Rust Diseases of Willow and Poplar We Dedicate This Book to Our Children Michael and Jeffrey, Sarah and Philippa Rust Diseases of Willow and Poplar

Total Page:16

File Type:pdf, Size:1020Kb

Rust Diseases of Willow and Poplar We Dedicate This Book to Our Children Michael and Jeffrey, Sarah and Philippa Rust Diseases of Willow and Poplar Rust Diseases of Willow and Poplar We dedicate this book to our children Michael and Jeffrey, Sarah and Philippa Rust Diseases of Willow and Poplar Edited by Ming Hao Pei Rothamsted Research, Harpenden, Hertfordshire, UK and Alistair R. McCracken Applied Plant Science Division, Department of Agriculture and Rural Development, Belfast, UK CABI Publishing CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 875 Massachusetts Avenue Wallingford 7th Floor Oxfordshire OX10 8DE Cambridge, MA 02139 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 E-mail: [email protected] E-mail: [email protected] Web site: www.cabi-publishing.org ©CAB International 2005. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Rust diseases of willow and poplar / edited by Ming Hao Pei & Alistair R. McCracken. p. cm. ISBN 0-85199-999-9 (alk. paper) 1. Willows--Diseases and pests. 2. Poplar--Diseases and pests. 3. Rust diseases. I. Pei, Ming Hao. II. McCracken, Alistair R. III. Title. SB608.W65R87 2005 634.9′7236--dc22 2004018883 ISBN 0 85199 999 9 Typeset by AMA DataSet Ltd, UK. Printed and bound in the UK by Biddles Ltd, King’s Lynn. Contents Contributors ix Preface xi Abbreviations xv Part I: Taxonomy and Overview of Rusts 1. Phylogenetic Position of Melampsora in Rust Fungi Inferred from Ribosomal DNA Sequences 1 Ming Hao Pei, Carlos Bayon and Carmen Ruiz 2. A Brief Review of Melampsora Rusts on Salix 11 Ming Hao Pei 3. The Species of Melampsora on Salix (Salicaceae) 29 Gaddam Bagyanarayana 4. A Brief Summary of Melampsora Species on Populus 51 Ming Hao Pei and Yan Zhong Shang Part 2: Occurrence and Population Biology of Melampsora 5. Variability and Population Biology of Melampsora Rusts on Poplars 63 Pascal Frey, Pierre Gérard, Nicolas Feau, Claude Husson and Jean Pinon 6. Genetic Diversity of Melampsora Willow Rusts in Germany 73 Mirko Liesebach and Irmtraut Zaspel 7. Genetic Structure of Melampsora larici-epitea Populations in North-western Europe 91 Berit Samils 8. Current Taxonomic Status of Melampsora Species on Poplars in China 99 Cheng-Ming Tian and Makoto Kakishima v vi Contents 9. Current Status of Poplar Leaf Rust in India 113 R.C. Sharma, S. Sharma and K.R. Sharma 10. Melampsora Willow Rust in Chile and Northern Europe: Part of a Metapopulation? 119 Mauritz Ramstedt and Sergio Hurtado Part 3: Rust Resistance and Infection Process 11. Disease Scoring by Taking Inoculum Densities into Consideration in Leaf Disc Inoculations with Poplar and Willow Rusts 131 Ming Hao Pei and Tom Hunter 12. Interactions Between Poplar Clones and Melampsora Populations and their Implications for Breeding for Durable Resistance 139 Jean Pinon and Pascal Frey 13. Transgenic Hybrid Aspen with Altered Defensive Chemistry: a Model System to Study the Chemical Basis of Resistance? 155 Johanna Witzell, Marlene Karlsson, Marisa Rodriguez-Buey, Mikaela Torp and Gunnar Wingsle 14. Basidiospore-derived Penetration by Species of Cronartium and Melampsora: an Outline 161 Alessandro Ragazzi, Nicola Longo, Biancamaria Naldini, Salvatore Moricca and Irene Dellavalle Part 4: Rust Management 15. Host Diversity, Epidemic Progression and Pathogen Evolution 175 Chris C. Mundt 16. Short-rotation Coppice Willow Mixtures and Rust Disease Development 185 Alistair R. McCracken, W. Malcolm Dawson and Diane Carlisle 17. Short-rotation Coppice Willow Mixtures and Yield 195 W. Malcolm Dawson, Alistair R. McCracken and Diane Carlisle 18. Effect of Preventative Fungicide Sprays on Melampsora Rust of Poplar in the Nursery 209 R.C. Sharma, S. Sharma and A.K. Gupta Part 5: Rust Mycoparasites and their Potential for Biological Control 19. Biocontrol of Rust Fungi by Cladosporium tenuissimum 213 Salvatore Moricca, Alessandro Ragazzi and Gemma Assante 20. Biology and Genetic Diversity of the Rust Hyperparasite Sphaerellopsis filum in Central Europe 231 Mirko Liesebach and Irmtraut Zaspel Contents vii 21. Mycoparasite Sphaerellopsis filum and its Potential