprocessessuchaseutrophication

(Uytendaal,2006),aswellaswindresuspensionandtransportoffinesediments,arelikelyto effectthecondition(i.e.degreeofsedimentcoverandinterstitialcomplexity)ofthese habitats.Therefore,resourcebottlenecksinlittoralhabitatsatseveraloftheirlifestages(i.e. spawning,recruitment,andadultlife)maylimitthesizeof G.auratus populations.

Furthermore,becausespawningandtheincubationoftheireggsareinfluencedby

181 GeneralDiscussion hydrologicalconditions,theirpopulationsarevulnerabletohydrologicalmanipulationsand extremesinclimaticvariability.Thesefindingssuggestthatbothintrinsicbiological parameterswhichlimittheresilienceofpopulationsandextrinsicprocessesthatnegatively impactonlifecyclesshouldbothbeconsideredinriskassessmentsofgalaxiidpopulations.

Hydrology and habitat availability

Innaturallenticwaters,seasonalhydrologicalcyclescontrolthetemporalandspatial availabilityoflittoralhabitats(Gasith&Gafny,1990;Winfield,2004a).However,insystems thataresubjecttoanthropogenichydrologicalmanipulations(e.g.hydroelectric impoundments),seasonalityinwaterlevelfluctuationsmaynolongerexistorevenbe reversed,andcomplexityoflittoralhabitatsmaybealtered.Forthedurationofthisresearch, hydrologygovernedtheavailabilityofcriticalhabitats(i.e.rockyshoresandlittoralwetlands) for G.auratus andhadaprofoundinfluenceontheirlifecycle,particularlyinLakeCrescent

(Chapters6and8;Fig.1).Giventheimpactsfromhydrologicalmanipulationstothelife stagesassociatedwithreproductionandrecruitment(Fig.1),prolongedoccurrenceofthese conditionshavethepotentialtosignificantlyreducetheabundanceand,therefore,viabilityof

G.auratus populations.Clearly,similarscenariosmayhavedeleteriousimpactsonother lacustrinegalaxiidsandthesethreatscouldhavecontributedtotherecentdeclinesinsome

Tasmaniangalaxiidpopulations,suchas P.mesotes inhydrologicallyalteredWoodsLake

(ThreatenedSpeciesSection,2006).However,tofullyaddressthisquestionwerequire furtherunderstandingofthelifehistoriesandbasichabitatassociationsofotherspecies.The findingsofthisthesisindicatethatsuchworkshouldfocusonreproductivestrategiesand quantitativesurveysofhabitatswhicharelikelytobecriticalfordifferentlifestages(Rowe et al. ,2002b),suchaslittoralareasofrockysubstrate(spawninghabitats;Chapter6)or macrophytes(shelterforjuveniles;Chapter3).

182 GeneralDiscussion

Littoral-benthic Epibenthic Pelagic

dewatering decoupling of sedimentation 1. Eggs 2. Larvae suitable temps. and food items transport

reduced habitat reduced refuge lack of hydrological 5. Spawning 3. Juveniles reduced food stimuli greater competition and predation

4. Adults

reduced refuge reduced food greater competition and predation

Fig. 1. Impactsofhydrologicalmanipulations(primarilyreducedwaterlevelsandmarginal orunseasonalfluctuations)onfivestagesinthelifecycleof Galaxiasauratus basedonthe findingsofthisthesis(Chapters3,5,6and8).Themodelassumesthehydrological alterationshaveoccurredover≤2yearsand,hence,adultsremainabundant.Therelative strengthofthepathwaysbetweeneachlifestageisindicatedbythethicknessofthearrows. Thethreeprimarilyhabitatsusedduringeachstageareshownandtherelativeproportionof timeeachlifestageoccupiesthesehabitatsisrepresentedbythepositionofthehorizontal bars.

Habitatsevolvethroughnaturalandanthropogenicprocesses(Naiman&Latterell,2005)and thepersistenceoffreshwaterfishpopulationsreliesupontheirabilitytoadapttothese changes.InTasmanianlakes,thetwomostinfluentialfactorsontheconditionofphysical habitatsare:(1)impoundmentandsubsequentmanipulations,and(2)climaticvariability.For example,priortothedammingoftheiroutflowsoveracenturyago,LakeCrescentandLake

Sorellwereshallowlagoonswhichcontainedabundantsubmergedmacrophytesthroughout theirbasins(LCWP,1987).Furthermore,periodicElNinoinduceddroughtsstrongly influencethehydrologyandhabitatlandscapesoftheselakesbyalteringtypicalseasonal

183 GeneralDiscussion waterlevelfluctuationsandloweringwaterlevels(Chapter8).However, G.auratus populationshaveremainedabundantand,therefore,mustbemoreflexibleintheirlifehistory thansomeotherTasmanianspecieswhichhaveundergonesignificantdeclinesfollowing majoralterationsoftheirhabitats(e.g. Galaxiaspedderensis Frankenbergintherecently impoundedLakePedder(Hamr,1995)).Thus,inthelongterm,managementofgalaxiids withrestricteddistributionsshouldconsidertheirresiliencetohabitatalterationssuchasthose thatareassociatedwithchangesinhydrologicalconditions.Theabilitytousedifferent habitats(dependingonavailability)atcertainlifestages,suchasspawning,islikelyto influencetheviabilityofgalaxiidpopulationsinhydrologicallyalteredsystems.

9.2. Management strategies and further research

Golden galaxias

Thetwomainthreatsto G.auratus populationsinlakesCrescentandSorellare:(1)altered waterlevelregimes(Chapters5,6and8)and(2)salmonidcompetition/predation(Chapter5;

StuartSmith etal. ,2004)(forfurtherinformationaboutotherthreatsandmanagement strategiesforthisspeciesseeHardie,2003).Whilstthehydrologyoftheseshallowlakesis stronglyinfluencedbyclimaticvariability(suchasthedroughtthatoccurredduringthis study;Chapter8),thereisscopetoincludethehabitatrequirementsof G.auratus inthe hydrologicalmanagementoftheselakes.Currently,sluicegatesintheInterlakenCanal

(whichconnectsthetwolakes)andtheoutflowofLakeCrescentaretypicallyusedto optimisethevolumeofwaterstoredinthesystemandsupplywateratappropriatetimesto downstreamusers(irrigatorsandmunicipalities).Thismeansthereisoftennodischargefrom

LakeSorellintoLakeCrescent,noroutofLakeCrescentoutsideoftheirrigationseason(i.e. duringMayNovember);hence,seasonalwaterlevelrisesinLakeCrescentarenotasgreat norasrapidasthoseinLakeSorellwhichreceivesinflowsfromthesystem’sprimarily

184 GeneralDiscussion tributary,MountainCreek.Giventhefindingsofthisthesis(Chapters6and8),sluicegatesin thissystemshouldberoutinelyoperatedtoincreasetheavailabilityandenhancethecondition ofcriticalhabitats(i.e.spawningsubstrates).Wherepossible,suchmanipulationsshould includeaminimumwaterlevelof802.20mAHDinLakeCrescent(abovewhichlittoral areasofcobblesubstrateareinundated)duringautumnandseasonalvariationinwaterlevels

(i.e.risesduringlateautumn–winterandfallsduringlatespring–summer)inbothlakes.

Evenduringperiodsofrelativelylowwaterlevels,theseoperatingruleswillenableaccessto complexhabitatsthatareimportantforfeedingandrefuge,andprovidesuitableconditionsfor spawningandrecruitment.

Galaxiasauratus hascoexistedwithintroducedsalmonidsforoveracenturyinlakes

CrescentandSorell(Fulton,1990);however,competitionandpredationfromthesefishes limitstheabundance(Chapter4),andgrowthandagestructure(Chapter5)oftheir populations.Salmonidpopulationsintheselakesprovidevaluablerecreationalfisheries,but currentlymanagementofthesefisheriesisnotguidedbyrobustscience(i.e.accuratestock recruitmentrelationshipsorcostbenefitanalysesofmanagementpractices).Clearly,impacts fromsalmonidswouldcompoundtheinfluenceofotherthreatstoG.auratus populations(e.g. poorrecruitmentduetounsuitablehydrologicalconditions),particularlywhentheyareunder stress,suchasduringperiodsoflowwaterlevelswhenrefugehabitatsarescarce.Inthelong term,iflakesCrescentandSorellaretosupportsalmonidfisheries,thenthemechanismsthat have,todate,allowedthesespeciestocoexistshouldbeexamined(StuartSmith etal. ,2007).

Inlightofsuchinformation,thecompoundingaffectsofthemultiplethreatsto G.auratus populationsshouldbeinvestigated.Inthemeantime,ifseriousdeclinesintheabundanceof

G.auratus populationsoccur,theabundanceofsalmonidsshouldbereducedbyaltering

185 GeneralDiscussion stockingstrategies,limitingaccesstotheirprimarilyspawninghabitat(gravelbedsin inflowingtributaries),andifnecessary,physicalremoval.

The G.auratus populationsinlakesCrescentandSorellprovideuniqueopportunitiestostudy theecologyofalacustrinegalaxiid.Thesephysicallysimilar,shallowmesotrophiclakes containabundant G.auratus populationswhichcanbesampledatalllifestages(i.e.eggs, larvae,juvenilesandadults).Thisthesishassubstantiallyincreasedourknowledgeofthis speciesandprovidesaplatformforfurtherworktoinvestigatepopulationdynamicsandfine scaleprocesseswhichmayimpactoncertainlifestages.

Thehistoricallylowwaterlevelsthatoccurredduringthisstudypreventedassessmentofthe importanceofthelittoralwetlandsoflakesCrescentandSorellto G.auratus .Inthe translocatedpopulation, G.auratus usedaquaticvegetationforspawning(S.A.Hardie, unpublishedobservations),andrefugeandfeeding(Chapter3).Therefore,dependingonthe timinganddurationofflooding,thelittoralwetlandsintheCrescentSorellsystemmay significantlyincreasehabitatforalllifestagesduringperiodsofhigherwaterlevels.The floodingoftheseareaswouldprovide G.auratus withachoiceofcomplexlittoralhabitats

(i.e.rocksubstratesandmacrophytes).Furtherworktoexaminehow G.auratus usethis additionalhabitat,especiallyinrelationtoreproductionandrecruitment,wouldenablethe flexibilityoftheirlifehistoryandhabitatusestrategiestobetested.Furthermore,longterm studiesofthedynamicsofseverallifestagescouldbeusedtomodelquantitativelythe responseoftheirpopulationstotwoimpactswhicharecommontolacustrinegalaxiids:(1) alteredwaterlevelregimesand(2)salmonidcompetition/predation.Suchworkwouldaid sustainablemanagementofwaterresources,recreationalfisheriesandpopulationsofother threatenedgalaxiidswhichhavesimilarlifehistories.

186 GeneralDiscussion

Atfinerspatialandtemporalscales,theabilitytolocateandmonitor G.auratus spawning sitesshouldbeusedtoidentifythevariableswhichtriggerspawningandgovernthesuccess ofthiscriticallifestage.Fieldandlaboratoryexperimentscouldbeusedtoexamine microhabitatselection,proximalspawningstimuliandthemainthreattothislifestagethat wasobservedduringthisstudy:sedimentationofspawninghabitatsandincubatingeggs.This informationwouldaidmanagementofthisspecies’habitatandprovidefurtherinsightintothe environmentalrequirementsofothergalaxiids.