for Biological Control of Willow Rust 243 Ming Hao Pei and Zhiwen W. Yuan Index 255 This page intentionally left blank Contributors Gemma Assante, Istituto di Patologia Vegetale, Università di Milano, Via Celoria 2, 20133 Milano, Italy Gaddam Bagyanarayana, Department of Botany, Osmania University, Hyderabad 500 007 (A.P), India Carlos Bayon, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK Diane Carlisle, Department of Applied Plant Science, Queen’s University of Belfast, Newforge Lane, Belfast BT9 5PX, UK Irene Dellavalle, CNR, Istituto per la Protezione delle Piante, Area della Ricerca del CNR di Firenze, Via Madonna del Piano, 50019 – Sesto Fiorentino (FI), Italy Malcolm Dawson, Applied Plant Science Division, Northern Ireland Horticulture and Plant Breeding Station, Department of Agriculture and Rural Development, Loughgall, Co. Armagh, BT61 8JB, UK Nicolas Feau, Centre de Recherche en Biologie Forestière, Université Laval, Sainte-Foy (QC), G1K 7P4, Canada Pascal Frey, UR Pathologie Forestière, INRA, F-54280 Champenoux, France Pierre Gérard, Laboratoire Ecologie, Systématique et Evolution, UMR ENGREF-UPXI- CNRS 8079, Université Paris-Sud, 91405 Orsay, France A.K. Gupta, Department of Mycology and Plant Pathology, Dr Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan – 173 230 Himachal Pradesh, India Claude Husson, UR Pathologie Forestière, INRA, F-54280 Champenoux, France Tom Hunter, 4 Wally Court Road, Chew Stoke, Bristol BS40 8XL, UK Sergio Hurtado, Plant Pathology and Biocontrol Unit, Swedish University of Agricultural Sciences, PO Box 7035, S-75007 Uppsala, Sweden Marlene Karlsson, Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden Makoto Kakishima, Institute of Agriculture and Forestry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan Mirko Liesebach, Federal Office and Research Centre for Forests, Department of Forest Genetics, Hauptstrasse 7, A-1140 Vienna, Austria Nicola Longo, Dipartimento di Biologia Vegetale, Università di Firenze, Via La Pira 4, 50121 Firenze, Italy Alistair McCracken, Applied Plant Science Division, Department of Agriculture and Rural Development, Newforge Lane, Belfast BT9 5PX, UK Salvatore Moricca, Dipartimento di Biologia Vegetale, Università di Firenze, Via La Pira 4, 50121 Firenze, Italy ix x Contributors Chris C. Mundt, Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, OR 97331-2902, USA Biancamaria Naldini, Dipartimento di Biologia Vegetale, Università di Firenze, Via La Pira 4, 50121 Firenze, Italy Ming Hao Pei, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK Jean Pinon, UR Pathologie Forestière, INRA, F-54280 Champenoux, France Alessandro Ragazzi, Dipartimento di Biotecnologie Agrarie, Sezione di Patologia Vegetale, Università di Firenze, Piazzale delle Cascine 28, 50144 Firenze, Italy Mauritz Ramstedt, Plant Pathology and Biocontrol Unit, Swedish University of Agricultural Sciences, PO Box 7035, S-75007 Uppsala, Sweden Marisa Rodriguez-Buey, Umeå Plant Science Center, Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden Carmen Ruiz, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK Berit Samils, Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden Yan Zhong Shang, College of Forestry, Inner Mogolia Agricultural University, Huhehot, China K.R. Sharma, Department of Forest Products, Dr Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan – 173 230 Himachal Pradesh, India R.C. Sharma, Department of Mycology and Plant Pathology, Dr Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan – 173 230 Himachal Pradesh, India S. Sharma, Department of Mycology and Plant Pathology, Dr Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan – 173 230 Himachal Pradesh, India Cheng-Ming Tian, College of Resource and Environment, Beijing Forestry University, 35 Tsinghua Eastern Road, Beijing 100083, China Mikaela Torp, Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden Gunnar Wingsle, Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden Johanna Witzell, Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden Zhiwen W. Yuan, Institute of Applied Ecology, Academia Sinica, PO Box 417, Shenyang, China Irmtraut Zaspel, Federal Research Centre for Forestry and Forest Products, Institute for Forest Genetics and Forest Tree Breeding, Eberswalder Chaussee 3A, D-15377 Waldsieversdorf, Germany Preface The plant family Salicaceae comprises two major genera, willow (Salix) and poplar (Populus). Some 300–500 species, according to different authorities, are recognized in Salix and 30–100 species in Populus. Willows and poplars are among the most common woody plants in the northern hemisphere and, through centuries of human intervention, they have been widely planted
Recommended publications
  • Two New Chrysomyxa Rust Species on the Endemic Plant, Picea Asperata in Western China, and Expanded Description of C
    Phytotaxa 292 (3): 218–230 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.292.3.2 Two new Chrysomyxa rust species on the endemic plant, Picea asperata in western China, and expanded description of C. succinea JING CAO1, CHENG-MING TIAN1, YING-MEI LIANG2 & CHONG-JUAN YOU1* 1The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China 2Museum of Beijing Forestry University, Beijing 100083, China *Corresponding author: [email protected] Abstract Two new rust species, Chrysomyxa diebuensis and C. zhuoniensis, on Picea asperata are recognized by morphological characters and DNA sequence data. A detailed description, illustrations, and discussion concerning morphologically similar and phylogenetically closely related species are provided for each species. From light and scanning electron microscopy observations C. diebuensis is characterized by the nailhead to peltate aeciospores, with separated stilt-like base. C. zhuoni- ensis differs from other known Chrysomyxa species in the annulate aeciospores with distinct longitudinal smooth cap at ends of spores, as well as with a broken, fissured edge. Analysis based on internal transcribed spacer region (ITS) partial gene sequences reveals that the two species cluster as a highly supported group in the phylogenetic trees. Correlations between the morphological and phylogenetic features are discussed. Illustrations and a detailed description are also provided for the aecia of C. succinea in China for the first time. Keywords: aeciospores, molecular phylogeny, spruce needle rust, taxonomy Introduction Picea asperata Mast.is native to western China, widely distributed in Qinghai, Gansu, Shaanxi and western Sichuan.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility)
    Technical Assistance Consultant’s Report Project Number: 39321 June 2008 PRC: Preparing the Shaanxi-Qinling Mountains Integrated Ecosystem Management Project (Cofinanced by the Global Environment Facility) Prepared by: ANZDEC Limited Australia For Shaanxi Province Development and Reform Commission This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. FINAL REPORT SHAANXI QINLING BIODIVERSITY CONSERVATION AND DEMONSTRATION PROJECT PREPARED FOR Shaanxi Provincial Government And the Asian Development Bank ANZDEC LIMITED September 2007 CURRENCY EQUIVALENTS (as at 1 June 2007) Currency Unit – Chinese Yuan {CNY}1.00 = US $0.1308 $1.00 = CNY 7.64 ABBREVIATIONS ADB – Asian Development Bank BAP – Biodiversity Action Plan (of the PRC Government) CAS – Chinese Academy of Sciences CASS – Chinese Academy of Social Sciences CBD – Convention on Biological Diversity CBRC – China Bank Regulatory Commission CDA - Conservation Demonstration Area CNY – Chinese Yuan CO – company CPF – country programming framework CTF – Conservation Trust Fund EA – Executing Agency EFCAs – Ecosystem Function Conservation Areas EIRR – economic internal rate of return EPB – Environmental Protection Bureau EU – European Union FIRR – financial internal rate of return FDI – Foreign Direct Investment FYP – Five-Year Plan FS – Feasibility
    [Show full text]
  • The Sally Walker Conservation Fund at Zoo Outreach Organization to Continue Key Areas of Her Interest