Other lacustrine galaxiids and littoral fishes

Despiterecentwork(Fulton,1982;Humphries,1989;Rowe&Chisnall,1996a;Barriga etal. ,

2002;Rowe etal. ,2002a;Morgan etal. ,2005;Chapman etal. ,2006),currentlylittleis knownofthebiology,ecologyandhabitatrequirementsofmanygalaxiids,including

Tasmanianspecies.Giventhefindingsofthisresearch,identifyinghabitatsthatlimit populationsbasedonspeciesbiologyshouldbeacentralcomponentofgalaxiidconservation programs.Additionally,traitsthatprovidepopulationswithresiliencetomajorperturbations, suchasflexibilityinrecruitmentstrategies,shouldalsobeinvestigated.

Effortstoconservegalaxiidpopulationsareoftenpoorlyresourced;therefore,futureresearch shouldfocusonspecies(and/orpopulations)whicharelikelytohavelifehistoriesandhabitat associationsthatarecommontoseveralspecies.Forexample,inTasmania,thereislittle informationregardingthebiologyandhabitatrequirementsofthefourendemic Paragalaxias spp.(auniquelacustrinegenusofrelativelysmallbenthicfishes).Currently,financialand logisticalresourcesareusedprimarilytomonitorannuallythe‘status’ofall11threatened galaxiidsthatareincludedinarecoveryplan(ThreatenedSpeciesSection,2006).Insome instances,thisworkhasfailedtodetectdeclinesofpopulationsuntilaftertheyhave

187 GeneralDiscussion disappeared(suchas P.mesotes inhydrologicallyalteredWoodsLake(ThreatenedSpecies

Section,2006)).Tomakebetteruseoftheselimitedresources,routinemonitoringshouldbe scaledbackforspeciesand/orpopulationsthat,accordingtothebestavailableinformation, areabundantandwellprotectedbythesecurityofareaswheretheyoccur(suchas populationsthatoccurinWorldHeritageAreas,e.g. G.pedderensis ).Thiswouldallowlife historiesandhabitatrequirementsofspeciesthatareclearlymorevulnerabletobe investigated;therefore,enableinformedmanagementstrategiestobedevelopedforother galaxiidspecies.

Fishpopulationsmaybelimitedbyhabitatquantityandqualityatmorethanonelifestage, thus,theremaybemultipleleveragepointstoincreasepopulationsizeand/orviability

(Rosenfeld&Hatfield,2006).Forsmallsizedepibenthicfishessuchasgalaxiids,littoral habitatsoftenprovideresourcesforseverallifestages(Winfield,2004a);therefore,processes thatcontroltheconditionoftheseareas,suchaswaterlevels,canbeusedtomanagetheir populations.Futurestudiesshouldtreatmanagementactions,suchashydrological manipulations,asexperiments(Naiman&Latterell,2005)toinvestigatethebiologyhabitat linkagesoflittoralfishesinwholelakeecosystems.Forexample,duringwetteryears,inthe

CrescentSorellsystem,sluicegatescouldbeoperatedtoprovideappropriatelytimedwater releasesfromLakeSorellintoLakeCrescenttoinvestigatethemicrohabitatselectionof

G.auratus forspawningandtheimportanceoffloodedlittoralwetlandsforjuvenilesand adults.Similarly,hydrologicalmanipulationsinimpoundmentsinotherregionsmayalso provideopportunitiestoinvestigatetherolesofhydrologicalvariablesinthelifecyclesof otherlittoralspeciesinwholelakeecosystems.

188 References

References

Allen,G.R.,Midgley,S.H.&Allen,M.(2002). FieldGuidetotheFreshwaterFishesof

Australia .Perth:WesternAustralianMuseum.

Allibone,R.M.(1999).Impoundmentandintroductions:theirimpactsonnativefishofthe

upperWaiporiRiver,NewZealand. JournaloftheRoyalSocietyofNewZealand 29 ,

19.

Allibone,R.M.,Crowl,T.A.,Holmes,J.M.,King,T.M.,McDowall,R.M.,Townsend,C.

R.&Wallis,G.P.(1996).Isozymeanalysisof Galaxias species(Teleostei:

Galaxiidae)fromtheTaieriRiver,SouthIsland,NewZealand:aspeciescomplex

revealed. BiologicalJournaloftheLinneanSociety 57 ,107127.

Allibone,R.M.&Townsend,C.R.(1997).Reproductivebiology,speciesstatusand

taxonomicrelationshipsoffourrecentlydiscoveredgalaxiidfishesinaNewZealand

river. JournalofFishBiology 51 ,12471261.

Andrews,A.P.(1976).ArevisionofthefamilyGalaxiidae(Pisces)inTasmania. Australian

JournalofMarineandFreshwaterResearch 27 ,297349.

Andrews,A.P.(1985).Anewspeciesof Galaxias (Pisces:Galaxiidae)fromsouthern

Tasmania. PapersandProceedingsoftheRoyalSocietyofTasmania 119 ,5560.

Angermeier,P.L.(1995).Ecologicalattributesofextinctionpronespecies:lossoffreshwater

fishesofVirgina. ConservationBiology 9,143158.

Anon(2003).StateoftheEnvironmentReportTasmania2003.

http://www.rpdc.tas.gov.au/soer/

Antenucci,J.(2001).TheCWRDynamicReservoirSimulationModel(DYRESM)User

Manual.CentreforWaterResearch,UniversityofWesternAustralia,Perth.

ArreguínSánchez,F.(1996).Catchability:akeyparameterforfishstockassessment. Reviews

inFishBiologyandFisheries6,221242.

189 References

ASFB(2003).ConservationStatusofAustralianFishes2003. AustralianSocietyforFish

BiologyNewsletter 33 ,6065.

Ault,T.R.&White,R.W.G.(1994).Effectsofhabitatstructureandthepresenceofbrown

troutonthepopulationdensityof Galaxiastruttaceus inTasmania,Australia.

TransactionsoftheAmericanFisheriesSociety 123 ,939949.

Austin,B.&Austin,D.A.(1987). Bacterialfishpathogens:diseaseinfarmedandwildfish .

Chichester:EllisHorwood.

Balon,E.K.(1984).Reflectionsonsomedecisiveeventsintheearlylifeoffishes.

TransactionsoftheAmericanFisheriesSociety 113 ,178185.

Barber,M.C.&Jenkins,G.P.(2001).Differentialeffectsoffoodandtemperatureleadto

decouplingofshorttermotolithandsomaticgrowthratesinjuvenileKingGeorge

whiting. JournalofFishBiology 58 ,13201330.

Barrier,R.F.G.&Hicks,B.J.(1994).Behaviouralinteractionsbetweenblackmudfish

(Neochannadiversus Stokell,1949:Galaxiidae)andmosquitofish( Gambusiaaffinis

Baird&Girard,1854). EcologyofFreshwaterFish 3,9399.

Barriga,J.P.,Battini,M.A.,Macchi,P.J.,Milano,D.&Cussac,V.E.(2002).Spatialand

temporaldistributionoflandlocked Galaxiasmaculatus and Galaxiasplatei (Pisces:

Galaxiidae)inalakeintheSouthAmericanAndes.NewZealandJournalofMarine

andFreshwaterResearch 36 ,345359.

Battini,M.,Rocco,V.,Lozada,M.,Tartarotti,B.&Zagarese,H.E.(2000).Effectsof

ultravioletradiationontheeggsoflandlocked Galaxiasmaculatus(Galaxiidae,

Pisces)innorthwesternPatagonia. FreshwaterBiology 44 ,547552.

Beam,J.H.(1983).Theeffectofannualwaterlevelmanagementonpopulationtrendsof

whitecrappieinElkCityReservoir,Kansas. NorthAmericanJournalofFisheries

Management 3,3440.

190 References

Beamish,R.J.&Fournier,D.A.(1981).Amethodforcomparingtheprecisionofasetof

agedeterminations. CanadianJournalofFisheriesandAquaticSciences 38 ,982983.

Beamish,R.J.&McFarlane,G.A.(1983).Theforgottenrequirementforagevalidationin

fisheriesbiology. TransactionsoftheAmericanFisheriesSociety 112 ,735743.

Beckman,D.W.&Wilson,C.A.(1995).Seasonaltimingofopaquezoneformationinfish

otoliths.In RecentDevelopmentsinFishOtolithResearch (Secor,D.H.,Dean,J.M.

&Campana,S.E.,ed.),pp.2743.Columbia:UniversityofSouthCarolinaPress.

Benzie,V.(1968).Someecologicalaspectsofthespawningbehaviourandearlydevelopment

ofthecommonwhitebait, Galaxiasmaculatusattenuatus (Jenyns). Proceedingsofthe

NewZealandEcologicalSociety 15 ,3139.

Beumer,J.P.,Burbury,M.E.&Harrington,D.J.(1981).Thecaptureoffaunaotherthan

fishesineelandmeshnets. AustralianWildlifeResearch 8,673677.

Blackburn,M.(1950).TheTasmanianwhitebait, Lovettiasealii (Johnston),andthewhitebait

fishery. AustralianJournalofMarineandFreshwaterResearch 1,155198.

Boehlert,G.W.(1985).Usingobjectivecriteriaandmultipleregressionmodelsforage

determinationinfishes. FisheryBulletin 83 ,103117.

Bonnett,M.L.(1990).Ageandgrowthofalpinegalaxias( Galaxiaspaucispondylus Stokell)

andlongjawedgalaxias( G.prognathus Stokell)intheRangitataRiver,NewZealand.

NewZealandJournalofMarineandFreshwaterResearch 24 ,151158.

Boulton,A.J.&Brock,M.A.(1999). AustralianFreshwaterEcology:Processesand

Management .GlenOsmond:GleneaglesPublishing.

Brook,B.W.,O'Grady,J.J.,Chapman,A.P.,Burgman,M.A.,Akcakaya,H.R.&

Frankham,R.(2000).Predictiveaccuracyofpopulationviabilityanalysisin

conservationbiology. Nature 404 ,385387.

191 References

Brosse,S.&Lek,S.(2002).Relationshipbetweenenvironmentalcharacteristicsandthe

densityofage0Eurasianperch Percafluviatilis inthelittoralzoneofalake:a

nonlinearapproach. TransactionsoftheAmericanFisheriesSociety 131 ,10331043.

Brown,A.D.,Nicol,S.&Koehn,J.(1998).Recoveryplanforthetroutcod Maccullochella

macquariensis 19982005.AquaticEcossePtyLtdandDepartmentofNatural

ResourcesandEnvironment,Melbourne,Australia.

Brown,P.,Green,C.,Sivakumaran,K.P.,Stoessel,D.&Giles,A.(2004).Validatingotolith

annuliforannualagedeterminationofcommoncarp. TransactionsoftheAmerican

FisheriesSociety 133 ,190196.

Bruno,D.W.&Wood,B.P.(1999). Saprolegnia andother Oomycetes .In FishDiseasesand

Disorders:Viral,BacterialandFungalInfections (Woo,P.T.K.&Bruno,D.W.,

ed.),Vol.3,pp.599659.Oxon:CABIPublishing.

Bruton,M.N.(1985).Theeffectsofsuspensoidsonfish. Hydrobiologia 125 ,221241.

Bruton,M.N.(1990).TheconservationofthefishesofLakeVictoria,Africa:anecological

perspective. EnvironmentalBiologyofFishes 27 ,161175.

Bruton,M.N.(1995).Havefisheshadtheirchips?Thedilemmaofthreatenedfishes.

EnvironmentalBiologyofFishes 43 ,127.

Burnham,K.P.&Anderson,D.R.(2002). ModelSelectionandMultimodelInference:A

PracticalInformationTheoreticApproach ,2ndedn.NewYork:SpringerVerlag.

Byström,P.,Persson,L.&Wahlström,E.(1998).Competingpredatorsandprey:juvenile

bottlenecksinwholelakeexperiments. Ecology 79 ,21532167.

Cadwallader,P.L.(1976).Breedingbiologyofanondiadromousgalaxiid, Galaxiasvulgaris

Stokell,inaNewZealandriver. JournalofFishBiology 8,157177.

192 References

Cadwallader,P.L.(1978).Somecausesofthedeclineinrangeandabundanceofnativefish

intheMurrayDarlingRiverSystem. ProceedingsoftheRoyalSocietyofVictoria 90 ,

211224.

Cadwallader,P.L.(1996).OverviewoftheimpactsofintroducedsalmonidsonAustralian

nativefauna.AustralianNatureConservationAgency,Canberra,Australia.

Cambray,J.A.(2003).Theglobalimpactofalientroutspeciesareview;withreferenceto

theirimpactinSouthAfrica. AfricanJournalofAquaticScience 28 ,6167.

Cambray,J.A.&GiorgioBianco,P.(1998).Freshwaterfishincrisis,aBluePlanet

perspective. ItalianJournalofZoology 65 ,345356.

Campana,S.E.(2001).Accuracy,precisionandqualitycontrolinagedetermination,

includingareviewoftheuseandabuseofagevalidationmethods. JournalofFish

Biology 59 ,197242.

Campana,S.E.,Annand,M.C.&McMillan,J.I.(1995).Graphicalandstatisticalmethods

fordeterminingtheconsistencyofagedeterminations. TransactionsoftheAmerican

FisheriesSociety 124 ,131138.

Chambers,R.C.&Trippel,E.A.,eds.(1997a). EarlyLifeHistoryandRecruitmentinFish

Populations .pp596.Chapman&Hall,London.

Chambers,R.C.&Trippel,E.A.(1997b).Earlylifehistoryandrecruitment:legacyand

challenges.In EarlyLifeHistoryandRecruitmentinFishPopulations (Chambers,R.

C.&Trippel,E.A.,ed.),pp.515549.London:Chapman&Hall.

Chapman,A.,Morgan,D.L.,Beatty,S.J.&Gill,H.S.(2006).Variationinlifehistoryof

landlockedlacustrineandriverinepopulationsofGalaxiasmaculatus (Jenyns1842)

inWesternAustralia. EnvironmentalBiologyofFishes 77 ,2137.

Charteris,S.C.,Allibone,R.M.&Death,R.G.(2003).Spawningsiteselection,egg

development,andlarvaldriftof Galaxiaspostvectis and G.fasciatus inaNew

193 References

Zealandstream. NewZealandJournalofMarineandFreshwaterResearch 37 ,493

505.

Cheng,D.M.H.&Tyler,P.A.(1973).LakesSorellandCrescentaTasmanianparadox.

InternalRevueGesamtenHydrobiologie 58 ,307343.

Cheng,D.M.H.&Tyler,P.A.(1976a).NutrienteconomiesandtrophicstatusofLakes

SorellandCrescent,Tasmania. AustralianJournalofMarineandFreshwater

Research 27 ,151163.

Cheng,D.M.H.&Tyler,P.A.(1976b).PrimaryproductivityandtrophicstatusofLakes

SorellandCrescent,Tasmania. Hydrobiologia 48 ,5964.

Chick,J.H.&McIvor,C.C.(1994).Patternsintheabundanceandcompositionoffishes

amongbedsofdifferentmacrophytes:viewingalittoralzoneasalandscape.

CanadianJournalofFisheriesandAquaticSciences 51 ,28732882.

Chilcott,S.J.&Humphries,P.(1996).FreshwaterfishofnortheastTasmaniawithnoteson

thedwarfgalaxias. RecordsoftheQueenVictoriaMuseumandArtGallery 103 ,145

149.

Chisnall,B.L.&West,D.W.(1996).Designandtrialsofalargefinemeshedfykenetfor

eelcapture,andfactorsaffectingsizedistributionofcatches. NewZealandJournalof

MarineandFreshwaterResearch 30 ,355364.

Chu,C.,Collins,N.C.,Lester,N.P.&Shuter,B.J.(2006).Populationdynamicsof

smallmouthbassinresponsetohabitatsupply. EcologicalModelling 195 ,349362.

Clark,J.A.&Harvey,E.(2002).Assessingmultispeciesrecoveryplansunderthe

EndangeredSpeciesAct. EcologicalApplications 12 ,655662.

CollaresPereira,M.J.&Cowx,I.G.(2004).Theroleofcatchmentscaleenvironmental

managementinfreshwaterfishconservation. FisheriesManagementandEcology 11 ,

303312.

194 References

Collette,B.B.,Ali,M.A.,Hokanson,K.E.F.,Nagiec,M.,Smirnov,S.A.,Thorpe,J.E.,

Weatherley,A.H.&Willemsen,J.(1977).Biologyofthepercids. Journalofthe

FisheriesResearchBoardofCanada 34 ,18901899.

Cowan,J.H.,Rose,K.A.&DeVries,D.R.(2000).Isdensitydependentgrowthinyoungof

theyearfishesaquestionofcriticalweight? ReviewsinFishBiologyandFisheries

10 ,6189.

Cowx,I.G.(2002).Analysisofthreatstofreshwaterfishconservation:pastandpresent

challenges.In ConservationofFreshwaterFishes:OptionsfortheFuture (Collares

Pereira,M.J.,Cowx,I.G.&Coelho,M.M.,ed.),pp.201220.Oxford:FishingNews

Books,BlackwellScience.

Cowx,I.G.&CollaresPereira,M.J.(2002).Freshwaterfishconservation:optionsforthe

future.In ConservationofFreshwaterFishes:OptionsfortheFuture (Collares

Pereira,M.J.,Cowx,I.G.&Coelho,M.M.,ed.),pp.443452.Oxford:FishingNews

Books,BlackwellScience.

Crook,D.&Sanger,A.(1997).RecoveryplanforthePedder,Swan,Clarence,swampand

saddledgalaxias.InlandFisheriesCommission,Hobart,Australia.

http://www.deh.gov.au/biodiversity/threatened/publications/recovery/tas

galaxids/index.html

Crook,D.A.&Sanger,A.C.(1998a).Threatenedfishesoftheworld: Galaxiasfontanus

Fulton,1978(Galaxiidae). EnvironmentalBiologyofFishes 53 ,32.

Crook,D.A.&Sanger,A.C.(1998b).Threatenedfishesoftheworld: Galaxiasjohnstoni

Scott,1936(Galaxiidae). EnvironmentalBiologyofFishes 53 ,154.

Crowder,L.B.&Cooper,W.E.(1982).Habitatstructuralcomplexityandtheinteraction

betweenbluegillsandtheirprey. Ecology 63 ,18021813.

195 References

Crowl,T.A.,Townsend,C.R.&McIntosh,A.R.(1992).Theimpactofintroducedbrown

andrainbowtroutonnativefish:thecaseofAustralasia. ReviewsinFishBiologyand

Fisheries 2,217241.

Cushing,D.H.(1990).productionandyearclassstrengthinfishpopulations:an

updateofthematch/mismatchhypothesis. AdvancesinMarineBiology 26 ,249293.

Cussac,V.E.,Cervellini,P.M.&Battini,M.A.(1992).Intralacustrinemovementsof

Galaxiasmaculatus (Galaxiidae)and Ondontesthesmicrolepidotus (Atherinidae)

duringtheirearlylifehistory. EnvironmentalBiologyofFishes 35 ,141148.

David,B.(2002).Threatenedfishesoftheworld: Galaxiasargenteus (Gmelin,1789)

(Galaxiidae). EnvironmentalBiologyofFishes 63 ,416.

David,B.O.&Closs,G.P.(2003).Seasonalvariationindielactivityandmicrohabitatuseof

anendemicNewZealandstreamdwellinggalaxiidfish. FreshwaterBiology 48 ,1765

1781.

David,B.O.,Closs,G.P.&Arbuckle,C.J.(2002).Distributionoffishintributariesofthe

lowerTaieri/WaiporiRivers,SouthIsland,NewZealand. NewZealandJournalof

MarineandFreshwaterResearch 36 ,797808.

Davis,T.R.(2004).TheDistributional,ReproductiveandDietaryHabitsoftheSaddled

Galaxias( Galaxiastanycephalus )inWoodsLake.BSc(Hons)thesis,Universityof

Tasmania,Hobart,Australia.

DepartmentofConservation(2004).NewZealandNonmigratoryGalaxiidFishesRecovery

Plan200313.ThreatenedSpeciesRecoveryPlan53,Wellington,NewZealand.

http://www.doc.govt.nz/Publications/004~ScienceandResearch/Biodiversity

RecoveryUnit/PDF/tsrp53.pdf

196 References

DeVries,D.R.&Frie,R.V.(1996).Determinationofageandgrowth.In Fisheries

Techniques (Murphy,B.R.&Willis,D.W.,ed.),pp.483512.Maryland:American

FisheriesSociety.

Diggle,J.,Day,J.&Bax,N.(2004).EradicatingEuropeancarpfromTasmaniaand

implicationsfornationalEuropeancarperadication.InlandFisheriesService,Hobart.

http://www.ifs.tas.gov.au/ifs/fisherymanagement/publications

DPIWE(2004).LakesSorellandCrescentWaterManagementPlan.DepartmentofPrimary

Industries,WaterandEnvironment(DPIWE),Hobart,Australia.

http://www.dpiw.tas.gov.au/inter.nsf/WebPages/JMUY6JKUYK?open

Duncan,J.R.&Lockwood,J.L.(2001).Extinctioninafieldofbullets:asearchforcausesin

thedeclineoftheworld'sfreshwaterfishes. BiologicalConservation 102 ,97105.

Economidis,P.S.(2002).Biologyofrareandendangerednonmigratoryfishspecies:

problemsandconstraints.In ConservationofFreshwaterFishes:Optionsforthe

Future (CollaresPereira,M.J.,Cowx,I.G.&Coelho,M.M.,ed.),pp.8189.Oxford:

FishingNewsBooks,BlackwellScience.

Eikaas,H.&McIntosh,A.R.(2006).Habitatlossthroughdisruptionofconstraineddispersal

networks. EcologicalApplications 16 ,987998.

Eikaas,H.,McIntosh,A.R.&Kliskey,A.D.(2005).Catchmentandsitescaleinfluencesof

forestcoverandlongitudinalforestpositiononthedistributionofadiadromousfish.

FreshwaterBiology 50 ,527538.

Eklöv,P.(1997).Effectsofhabitatcomplexityandpreyabundanceonthespatialand

temporaldistributionsofperch( Percafluviatilis )andpike( Esoxlucius ). Canadian

JournalofFisheriesandAquaticSciences 54 ,15201531.

Eklöv,P.&Persson,L.(1996).Theresponseofpreytotheriskofpredation:proximatecues

forrefugingjuvenilefish. AnimalBehaviour 51 ,105115.

197 References

Eldon,G.A.(1978).Thelifehistoryof Neochannaapoda Günther(Pisces:Galaxiidae). New

ZealandFisheriesResearchBulletin 19 ,144.

Ewing,G.P.,Welsford,D.C.,Jordan,A.R.&Buxton,C.(2003).Validationofageand

growthestimatesusingthinotolithsectionsfromthepurplewrasse, Notolabrus

fucicola . MarineandFreshwaterResearch 54 ,985993.

Fagan,W.F.,Unmack,P.J.,Burgess,C.&Minckley,W.L.(2002).Rarity,fragmentation,

andextinctionriskindesertfishes. Ecology 83 ,32503256.

Fago,D.(1998).Comparisonoflittoralfishassemblagessampledwithaminifykenetor

withacombinationofelectrofishingandsmallmeshseineinWisconsinlakes. North

AmericanJournalofFisheriesManagement 18 ,731738.

Faith,D.P.,Minchin,P.R.&Belbin,L.(1987).Compositionaldissimilarityasarobust

measureofecologicaldistance. Vegetatio 69 ,5768.