    Building evidence for conservaton globally Journal of Threatened Taxa ISSN 0974-7907 (Online) ISSN 0974-7893 (Print) 26 November 2019 (Online & Print) PLATINUM Vol. 11 | No. 14 | 14787–14926 OPEN ACCESS 10.11609/jot.2019.11.14.14787-14926 J TT www.threatenedtaxa.org ISSN 0974-7907 (Online); ISSN 0974-7893 (Print) Publisher Host Wildlife Informaton Liaison Development Society Zoo Outreach Organizaton www.wild.zooreach.org www.zooreach.org No. 12, Thiruvannamalai Nagar, Saravanampat - Kalapat Road, Saravanampat, Coimbatore, Tamil Nadu 641035, India Ph: +91 9385339863 | www.threatenedtaxa.org Email: [email protected] EDITORS English Editors Mrs. Mira Bhojwani, Pune, India Founder & Chief Editor Dr. Fred Pluthero, Toronto, Canada Dr. Sanjay Molur Mr. P. Ilangovan, Chennai, India Wildlife Informaton Liaison Development (WILD) Society & Zoo Outreach Organizaton (ZOO), 12 Thiruvannamalai Nagar, Saravanampat, Coimbatore, Tamil Nadu 641035, Web Design India Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India Deputy Chief Editor Typesetng Dr. Neelesh Dahanukar Indian Insttute of Science Educaton and Research (IISER), Pune, Maharashtra, India Mr. Arul Jagadish, ZOO, Coimbatore, India Mrs. Radhika, ZOO, Coimbatore, India Managing Editor Mrs. Geetha, ZOO, Coimbatore India Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India Mr. Ravindran, ZOO, Coimbatore India Associate Editors Fundraising/Communicatons Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Mrs. Payal B. Molur, Coimbatore, India Dr. Mandar Paingankar, Department of Zoology, Government Science College Gadchiroli, Chamorshi Road, Gadchiroli, Maharashtra 442605, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Editors/Reviewers Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Subject Editors 2016-2018 Fungi Editorial Board Ms. Sally Walker Dr.
    [Show full text]
  • Tarset and Greystead Biological Records
    Tarset and Greystead Biological Records published by the Tarset Archive Group 2015 Foreword Tarset Archive Group is delighted to be able to present this consolidation of biological records held, for easy reference by anyone interested in our part of Northumberland. It is a parallel publication to the Archaeological and Historical Sites Atlas we first published in 2006, and the more recent Gazeteer which both augments the Atlas and catalogues each site in greater detail. Both sets of data are also being mapped onto GIS. We would like to thank everyone who has helped with and supported this project - in particular Neville Geddes, Planning and Environment manager, North England Forestry Commission, for his invaluable advice and generous guidance with the GIS mapping, as well as for giving us information about the archaeological sites in the forested areas for our Atlas revisions; Northumberland National Park and Tarset 2050 CIC for their all-important funding support, and of course Bill Burlton, who after years of sharing his expertise on our wildflower and tree projects and validating our work, agreed to take this commission and pull everything together, obtaining the use of ERIC’s data from which to select the records relevant to Tarset and Greystead. Even as we write we are aware that new records are being collected and sites confirmed, and that it is in the nature of these publications that they are out of date by the time you read them. But there is also value in taking snapshots of what is known at a particular point in time, without which we have no way of measuring change or recognising the hugely rich biodiversity of where we are fortunate enough to live.
    [Show full text]
  • An Annotated Catalogue of the Fungal Biota of the Roztocze Upland Monika KOZŁOWSKA, Wiesław MUŁENKO Marcin ANUSIEWICZ, Magda MAMCZARZ
    An Annotated Catalogue of the Fungal Biota of the Roztocze Upland Fungal Biota of the An Annotated Catalogue of the Monika KOZŁOWSKA, Wiesław MUŁENKO Marcin ANUSIEWICZ, Magda MAMCZARZ An Annotated Catalogue of the Fungal Biota of the Roztocze Upland Richness, Diversity and Distribution MARIA CURIE-SkłODOWSKA UNIVERSITY PRESS POLISH BOTANICAL SOCIETY Grzyby_okladka.indd 6 11.02.2019 14:52:24 An Annotated Catalogue of the Fungal Biota of the Roztocze Upland Richness, Diversity and Distribution Monika KOZŁOWSKA, Wiesław MUŁENKO Marcin ANUSIEWICZ, Magda MAMCZARZ An Annotated Catalogue of the Fungal Biota of the Roztocze Upland Richness, Diversity and Distribution MARIA CURIE-SkłODOWSKA UNIVERSITY PRESS POLISH BOTANICAL SOCIETY LUBLIN 2019 REVIEWER Dr hab. Małgorzata Ruszkiewicz-Michalska COVER DESIN, TYPESETTING Studio Format © Te Authors, 2019 © Maria Curie-Skłodowska University Press, Lublin 2019 ISBN 978-83-227-9164-6 ISBN 978-83-950171-8-6 ISBN 978-83-950171-9-3 (online) PUBLISHER Polish Botanical Society Al. Ujazdowskie 4, 00-478 Warsaw, Poland pbsociety.org.pl Maria Curie-Skłodowska University Press 20-031 Lublin, ul. Idziego Radziszewskiego 11 tel. (81) 537 53 04 wydawnictwo.umcs.eu [email protected] Sales Department tel. / fax (81) 537 53 02 Internet bookshop: wydawnictwo.umcs.eu [email protected] PRINTED IN POLAND, by „Elpil”, ul. Artyleryjska 11, 08-110 Siedlce AUTHOR’S AFFILIATION Department of Botany and Mycology, Maria Curie-Skłodowska University, Lublin Monika Kozłowska, [email protected]; Wiesław