Faragher,R.A.&Harris,J.H.(1994).Thehistoricalandcurrentstatusoffreshwaterfishin

NewSouthWales. AustralianZoologist 29 ,166176.

Fischer,P.(2000).Anexperimentaltestofmetabolicandbehaviouralresponsesofbenthic

fishspeciestodifferenttypesofsubstrate. CanadianJournalofFisheriesandAquatic

Sciences 57 ,23362344.

Fischer,P.&Eckmann,R.(1997).Spatialdistributionoflittoralfishspeciesinalarge

Europeanlake,LakeConstance,Germany. ArchivfürHydrobiologie 140 ,91116.

Fischer,P.&Öhl,U.(2005).Effectsofwaterlevelfluctuationsonthelittoralbenthicfish

communityinlakes:amesocosmexperiment. BehavioralEcology 16 ,741746.

Fletcher,A.R.,Morison,A.K.&Hume,D.J.(1985).Effectsofcarp, Cyprinuscarpio L.,on

communitiesofaquaticvegetationandturbidityofwaterbodiesinthelowerGoulburn

RiverBasin. AustralianJournalofMarineandFreshwaterResearch 36 ,311327.

198 References

Forseth,T.&Jonsson,B.(1994).Thegrowthandfoodrationofpiscivorousbrowntrout

(Salmotrutta ). FunctionalEcology 8,171177.

Francis,R.I.C.C.&Campana,S.E.(2004).Inferringagefromotolithmeasurements:a

reviewandanewapproach. CanadianJournalofFisheriesandAquaticSciences 61 ,

12691284.

Francis,R.I.C.C.,Harley,S.J.,Campana,S.E.&DoeringArjes,P.(2005).Useofotolith

weightinlengthmediatedestimationofproportionsatage. MarineandFreshwater

Research 56 ,735743.

Freeman,M.C.,Bowen,Z.H.,Bovee,K.D.&Irwin,E.R.(2001).Flowandhabitateffects

onjuvenilefishabundanceinnaturalandalteredflowregimes. Ecological

Applications 11 ,179190.

Frijlink,S.(1999).TheEarlyLifeHistoryoftheGoldenGalaxiid, Galaxiasauratus ,inLakes

CrescentandSorell,Tasmania.BSc(Hons)thesis,UniversityofTasmania,Hobart,

Australia.

Fu,C.,Wu,J.,Chen,J.,Wu,Q.&Lei,G.(2003).FreshwaterfishbiodiversityintheYangtze

RiverbasinofChina:patterns,threatsandconservation. Biodiversityand

Conservation 12 ,16491685.

Fuiman,L.A.&Magurran,A.E.(1994).Developmentofpredatordefencesinfishes.

ReviewsinFishBiologyandFisheries 4,145183.

Fulford,R.S.,Rice,J.A.,Miller,T.J.,Binkowski,F.P.,Dettmers,J.M.&Belonger,B.

(2006).Foragingselectivitybylarvalyellowperch( Percaflavescens ):implications

forunderstandingrecruitmentinsmallandlargelakes. CanadianJournalofFisheries

andAquaticSciences 63 ,2842.

Fulton,W.(1978a).Adescriptionofanewspeciesof Galaxias (Pisces:Galaxiidae)from

Tasmania. AustralianJournalofMarineandFreshwaterResearch 29 ,109116.

199 References

Fulton,W.(1978b).Anewspeciesof Galaxias (Pisces:Galaxiidae)fromtheSwanRiver,

Tasmania. RecordsoftheQueenVictoriaMuseum 63 ,18.

Fulton,W.(1982).Observationsontheecologyoffourspeciesofthegenus Paragalaxias

(Pisces:Galaxiidae)fromTasmania. AustralianJournalofMarineandFreshwater

Research 33 ,9991016.

Fulton,W.(1990). TasmanianFreshwaterFishes:FaunaofTasmaniaHandbookNo.7 .

Hobart:UniversityofTasmania.

Fulton,W.&Pavuk,N.(1988).TheTasmanianwhitebaitfishery:summaryofpresent

knowledgeandoutlineoffuturemanagementplans.InlandFisheriesCommission,

Hobart,Australia.

Gafny,S.,Gasith,A.&Goren,M.(1992).Effectofwaterlevelfluctuationonshorespawning

of Mirogrexterraesanctae (Steinitz),(Cyprinidae)inLakeKinneret,Israel. Journalof

FishBiology 41 ,863871.

Gasith,A.&Gafny,S.(1990).Effectsofwaterlevelfluctuationsonthestructureand

functionofthelittoralzone.In Largelakes:ecologicalstructureandfunction (Tilzer,

M.&Serruya,C.,ed.),pp.156171.NewYork:SpringerVerlag.

Gehrke,P.C.,Gilligan,D.M.&Barwick,M.(2002).Changesinfishcommunitiesofthe

ShoalhavenRiver20yearsafterconstructionofTallowaDam,Australia. River

ResearchandApplications 18 ,265286.

GeoscienceAustralia(2006).Astronomicalinformation.CommonwealthofAustralia.

http://www.ga.gov.au/geodesy/astro/

Gill,H.S.&Morgan,D.L.(1997).Threatenedfishesoftheworld: Galaxiellamunda

McDowall,1978(Galaxiidae). EnvironmentalBiologyofFishes 49 ,174.

Gliwicz,Z.M.&Warsaw,A.J.(1992).Dielmigrationsofjuvenilefish:aghostofpredation

pastorpresent? ArchivfürHydrobiologie 124 ,385410.

200 References

Glova,G.J.&Sagar,P.M.(1989).Feedinginanocturnallyactivefish, Galaxiasbrevipinnis ,

inaNewZealandstream. AustralianJournalofMarineandFreshwaterResearch 40 ,

231240.

Goolish,E.M.&Adelman,I.R.(1984).Effectofrationsizeandtemperatureongrowthof

juvenilecommoncarp( Cyprinuscarpio L.). Aquaculture 36 ,2735.

Grant,T.R.,Lowry,M.B.,Pease,B.,Walford,T.R.&Graham,K.(2004).Reducingtheby

catchofplatypus( Ornithorhynchusanatinus )incommercialandrecreationalfishing

gearinNewSouthWales. ProceedingsoftheLinneanSocietyofNewSouthWales

125 ,259272.

Green,R.H.(1984).TheTasmanianmudfishonFlindersIsland. TasmanianNaturalist 77 ,7.

Hamr,P.(1992a).Conservationof Galaxiaspedderensis .InlandFisheriesCommission

OccasionalReport9201.InlandFisheriesCommission,Hobart,Australia.

Hamr,P.(1992b).ThePeddergalaxias. AustralianNaturalHistory 23 ,904.

Hamr,P.(1995).Threatenedfishesoftheworld: Galaxiaspedderensis Frankenberg,1968

(Galaxiidae). EnvironmentalBiologyofFishes 43 ,406.

Hanchet,S.M.(1990).Effectsoflanduseonthedistributionandabundanceofnativefishin

tributariesoftheWaikatoRiverintheHakarimataRange,NorthIsland,NewZealand.

NewZealandJournalofMarineandFreshwaterResearch 24 ,159171.

Hardie,S.A.(2003).CurrentStatusandEcologyoftheGoldenGalaxias( Galaxiasauratus ).

RehabilitationofLakesSorellandCrescentReportSeriesNo.7/1.InlandFisheries

Service,Hobart,Australia.

http://www.ifs.tas.gov.au/ifs/fisherymanagement/publications

Hardie,S.A.,Barmuta,L.A.&White,R.W.G.(2004).Threatenedfishesoftheworld:

Galaxiasauratus Johnston,1883(Galaxiidae). EnvironmentalBiologyofFishes 71 ,

126.

201 References

Hardie,S.A.,Barmuta,L.A.&White,R.W.G.(2005).Spawningrelatedseasonalvariation

infykenetcatchesofgoldengalaxias( Galaxiasauratus ):implicationsformonitoring

lacustrinegalaxiidpopulations. FisheriesManagementandEcology 12 ,407409.

Hardie,S.A.,Barmuta,L.A.&White,R.W.G.(2006a).Comparisonofdayandnightfyke

netting,electrofishingandsnorkellingformonitoringapopulationofthethreatened

goldengalaxias( Galaxiasauratus ). Hydrobiologia 560 ,145158.

Hardie,S.A.,Jackson,J.E.,Barmuta,L.A.&White,R.W.G.(2006b).Statusofgalaxiid

fishesinTasmania,Australia:conservationlistings,threatsandmanagementissues.

AquaticConservation:MarineandFreshwaterEcosystems 16 ,235250.

Hardie,S.A.,Pyecroft,S.B.,Barmuta,L.A.&White,R.W.G.(2007).Spawningrelated

fungalinfectionofgoldengalaxias Galaxiasauratus (Galaxiidae). JournalofFish

Biology 70 ,12871294.

Hardie,S.A.,White,R.W.G.&Barmuta,L.A.(inpress).Reproductivebiologyofthe

threatenedgoldengalaxias( Galaxiasauratus )andtheinfluenceoflakehydrology.

JournalofFishBiology .

Hargeby,A.,Blom,H.,Blindow,I.&Andersson,G.(2005).Increasedgrowthand

recruitmentofpiscivorousperch,Percafluviatilis ,duringatransientphaseof

expandingsubmergedvegetationinashallowlake. FreshwaterBiology 50 ,2053

2062.

Harris,J.H.(1984).ImpoundmentofcoastaldrainagesofsoutheasternAustralia,anda

reviewofitsrelevancetofishmigrations. AustralianZoologist 21 ,235250.

Hauser,C.E.,Pople,A.R.&Possingham,H.P.(2006).Shouldmanagedpopulationsbe

monitoredeveryyear? EcologicalApplications 16 ,807819.

202 References

Havens,K.E.,Fox,D.,Gornak,S.&Hanlon,C.(2005).Aquaticvegetationandlargemouth

basspopulationresponsestowaterlevelvariationsinLakeOkeechobee,Florida

(USA). Hydrobiologia 539 ,225237.

Hearn,W.S.&Polacheck,T.(2003).Estimatinglongtermgrowthratechangesofsouthern

bluefintuna( Thunnusmaccoyii)fromtwoperiodsoftagreturndata. FisheryBulletin

101 ,5874.

Heffer,D.K.(2003).WetlandsofLakesSorellandCrescent:ConservationandManagement.

RehabilitationofLakesSorellandCrescentReportSeriesNo.6/1.InlandFisheries

Service,Hobart,Australia.

http://www.ifs.tas.gov.au/ifs/fisherymanagement/publications

Helminen,H.,Sarvala,J.&Karjalainen,J.(1997).PatternsinvendacerecruitmentinLake

Pyhäjärvi,southwestFinland. JournalofFishBiology 51 ,303316.

Hopkins,C.L.(1979a).Agerelatedgrowthcharacteristicsof Galaxiasfasciatus

(Salmoniformes:Galaxiidae). NewZealandJournalofMarineandFreshwater

Research 13 ,3946.

Hopkins,C.L.(1979b).Reproductionof Galaxiasfasciatus Gray(Salmoniformes:

Galaxiidae). NewZealandJournalofMarineandFreshwaterResearch 13 ,225230.

Howe,E.,Howe,C.,Lim,R.&Burchett,M.(1997).Impactoftheintroducedpoeciliid

Gambusiaholbrooki (Girard,1859)onthegrowthandreproductionof Pseudomugil

signifer (Kner,1865)inAustralia. MarineandFreshwaterResearch 48 ,425434.

Humphries,P.(1986).Observationsontheecologyof Galaxiellapusilla (Mack)

(Salmoniformes:Galaxiidae)inDiamondCreek,Victoria. ProceedingsoftheRoyal

SocietyofVictoria 98 ,133137.

203 References

Humphries,P.(1989).Variationinthelifehistoryofdiadromousandlandlockedpopulations

ofthespottedgalaxias, Galaxiastruttaceus Valenciennes,inTasmania. Australian

JournalofMarineandFreshwaterResearch 40 ,501518.

Humphries,P.(1990).Morphologicalvariationindiadromousandlandlockedpopulationsof

thespottedgalaxias, Galaxiastruttaceus ,Tasmania,southeasternAustralia.

EnvironmentalBiologyofFishes 27 ,97105.

Humphries,P.(2005).SpawningtimeandearlylifehistoryofMurraycod, Maccullochella

peeliipeelii (Mitchell)inanAustralianriver. EnvironmentalBiologyofFishes 72 ,393

407.

Humphries,P.,Serafini,L.G.&King,A.J.(2002).Riverregulationandfishlarvae:

variationthroughspaceandtime. FreshwaterBiology 47 ,13071331.

Hussein,M.M.A.&Hatai,K.(2002).Pathogenicityof Saprolegnia speciesassociatedwith

outbreaksofsalmonidsaprolegniosisinJapan. FisheriesScience 68 ,10671072.

IFS(2004).CarpManagementProgramReportLakesCrescentandSorell,1995June2004.

InlandFisheriesService,Hobart,Australia.

http://www.ifs.tas.gov.au/ifs/fisherymanagement/publications

IFS(2006).WhitebaitFisheryManagementPlan.InlandFisheriesService,Hobart,Australia.

http://www.ifs.tas.gov.au/ifs/fisherymanagement/publications

Imboden,D.M.(2004).Themotionoflakewaters.In TheLakesHandbook (O'Sullivan,P.E.

&Reynolds,C.S.,ed.),Vol.1,pp.115152.Oxford:BlackwellScience.

Ingram,B.A.,Barlow,C.G.,Burchmore,J.J.,Gooley,G.J.,Rowland,S.J.&Sanger,A.C.

(1990).ThreatenednativefreshwaterfishesinAustraliasomecasehistories. Journal

ofFishBiology 37 ,175182.

204 References

IUCN(2003).2003IUCNRedListofThreatenedSpecies.InternationalUnionfor

ConservationofNatureandNaturalResources,Cambridge,UK.

http://www.redlist.org

Jackson,J.E.,Raadik,T.A.,Lintermans,M.&Hammer,M.(2004).Aliensalmonidsin

Australia:impedimentstoeffectiveimpactmanagement,andfuturedirections. New

ZealandJournalofMarineandFreshwaterResearch 38 ,447455.

Jackson,P.D.&Davies,J.N.(1982).OccurrenceoftheTasmanianmudfish Galaxias

cleaveri Scott,onWilsonsPromontoryfirstrecordfrommainlandAustralia.

ProceedingsoftheRoyalSocietyofVictoria 94 ,4952.

Jacobsen,L.&Berg,S.(1998).Dielvariationinhabitatusebyplanktivoresinfieldenclosure

experiments:theeffectofsubmergedmacrophytesandpredation. JournalofFish

Biology 53 ,12071219.

Jamet,J.L.(1995).Reproduction,conditionandfoodofadultarcticcharr( Salvelinusalpinus ,

L.)inLakePavin(MassifCnetral,France). Hydrobiologia 301 ,279288.

Jobling,M.(1995). EnvironmentalBiologyofFishes .London:Chapman&Hall.

Johnson,C.R.,Ratkowsky,D.A.&White,R.W.G.(1983).Multivariateanalysisofthe

phenotypicrelationshipsofthespeciesof Paragalaxias and Galaxias (Pisces:

Galaxiidae)inTasmania. JournalofFishBiology 23 ,4963.

Johnson,C.R.,White,R.W.G.&Bick,Y.A.E.(1981).Cytotaxonomyofsevenspeciesof

Galaxias(Pisces:Galaxiidae)inTasmania. Genetica 56 ,1721.

Johnson,F.H.(1961).Walleyeeggsurvivalduringincubationonseveraltypesofbottomin

LakeWinnibigoshish,Minnesota,andconnectingwaters. Transactionsofthe

AmericanFisheriesSociety 90 ,312322.

Johnston,R.M.(1883).GeneralandcriticalobservationsonthefishesofTasmania. Papers

andProceedingsoftheRoyalSocietyofTasmania 1882 ,53143.

205 References

Karjalainen,J.,Auvinen,H.,Helminen,H.,Marjomaki,T.J.,Niva,T.,Sarvala,J.&Viljanen,

M.(2000).Unpredictabilityoffishrecruitment:interannualvariationinyoungofthe

yearabundance. JournalofFishBiology 56 ,837857.

Kaufmann,K.W.(1981).Fittingandusinggrowthcurves. Oecologia 49 ,293299.

Keane,J.P.&Neira,F.J.(2004).Firstrecordofmosquitofish, Gambusiaholbrooki ,in

Tasmania,Australia:stockstructureandreproductivebiology. NewZealandJournal

ofMarineandFreshwaterResearch 38 ,857867.

Keith,P.(2002).Threatenedfishesoftheworld: Galaxiasneocaledonicus Weber&de

Beaufort,1913(Galaxiidae). EnvironmentalBiologyofFishes 63 ,26.

Kershaw,P.,Moss,P.&VanDerKaars,S.(2003).Causesandconsequencesoflongterm

climaticvariabilityontheAustraliancontinent. FreshwaterBiology 48 ,12741283.

Khan,T.A.(2003).Dietarystudiesonexoticcarp( Cyprinuscarpio L.)fromtwolakesof

westernVictoria,Australia. AquaticScience 65 ,272286.

Khan,T.A.,Wilson,M.E.&Khan,M.T.(2003).Evidenceforinvasivecarpmediated

trophiccascadeinshallowlakesofwesternVictoria,Australia. Hydrobiologia 506-

509 ,465472.

Kimura,D.K.(1980).LikelihoodmethodsforthevonBertalanffygrowthcurve. Fishery

Bulletin 77 ,765776.

King,A.J.,Humphries,P.&Lake,P.S.(2003).Fishrecruitmentonfloodplains:therolesof

patternsoffloodingandlifehistorycharacteristics. CanadianJournalofFisheriesand

AquaticSciences 60 ,773786.

King,A.J.,Robertson,A.I.&Healey,M.R.(1997).Experimentalmanipulationsofthe

biomassofintroducedcarp( Cyprinuscarpio )inbillabongs.I.Impactsonwater

columnproperties. MarineandFreshwaterResearch 48 ,435443.

206 References

Koehn,J.D.&O'Connor,W.G.(1990).ThreatstoVictoriannativefreshwaterfish. Victorian

Naturalist 107 ,512.

Koehn,J.D.&Raadik,T.A.(1991).TheTasmanianmudfish, Galaxiascleaveri Scott,1934,

inVictoria. ProceedingsoftheRoyalSocietyofVictoria 103 ,7786.

Koster,W.M.(2003).Threatenedfishesoftheworld: Galaxiellapusilla (Mack1936)

(Galaxiidae). EnvironmentalBiologyofFishes 68 ,268.

Kraft,C.E.&Johnson,B.L.(1992).Fykenetandgillnetsizeselectivitiesforyellowperch

inGreenBay,LakeMichigan. NorthAmericanJournalofFisheriesManagement 12 ,

230236.

Krueger,K.L.,Hubert,W.A.&Price,R.M.(1998).Tandemsetfykenetsforsampling

benthicfishesinlakes. NorthAmericanJournalofFisheriesManagement 18 ,154

160.

Kubecka,J.(1992).Fluctuationsinfykenetcatchesduringthespawningperiodofthe

Eurasianperch( Percafluviatilis )intheRimovReservoir,Czechoslovakia. Fisheries

Research 15 ,157167.

Lake,P.S.(1998).Aftertheinundation:longtermchangesinthefaunaofLakePedder,

Tasmania,Australia.In WetlandsfortheFuture (McComb,A.J.,ed.),pp.565578.

SouthAustralia:Gleneaglespublishing.

Lam,T.J.(1983).Environmentalinfluencesongonadalactivityinfish.In FishPhysiology:

Reproduction:PartB:BehaviorandFertilityControl (Hoar,W.S.,Randall,D.J.&

Donaldson,E.M.,ed.),Vol.9,pp.65101.NewYork:AcademicPress.

Lategan,M.J.,Torpy,F.R.&Gibson,L.F.(2004a).Biocontrolofsaprolegniosisinsilver

perch Bidyanusbidyanus (Mitchell)by Aeromonasmedia strainA199. Aquaculture

235 ,7788.

207 References

Lategan,M.J.,Torpy,F.R.&Gibson,L.F.(2004b).Controlofsaprolegniosisintheeel

Anguillaaustralis Richardson,by Aeromonasmedia strainA199. Aquaculture 240 ,

1927.

LCWP(1987).ReportontheProposedRaisingofLakeCrescent.LakeCrescentWorking

Party(LCWP),Hobart,Australia.

Legendre,P.&Legendre,L.(1998). NumericalEcology ,2ndEnglishedn.Amsterdam:

Elsevier.

Lindenmayer,D.&Burgman,M.(2005). PracticalConservationBiology .Melbourne:

CSIROPublishing.

Ling,N.,Gleeson,D.M.,Willis,K.J.&Binzegger,S.U.(2001).Creatinganddestroying

species:the'new'biodiversityandevolutionarilysignificantunitsamongNew

Zealand'sgalaxiidfishes. JournalofFishBiology 59 ,209222.

Lintermans,M.(2000).Recolonizationbythemountaingalaxias Galaxiasolidus ofa

montanestreamaftertheeradicationofrainbowtrout Oncorhynchusmykiss . Marine

andFreshwaterResearch 51 ,799804.

LobónCerviá,J.&Rincón,P.A.(2004).Environmentaldeterminantsofrecruitmentand

theirinfluenceonthepopulationdynamicsofstreamlivingbrowntrout Salmotrutta .

Oikos 105 ,641646.

Lombarte,A.&Lleonart,J.(1993).Otolithsizechangesrelatedwithbodygrowth,habitat

depthandtemperature. EnvironmentalBiologyofFishes 37 ,297306.

LoweMcConnell,R.H.(1990).Summaryaddress:rarefish,problems,progressand

prospectsforconservation. JournalofFishBiology 37 ,263269.

Ludsin,S.A.&DeVries,D.R.(1997).Firstyearrecruitmentoflargemouthbass:the

interdependencyofearlylifestages. EcologicalApplications 7,10241038.

208 References

Lynch,D.D.(1972)Introducedfish.InTheLakeCountryofTasmania(edBanks,M.R.),

pp.107112.RoyalSocietyofTasmania,Poatina,Tasmania.

Macchi,P.J.,Cussac,V.E.,Alonso,M.F.&Denegri,M.A.(1999).Predationrelationships

betweenintroducedsalmonidsandthenativefishfaunainlakesandreservoirsin

northernPatagonia. EcologyofFreshwaterFish 8,227236.

Maceina,M.J.(2003).Verificationoftheinfluenceofhydrologicfactorsoncrappie

recruitmentinAlabamareservoirs. NorthAmericanJournalofFisheriesManagement

23 ,470480.

Maceina,M.J.&Stimpert,M.R.(1998).Relationsbetweenreservoirhydrologyandcrappie

recruitmentinAlabama. NorthAmericanJournalofFisheriesManagement 18 ,104

113.

Maechler,M.&basedonSoriginalbyPeterRousseeuw([email protected])

([email protected])andinitialRportbyKurt.Hornik@Rproject.org(2005).

ClusterAnalysisExtendedRousseeuwetal.

MallenCooper,M.&Stuart,I.G.(2003).Age,growthandnonfloodrecruitmentoftwo

potamodromousfishesinalargesemiarid/temperateriversystem. RiverResearch

andApplications 19 ,697719.

Matthews,W.J.(1998). PatternsinFreshwaterFishEcology ,2ndedn.London:Chapman&

Hall.

Matthews,W.J.&MarshMatthews,E.(2003).Effectsofdroughtonfishacrossaxesof

space,timeandecologicalcomplexity. FreshwaterBiology 48 ,12321253.

McCallum,H.(2000). PopulationParameters:EstimationforEcologicalModels .Oxford:

BlackwellScience.

209 References

McDougall,A.(2004).Assessingtheuseofsectionedotolithsandothermethodstodetermine

theageofthecentropomidfish,barramundi( Latescalcarifer )(Bloch),usingknown

agefish. FisheriesResearch 67 ,129141.

McDowall,R.M.(1968). Galaxiasmaculatus (Jenyns),theNewZealandwhitebait. New

ZealandFisheriesResearchBulletin 2,184.

McDowall,R.M.(1990). NewZealandFreshwaterFishes:ANaturalHistoryandGuide .

Auckland:HeinemannReed.

McDowall,R.M.(1992a).Globalclimatechangeandfishandfisheries:whatmighthappen

inatemperateoceanicarchipelagolikeNewZealand. Geojournal 28 ,2937.

McDowall,R.M.(1992b).Particularproblemsfortheconservationofdiadromousfish.

AquaticConservation:MarineandFreshwaterEcosystems 2,351355.

McDowall,R.M.,ed.(1996). FreshwaterFishesofSouthEasternAustralia ,2ndedn,pp

247.ReedBooks,Sydney.

McDowall,R.M.(1997a).Affinities,genericclassificationandbiogeographyofthe

AustralianandNewZealandmudfishes(Salmoniformes:Galaxiidae). Recordsofthe

AustralianMuseum 49 ,121137.

McDowall,R.M.(1997b).Indigenousvegetationtypeandthedistributionofshortjawed

kokopu, Galaxiaspostvectis (Teleostei:Galaxiidae),inNewZealand. NewZealand

JournalofZoology 24 ,243255.

McDowall,R.M.(1998).Phylogeneticrelationshipsandecomorphologicaldivergencein

sympatricandallopatricspeciesof Paragalaxias (Teleostei:Galaxiidae)inhigh

elevationTasmanianlakes. EnvironmentalBiologyofFishes 53 ,235257.

McDowall,R.M.(2000). TheReedFieldGuidetoNewZealandFreshwaterFishes .

Auckland:ReedBooks.

210 References

McDowall,R.M.(2003).ImpactsofintroducedsalmonidsonnativegalaxiidsinNew

Zealanduplandstreams:anewlookatanoldproblem. TransactionsoftheAmerican

FisheriesSociety 132 ,229238.

McDowall,R.M.(2006).Cryingwolf,cryingfoul,orcryingshame:aliensalmonidsanda

biodiversitycrisisinthesoutherncooltemperategalaxioidfishes? ReviewsinFish

BiologyandFisheries 16 ,233422.

McDowall,R.M.&Allibone,R.M.(1994).Possiblecompetitiveexclusionofcommonriver

galaxias( Galaxiasvulgaris )bykoaro( G.brevipinnis )followingimpoundmentofthe

WaiporiRiver,Otago,NewZealand. JournaloftheRoyalSocietyofNewZealand 24 ,

161168.

McDowall,R.M.&Frankenberg,R.S.(1981).ThegalaxiidfishesofAustralia. Recordsof

theAustralianMuseum 33 ,443605.

McDowall,R.M.&Fulton,W.(1978a).Afurthernewspeciesof Paragalaxias Scott

(Salmoniformes:Galaxiidae)fromTasmaniawitharevisedkeytothespecies.

AustralianJournalofMarineandFreshwaterResearch 29 ,659665.

McDowall,R.M.&Fulton,W.(1978b).Arevisionofthegenus Paragalaxias Scott

(Salmoniformes:Galaxiidae). AustralianJournalofMarineandFreshwaterResearch

29 ,93108.

McDowall,R.M.&Fulton,W.(1996).FamilyGalaxiidae.Galaxiids.In FreshwaterFishes

ofSouthEasternAustralia (McDowall,R.M.,ed.),pp.5277.Sydney:ReedBooks.

McDowall,R.M.&Kelly,G.R.(1999).Dateandageatmigrationinjuvenilegiantkokopu,

Galaxiasargenteus (Gmelin)(Teleostei:Galaxiidae)andestimationofspawning

season. NewZealandJournalofMarineandFreshwaterResearch 33 ,263270.

211 References

McDowall,R.M.,Mitchell,C.P.&Brothers,E.B.(1994).Ageatmigrationfromtheseaof

juvenile Galaxias inNewZealand(Pisces:Galaxiidae). BulletinofMarineScience 54,

385402.

McDowall,R.M.&Rowe,D.K.(1996).Threatenedfishesoftheworld: Galaxiasgracilis

McDowall,1967(Galaxiidae). EnvironmentalBiologyofFishes 46 ,280.

McInerny,M.C.&Cross,T.K.(2000).Effectsofsamplingtime,intraspecificdensity,and

environmentalvariablesonelectrofishingcatchpereffortoflargemouthbassin

MinnesotaLakes. NorthAmericanJournalofFisheriesManagement 20 ,328336.

McIntosh,A.R.(2000).Habitatandsizerelatedvariationsinexotictroutimpactsonnative

galaxiidfishesinNewZealandstreams. CanadianJournalofFisheriesandAquatic

Sciences 57 ,21402151.

McMahon,T.A.&Finlayson,B.L.(2003).Droughtsandantidroughts:thelowflow

hydrologyofAustralianrivers. FreshwaterBiology 48 ,11471160.

Miranda,L.E.,Shelton,W.L.&Bryce,T.D.(1984).Effectsofwaterlevelmanipulationon

abundance,mortality,andgrowthofyoungofyearlargemouthbassinWestPoint

Reservoir,AlabamaGeorgia. NorthAmericanJournalofFisheriesManagement 4,

314320.

Mooij,W.M.(1996).Variationinabundanceandsurvivaloffishlarvaeinshalloweutrophic

LakeTjeukemeer. EnvironmentalBiologyofFishes 46 ,265279.

Moore,P.D.&Chapman,S.B.(1986). MethodsinPlantEcology .Oxford:Blackwell

ScientificPublications.

Moore,S.J.,Allibone,R.M.&Townsend,C.R.(1999).Spawningsiteselectionbytwo

galaxiidfishes, Galaxiasanomalus and G.depressiceps ,intributariesoftheTaieri

river,SouthIsland,NewZealand. NewZealandJournalofMarineandFreshwater

Research 33 ,129139.

212 References

Morgan,D.L.(2003).Distributionandbiologyof Galaxiastruttaceus (Galaxiidae)insouth

westernAustralia,includingfirstevidenceofparasitismoffishesinWesternAustralia

by Ligulaintestinalis (Cestoda). EnvironmentalBiologyofFishes 66 ,155167.

Morgan,D.L.,Chapman,A.,Beatty,S.J.&Gill,H.S.(2005).Distributionofthespotted

minnow( Galaxiasmaculatus (Jenyns,1842))(Teleostei:Galaxiidae)inWestern

Australiaincludingrangeextensionsandsympatricspecies. RecordsoftheWestern

AustralianMuseum 23 ,711.

Morgan,D.L.,Hambleton,S.J.,Gill,H.S.&Beatty,S.J.(2002).Distribution,biologyand

likelyimpactsoftheintroducedredfinperch( Percafluviatilis )(Percidae)inWestern

Australia. MarineandFreshwaterResearch 53 ,12111221.

Morison,A.K.&Anderson,J.R.(1991). Galaxiasbrevipinnis G ünther(Pisces:Galaxiidae)

innortheasternVictoria:firstrecordsfortheMurrayDarlingDrainageBasin.

ProceedingsoftheRoyalSocietyofVictoria103 ,1728.

Moyle,P.B.(1995).Conservationofnativefreshwaterfishesinthemediterraneantype

climateofCalifornia,USA:areview. BiologicalConservation 72 ,271279.

Mullner,S.A.,Hubert,W.A.&Wesche,T.A.(1998).Snorkelingasanalterativeto

depletionelectrofishingforestimatingabundanceandlengthclassfrequenciesoftrout

insmallstreams. NorthAmericanJournalofFisheriesManagement 18 ,947953.

Munro,A.D.,Scott,A.P.&Lam,T.J.,eds.(1990). ReproductiveSeasonalityinTeleosts:

EnvironmentalInfluences ,pp254.CRCPress,BocaRaton,Florida.

Myers,G.S.(1965). Gambusia ,thefishdestroyer. TropicalFishHobbyist 13 ,3132,5354.

Myers,R.A.(1998).Whendoenvironmentrecruitmentcorrelationswork? ReviewsinFish

BiologyandFisheries 8,285305.

Naiman,R.J.&Latterell,J.J.(2005).Principlesforlinkingfishhabitattofisheries

managementandconservation. JournalofFishBiology 67 ,166185.

213 References

Nelson,M.(2004).Distributionofthewesternparagalaxias( Paragalaxiasjulianus )(Pisces:

Galaxiidae)onthewesternCentralPlateau,Tasmania. PapersandProceedingsofthe

RoyalSocietyofTasmania 138 ,6165.

O'Connor,W.G.&Koehn,J.D.(1991).Spawningofthemountaingalaxias, Galaxiasolidus

Gunther,inBrucesCreek,Victoria. ProceedingsoftheRoyalSocietyofVictoria 103 ,

113123.

O'Connor,W.G.&Koehn,J.D.(1998).Spawningofthebroadfinnedgalaxias, Galaxias

brevipinnis Gunther(Pisces:Galaxiidae)incoastalstreamsofsoutheasternAustralia.

EcologyofFreshwaterFish 7,95100.

Oksanen,J.,Kindt,R.&O'Hare,R.B.(2005).vegan:CommunityEcologyPackage.

Ovenden,J.R.&White,R.W.G.(1990).Mitochondrialandallozymegeneticsofincipient

speciationinalandlockedpopulationof Galaxiastruttaceus (Pisces:Galaxiidae).

Genetics 124 ,701716.

Ovenden,J.R.,White,R.W.G.&Adams,M.(1993).Mitochondrialandallozymegenetics

oftwoTasmaniangalaxiids( Galaxiasauratus and G.tanycephalus ,Pisces:

Galaxiidae)withrestrictedlacustrinedistributions. Heredity 70 ,223230.

Ozen,O.&Noble,R.L.(2005).Relationshipbetweenlargemouthbassrecruitmentandwater

leveldynamicsinaPuertoRicoreservoir. LakeandReservoirManagement 21 ,8995.

Paragamian,V.L.(1989).Acomparisonofdayandnightelectrofishing:sizestructureand

catchperuniteffortforsmallmouthbass. NorthAmericanJournalofFisheries

Management 9,500503.

Parent,S.&Schriml,L.M.(1995).Amodelforthedeterminationoffishspeciesatrisk

baseduponlifehistorytraitsandecologicaldata. CanadianJournalofFisheriesand

AquaticSciences 52 ,17681781.

214 References

Parkos,J.J.,Santucci,V.J.&Wahl,D.H.(2003).Effectsofadultcommoncarp( Cyprinus

carpio )onmultipletrophiclevelsinshallowmesocosms.CanadianJournalof

FisheriesandAquaticSciences 60 ,182192.

Pawson,M.G.(1990).Usingotolithweighttoagefish. JournalofFishBiology 36 ,521531.

Pen,L.J.,Gill,H.S.,Humphries,P.&Potter,I.C.(1993).Biologyoftheblackstripe

minnow Galaxiellanigrostriata ,includingcomparisonswiththeothertwo Galaxiella

species. JournalofFishBiology 43 ,847863.

Pen,L.J.&Potter,I.C.(1991a).Biologyofthewesternminnow, Galaxiasoccidentalis

Ogilby(Teleostei:Galaxiidae),inasouthwesternAustralianriver.1.Reproductive

biology. Hydrobiologia 211 ,7788.

Pen,L.J.&Potter,I.C.(1991b).Biologyofthewesternminnow, Galaxiasoccidentalis

Ogilby(Teleostei:Galaxiidae),inasouthwesternAustralianriver.2.Sizeandage

structure,growthanddiet. Hydrobiologia 211 ,89100.

Pen,L.J.&Potter,I.C.(1992).Seasonalandsizerelatedchangesinthedietofperch, Perca

fluviatilis L.,intheshallowsofanAustralianriver,andtheirimplicationsforthe

conservationofindigenousteleosts. AquaticConservation:MarineandFreshwater

Ecosystems 2,243253.

Pen,L.J.,Potter,I.C.&Hilliard,R.W.(1991).Biologyof Galaxiellamunda McDowall

(Teleostei:Galaxiidae),includingacomparisonofthereproductivestrategiesofthis

andthreeotherlocalspecies. JournalofFishBiology 39 ,717731.

Pierce,C.L.,Corcoran,A.M.,Cronbach,A.N.,Hsia,S.,Mullarkey,B.J.&Schwartzhoff,

A.J.(2001).Influenceofdielperiodonelectrofishingandbeachseiningassessments

oflittoralfishassemblages. NorthAmericanJournalofFisheriesManagement 21 ,

918926.

215 References

Pine,W.E.,Ludsin,S.A.&DeVries,D.R.(2000).Firstsummersurvivaloflargemouthbass

cohorts:isearlyspawningreallythebest? TransactionsoftheAmericanFisheries

Society129 ,504513.

Pinheiro,J.,Bates,D.,DebRoy,S.&Sarkar,D.(2005).nlme:Linearandnonlinearmixed

effectsmodels.

Pitcher,T.J.,ed.(1993). TheBehaviourofTeleostFishes ,2ndedn.Vol.7,pp715.Chapman

&Hall,London.

Pollard,D.A.(1971).Thebiologyofalandlockedformofthenormallycatadromous

salmoniformfish Galaxiasmaculatus (Jenyns).1.Lifecycleandorigin. Australian

JournalofMarineandFreshwaterResearch 22 ,91123.

Pollard,D.A.(1972a).Thebiologyofalandlockedformofthenormallycatadromous

salmoniformfish Galaxiasmaculatus (Jenyns).3.Structureofthegonads. Australian

JournalofMarineandFreshwaterResearch 23 ,1738.

Pollard,D.A.(1972b).Thebiologyofalandlockedformofthenormallycatadromous

salmoniformfish Galaxiasmaculatus (Jenyns).4.Nutritionalcycle. Australian

JournalofMarineandFreshwaterResearch 23 ,3948.

Pollard,D.A.(1974).Thebiologyofalandlockedformofthenormallycatadromous

salmoniformfish Galaxiasmaculatus (Jenyns).6.Effectsofcestodeandnematode

parasites. AustralianJournalofMarineandFreshwaterResearch 25 ,105120.

Pollard,D.A.,Ingram,B.A.,Harris,J.H.&Reynolds,L.F.(1990).Threatenedfishesin

Australiaanoverview. JournalofFishBiology 37 ,6778.

Quinn,G.P.&Keough,M.J.(2002). ExperimentalDesignandDataAnalysisforBiologists .

Cambridge:CambridgeUniversityPress.

RDevelopmentCoreTeam(2005).R:Alanguageandenvironmentforstatisticalcomputing.

RFoundationforStatisticalComputing,Vienna,Austria.http://www.Rproject.org

216 References

Raadik,T.A.(2001).Whenisamountaingalaxiasnotamountaingalaxias? FishesofSahul

15 ,785789.

Raadik,T.A.&Kuiter,R.H.(2002).Kosciuszko Galaxias :astoryofconfusionand

imminentperil.FishesofSahul 16 ,830835.

Raadik,T.A.,Saddlier,S.R.&Koehn,J.D.(1996).Threatenedfishesoftheworld:

Galaxiasfuscus Mack,1936(Galaxiidae). EnvironmentalBiologyofFishes 47 ,108.

Reynolds,J.B.(1996).Electrofishing.In FisheriesTechniques (Murphy,B.R.&Willis,D.

W.,ed.),pp.221253.Maryland:AmericanFisheriesSociety.

Reynolds,J.D.,Webb,T.J.&Hawkins,L.A.(2005).Lifehistoryandecologicalcorrelates

ofextinctionriskinEuropeanfreshwaterfishes. CanadianJournalofFisheriesand

AquaticSciences 62 ,854862.

Richards,R.H.&Pickering,A.D.(1978).Frequencyanddistributionpatternsof

Saprolegnia infectioninwildandhatcheryrearedbrowntroutSalmotrutta L.and

char Salvelinusalpinus (L.). JournalofFishDiseases 1,6982.

Richter,B.D.,Braun,D.P.,Mendelson,M.A.&Master,L.L.(1997).Threatstoimperiled

freshwaterfauna. ConservationBiology 11 ,10811093.

Roa,R.,Ernst,B.&Tapia,F.(1999).Estimationofsizeatsexualmaturity:anevaluationof

analyticalandresamplingprocedures. FisheryBulletin 97 ,570580.

Robertson,A.I.,Healey,M.R.&King,A.J.(1997).Experimentalmanipulationsofthe

biomassofintroducedcarp( Cyprinuscarpio )inbillabongs.II.Impactsonbenthic

propertiesandprocesses. MarineandFreshwaterResearch 48 ,445454.

Rogers,M.W.,Hansen,M.J.&Beard,T.D.(2003).Catchabilityofwalleyestofykenetting

andelectrofishinginnorthernWisconsinlakes. NorthAmericanJournalofFisheries

Management 23 ,11931206.

217 References

Rosenfeld,J.S.&Hatfield,T.(2006).Informationneedsforassessingcriticalhabitatof

freshwaterfish. CanadianJournalofFisheriesandAquaticSciences 63 ,683698.

Rowe,D.,Graynoth,E.,James,G.,Taylor,M.&Hawke,L.(2003).Influenceofturbidity

andfluctuatingwaterlevelsontheabundanceanddepthdistributionofsmall,benthic

fishinNewZealandalpinelakes. EcologyofFreshwaterFish 12 ,216227.

Rowe,D.K.&Chisnall,B.L.(1996a).Ontogenetichabitatshiftsby Galaxiasgracilis

(Galaxiidae)betweenthelittoralandlimneticzonesofLakeKanono,NewZealand.

EnvironmentalBiologyofFishes 46 ,255264.

Rowe,D.K.&Chisnall,B.L.(1996b).Sizerelateddifferencesindielfeedingactivity,prey

selectionandnocturnalmigrationstrategyfortheplanktoniclarvaeof Gobiomorphus

cotidianus inLakeRotoiti(NI),NewZealand. ArchivfürHydrobiologie 135 ,485

497.

Rowe,D.K.&Chisnall,B.L.(1997a).Distributionandconservationstatusofthedwarf

inanga Galaxiasgracilis (Teleostei:Galaxiidae)anendemicfishofNorthlanddune

lakes. JournaloftheRoyalSocietyofNewZealand 27 ,223233.

Rowe,D.K.&Chisnall,B.L.(1997b).Environmentalfactorsassociatedwiththedeclineof

dwarfinanga Galaxiasgracilis McDowallinNewZealanddunelakes. Aquatic

Conservation:MarineandFreshwaterEcosystems 7,277286.

Rowe,D.K.,Chisnall,B.L.,Dean,T.L.&Richardson,J.(1999).Effectsoflanduseon

nativefishcommunitiesineastcoaststreamsoftheNorthIslandofNewZealand.

NewZealandJournalofMarineandFreshwaterResearch 33 ,141151.

Rowe,D.K.,Konui,G.&Christie,K.D.(2002a).Populationstructure,distribution,

reproduction,diet,andrelativeabundanceofkoaro( Galaxiasbrevipinnis )inaNew

Zealandlake. JournaloftheRoyalSocietyofNewZealand 32 ,275291.

218 References

Rowe,D.K.,Shankar,U.,James,M.&Waugh,B.(2002b).UseofGIStopredicteffectsof

waterlevelonthespawningareaforsmelt, Retropinnaretropinna ,inLakeTaupo,

NewZealand. FisheriesManagementandEcology 9,205216.

Rupp,R.S.(1965).ShorespawningandsurvivalofeggsoftheAmericansmelt. Transactions

oftheAmericanFisheriesSociety 94 ,160168.

Ryan,P.M.(1984).Fykenetcatchesasindicesoftheabundanceofbrooktrout, Salvelinus

fontinalis ,andAtlanticsalmon, Salmosalar . CanadianJournalofFisheriesand

AquaticSciences 41 ,377380.

Sammons,S.M.&Bettoli,P.W.(2000).Populationdynamicsofareservoirsportfish

communityinresponsetohydrology. NorthAmericanJournalofFisheries

Management 20 ,791800.

Sammons,S.M.,Bettoli,P.W.&Greear,V.A.(2001).Earlylifehistorycharacteristicsof

age0whitecrappieinresponsetohydrologyandzooplanktondensitiesinNormandy

Reservoir,Tennessee. TransactionsoftheAmericanFisheriesSociety 130 ,442449.

Sammons,S.M.,Dorsey,L.G.,Bettoli,P.W.&Fiss,F.C.(1999).Effectsofreservoir

hydrologyonreproductionbylargemouthbassandspottedbassinNormandy

Reservoir,Tennessee. NorthAmericanJournalofFisheriesManagement 19 ,7888.

Sanger,A.C.&Fulton,W.(1991).ConservationofEndangeredSpeciesofTasmanian

FreshwaterFish.InlandFisheriesCommissionOccasionalReport9101.Inland

FisheriesCommission,Hobart,Australia.

Savino,J.F.&Stein,R.A.(1989).Behavioroffishpredatorsandtheirprey:habitatchoice

betweenopenwateranddensevegetation. EnvironmentalBiologyofFishes 24 ,287

293.

Scheffer,M.(2004). EcologyofShallowLakes .TheNetherlands:KluwerAcademic

Publishers.

219 References

Scheffer,M.,Hosper,S.H.,Meijer,M.L.,Moss,B.&Jeppesen,E.(1993).Alternative

equilibriainshallowlakes. TrendsinEcologyandEvolution 8,275279.

Schindler,D.E.&Scheuerell,M.D.(2002).Habitatcouplinginlakeecosystems. Oikos 98 ,

177189.

Shaffer,M.L.(1981).Minimumpopulationsizesforspeciesconservation. Bioscience 31 ,

131134.

Shirley,M.J.&Raadik,T.A.(1997).Aspectsoftheecologyandbreedingbiologyof

Galaxiasfuscus Mack,intheGoulburnRiversystem,Victoria. Proceedingsofthe

RoyalSocietyofVictoria 109 ,157166.

Shulmeister,J.,Goodwin,I.,Renwick,J.,Harle,K.,Armand,L.,McGlone,M.S.,Cook,E.,

Dodson,J.,Hesse,P.P.,Mayewski,P.&Curran,M.(2004).TheSouthern

HemispherewesterliesintheAustralasiansectoroverthelastglacialcycle:a

synthesis. QuaternaryInternational 118-19 ,2353.

Smith,B.B.&Walker,K.F.(2003).Validationoftheageingof0+carp( Cyprinuscarpio

L.). MarineandFreshwaterResearch 54 ,10051008.

Smith,S.J.&Hickman,J.L.(1983).Twostrigeoidtrematodes, Apatemon ( Apatemon )

gracilis (Rudolphi,1819)and Diplostomum ( Dolichorchis ) galaxiae n.sp.,which

encystinthefreshwaterfish Galaxiasauratus JohnstoninLakeCrescent,Tasmania.

PapersandProceedingsoftheRoyalSocietyofTasmania 117 ,2139.

Steinmetz,J.,Kohler,S.L.&Soluk,D.A.(2003).Birdsareoverlookedtoppredatorsin

aquaticfoodwebs. Ecology 84 ,13241328.

Stevens,D.W.,Francis,M.P.,Shearer,P.C.,McPhee,R.P.,Hickman,R.W.&Tait,M.J.

(2005).Ageandgrowthoftwoendemicflatfish( Colistiumguntheri and C.

nudipinnis )incentralNewZealandwaters. MarineandFreshwaterResearch 56 ,143

151.

220 References

StuartSmith,R.(2001).TheFeedingEcologyofBrownTrout( Salmotrutta L.)inLake

Sorell,Tasmania.BSc(Hons)thesis,UniversityofTasmania,Hobart,Australia.

StuartSmith,R.D.,Richardson,A.M.M.&White,R.W.G.(2004).Increasingturbidity

significantlyaltersthedietofbrowntrout:amultiyearlongitudinalstudy. Journalof

FishBiology 65 ,376388.

StuartSmith,R.D.,StuartSmith,J.F.,White,R.W.G.&Barmuta,L.A.(2007).Theeffects

ofturbidityandcomplexhabitatsonthefeedingofagalaxiidfishareclearandsimple.

MarineandFreshwaterResearch 58 ,429435.

Taylor,M.J.,Graynoth,E.&James,G.D.(2000).Abundanceanddaytimevertical

distributionofplanktonicfishlarvaeinanoligotrophicSouthIslandlake.

Hydrobiologia 421 ,4146.

ThreatenedSpeciesSection(2006).RecoveryPlan:TasmanianGalaxiidae20062010.

DepartmentofPrimaryIndustriesandWater,Hobart,Australia.

http://www.dpiw.tas.gov.au/inter.nsf/Attachments/LJEM6VM72L?open

Tilzey,R.D.J.(1976).ObservationsoninteractionsbetweenindigenousGalaxiidaeand

introducedSalmonidaeintheLakeEucumbeneCatchment,NewSouthWales.

AustralianJournalofMarineandFreshwaterResearch 27 ,551564.

Tracey,S.R.&Lyle,J.M.(2005).Agevalidation,growthmodeling,andmortalityestimates

forstripedtrumpeter( Latrislineata )fromsoutheasternAustralia:makingthemostof

patchydata. FisheryBulletin 103 ,169182.

Uytendaal,A.(2003).WaterQualityinLakesCrescentandSorell:UnderlyingProcessesand

ManagementOptions,RehabilitationofLakesSorellandCrescentReportSeriesNo.

5.InlandFisheriesService,Hobart,Australia.

http://www.ifs.tas.gov.au/ifs/fisherymanagement/publications

221 References

Uytendaal,A.(2006).WaterClarityinTwoShallowLakeSystemsoftheCentralPlateau,

Tasmania,Australia.PhDthesis,UniversityofTasmania,Hobart,Australia.

VanderZanden,M.J.&Vadeboncoeur,Y.(2002).Fishesasinteractorsofbenthicand

pelagicfoodwebsinlakes. Ecology 83 ,21522161.

Venables,W.N.&Ripley,B.D.(2002). ModernAppliedStatisticswithS ,4thedn.New

York:SpringerVerlag.

VentlingSchwank,A.R.&Livingstone,D.M.(1994).Transportandburialasacauseof

whitefish( Coregonus sp.)eggmortalityinaeutrophiclake. CanadianJournalof

FisheriesandAquaticSciences 51 ,19081919.

Viozzi,G.,Flores,V.&OstrowskideNúñez,M.(2000). Steganodermaszidati n.sp.

(Trematoda:Zoogonidae)from Galaxiasmaculatus (Jenyns)and G.platei

SteindachnerinPatagonia,Argentina. SystematicParasitology 46 ,203208.

Vrijenhoek,R.C.(1998).Conservationgeneticsoffreshwaterfish. JournalofFishBiology

53 ,394412.

Walton,I.(1995). TheCompleteAngler .London:J.M.Dent.

Warren,A.&French,J.R.,eds.(2001). HabitatConservation:ManagingthePhysical

Environment ,pp356.JohnWiley&Sons,Chichester,UK.

Waters,J.M.(1996).Aspectsofthephylogeny,biogeographyandtaxonomyofgalaxioid

fishes.PhDthesis,UniversityofTasmania,Hobart,Australia.

Waters,J.M.&Burridge,C.P.(1999).ExtremeintraspecificmitochondrialDNAsequence

divergencein Galaxiasmaculatus (Osteichthys:Galaxiidae),oneoftheworld'smost

widespreadfreshwaterfish. MolecularPhylogeneticsandEvolution 11 ,112.

Waters,J.M.,Shirley,M.&Closs,G.P.(2002).Hydroelectricdevelopmentand

translocationof Galaxiasbrevipinnis :acloudattheendofthetunnel? Canadian

JournalofFisheriesandAquaticSciences 59 ,4956.

222 References

Waters,J.M.&Wallis,G.P.(2001).MitochondrialDNAphylogeneticsofthe Galaxias

vulgaris complexfromSouthIsland,NewZealand:rapidradiationofaspeciesflock.

JournalofFishBiology 58 ,11661180.

Waters,J.M.&White,R.W.G.(1997).Molecularphylogenyandbiogeographyofthe

TasmanianandNewZealandmudfishes(Salmoniformes:Galaxiidae). Australian

JournalofZoology 45 ,3948.

Weaver,M.J.,Magnuson,J.J.&Clayton,M.K.(1993).Analysesfordifferentiatinglittoral

fishassemblageswithcatchdatafrommultiplesamplinggears. Transactionsofthe

AmericanFisheriesSociety 122 ,11111119.

Weaver,M.J.,Magnuson,J.J.&Clayton,M.K.(1997).Distributionoflittoralfishesin

structurallycomplexmacrophytes. CanadianJournalofFisheriesandAquatic

Sciences 54 ,22772289.

Werner,E.E.&Hall,D.J.(1988).Ontogenetichabitatshiftsinbluegill:theforagingrate

predationrisktradeoff. Ecology 69 ,13521366.

West,D.W.,Jowett,I.G.&Richardson,J.(2005).Growth,diet,movement,andabundance

ofadultbandedkokopu( Galaxiasfasciatus )infiveCoromandel,NewZealand

streams. NewZealandJournalofMarineandFreshwaterResearch 39 ,915929.

White,R.W.G.,Bick,Y.A.E.&Wenqing,F.(1987).Karyologyofthegenus Paragalaxias

(Pisces,Salmoniformes,Galaxiidae). JournalofFishBiology 31 ,583585.

Williams,W.D.,ed.(1974). BiogeographyandEcologyinTasmania .DrW.JunkPublishers,

TheHague.

Winfield,I.J.(2004a).Fishinthelittoralzone:ecology,threatsandmanagement.

Limnologica 34 ,124131.

Winfield,I.J.(2004b).Fishpopulationecology.In TheLakesHandbook (O'Sullivan,P.E.&

Reynolds,C.S.,ed.),Vol.1,pp.517537.Oxford:BlackwellScience.

223 References

Wootton,R.J.(1998). EcologyofTeleostFishes ,2ndedn.Dordrecht:KluwerAcademic

Publishers.

Yamamoto,T.,Kohmatsu,Y.&Yuma,M.(2006).Effectsofsummerdrawdownoncyprinid

fishlarvaeinLakeBiwa,Japan. Limnology 7,7582.

Zalewski,M.(1983).Theinfluenceoffishcommunitystructureontheefficiencyof

electrofishing. FisheriesManagement 14 ,177186.

224 Appendices

Appendices

Appendix 1. MajorthreatstogalaxiidspeciesinTasmania*.

Threat Species Exotic Hydrological Restricted Habitat Exploitation species manipulation distribution degradation Galaxiaspedderensis + + + Galaxiasfontanus + + + Galaxiasjohnstoni + + + Galaxiastanycephalus + + + Galaxiasauratus + + + Galaxiasparvus + + + Galaxiasbrevipinnis + + + Galaxiastruttaceus + + + Galaxiasmaculatus + + + Paragalaxiasmesotes + + + Paragalaxiasdissimilis + + + Paragalaxiaseleotroides + + + Paragalaxiasjulianus + + + Neochannacleaveri + + + Galaxiellapusilla + + + Lovettiasealii + + + Total(no.and(%)) 16(100) 12(75) 11(69) 7(44) 2(13)

*Thethreekeythreatstoeachgalaxiidspeciesweredeterminedbasedoncurrentavailable documentedinformation:(Blackburn,1950;Fulton&Pavuk,1988;Sanger&Fulton,1991; Hamr,1992a;Ault&White,1994;Hamr,1995;Chilcott&Humphries,1996;Crook& Sanger,1998a,b;Lake,1998;Hardie,2003;Koster,2003;Hardie etal. ,2004;Jackson etal. , 2004;ThreatenedSpeciesSection,2006)andInlandFisheriesService,Tasmaniaunpublished data.

225 Appendices

Appendix 2. Agebiasplotsofmean(±1S.D.)ageestimatesofGalaxiasauratus compared totheinitialreadingbytheprimaryreader:(a)withinreaderbiasand(b)betweenreaderbias. Samplesizesandequalagerelationships(dashedline)areindicated.

9 (a) (1) 8

7 (8)

6 (8)

5 (12)

4 (20)

3 (41)

2 (59)

1 (31) Mean age estimate reader A - 2nd read 2nd - A reader estimate age Mean 0

0 1 2 3 4 5 6 7 8 9 Age estimate reader A - 1st read

9 (b) (1) 8

7 (2) (6) 6

5 (6)

4 (7)

3 (16)

2 (21) Mean age estimate reader B reader estimate age Mean (17) 1

0

0 1 2 3 4 5 6 7 Age estimate reader A

226 Appendices

Appendix 3. Fishlengthtotalweightrelationshipsformale(dashedline)andfemale(solid line)Galaxiasauratus .DatafromlakesCrescentandSorellarepooled.Linearmodel parameterestimatesaregiveninChapter5,Table1.

5 Females (n = 1771) Males (n = 925)

4

3

2 (Total weight (g)) weight (Total

10 1 Log

0

-1

4.0 4.5 5.0 5.5

Log10 (Fork length (mm))

227 Appendices

Appendix 4. Estimatedageotolithweightrelationshipsformale(dashedline)andfemale (solidline) Galaxiasauratus .DatafromlakesCrescentandSorellarepooled.Linearmodel parameterestimatesaregiveninChapter5,Table1.

16 Males (n = 190) Females (n = 308)

12

8 Otolith weight (mg) weight Otolith

4

0 01 2 34 5 67 8 910 Estimated age (years)

228 Appendices

Appendix 5. Fishlengthfecundityrelationshipfor Galaxiasauratus .Datafromlakes CrescentandSorellarepooled.SeeChapter6forlinearmodel(dashedline)parameter estimates.

n = 87

9

8 (Fecundity (number of eggs)) of (number (Fecundity

10 7 Log

4.4 4.6 4.8 5.0 5.2

Log10 (Fork length (mm))

229

View publication stats