    [Show full text]
  • A New Species of Melampsora Rust on Salix Elbursensis from Iran
    For. Path. doi: 10.1111/j.1439-0329.2010.00699.x Ó 2010 Blackwell Verlag GmbH A new species of Melampsora rust on Salix elbursensis from Iran By S. M. Damadi1,5, M. H. Pei2, J. A. Smith3 and M. Abbasi4 1Department of Plant Protection, Faculty of Agriculture, University of Maragheh, Maragheh, Iran; 2Rothamsted Research, Harpenden, Hertfordshire, UK; 3School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, USA; 4Plant Pests & Diseases Research Institute, Tehran, Iran; 5E-mail: [email protected] (for correspondence) Summary A rust fungus was found causing stem cankers on 1- to 5-year-old stems of Salix elbursensis in the north west of Iran. The rust also forms uredinia on leaves and flowers of the host willow. Light and scanning electron microscopy revealed that the new rust is morphologically distinct from several Melampsora species occurring on the willows taxonomically close to S. elbursensis, but indistinguish- able from Melampsora larici-epitea. Examination of the internal transcribed spacer (ITS) region of the ribosomal DNA suggested that the rust fungus is phylogenetically close to Melampsora allii-populina and Melampsora pruinosae on Populus spp. Based on both the morphological characteristics and the ITS sequence data, the rust is described as a new species – Melampsora iranica sp. nov. 1 Introduction The genus Melampsora was established by Castagne in 1843 based on the rust on Euphorbia, Melampsora euphorbiae (Schub.) Cast. (Castagne 1843). The main character- istic of the genus Melampsora is the formation of ÔnakedÕ uredinia and crust-like telia that comprise sessile, laterally adherent single-celled teliospores. Of some 80 Melampsora spp.
    [Show full text]
  • Ray G. Woods, R. Nigel Stringer, Debbie A. Evans and Arthur O. Chater
    Ray G. Woods, R. Nigel Stringer, Debbie A. Evans and Arthur O. Chater Summary The rust fungi are a group of specialised plant pathogens. Conserving them seems to fly in the face of reason. Yet as our population grows and food supplies become more precarious, controlling pathogens of crop plants becomes more imperative. Breeding resistance genes into such plants has proved to be the most cost effective solution. Such resistance genes evolve only in plants challenged by pathogens. We hope this report will assist in prioritising the conservation of natural ecosystems and traditional agro-ecosystems that are likely to be the richest sources of resistance genes. Despite its small size (11% of mainland Britain) Wales has supported 225 rust fungi taxa (including 199 species) representing 78% of the total British mainland rust species. For the first time using widely accepted international criteria and data collected from a number of mycologists and institutions, a Welsh regional threat status is offered for all native Welsh rust taxa. The results are compared with other published Red Lists for Wales. Information is also supplied in the form of a census catalogue, detailing the rust taxa recorded from each of the 13 Welsh vice-counties. Of the 225 rust taxa so far recorded from Wales 7 are probably extinct (3% of the total), and 39 (18%) are threatened with extinction. Of this latter total 13 taxa (6%) are considered to be Critically Endangered, 15 (7%) to be Endangered and 13 (6%) to be Vulnerable. A further 20 taxa (9%) are Near Threatened, whilst 15 taxa (7%) lacked sufficient data to permit evaluation.
    [Show full text]
  • Assessment of Invasive Species in Alaska and Its National Forests August 30, 2005
    Assessment of Invasive Species in Alaska and its National Forests August 30, 2005 Compiled by Barbara Schrader and Paul Hennon Contributing Authors: USFS Alaska Regional Office: Michael Goldstein, Wildlife Ecologist; Don Martin, Fisheries Ecologist; Barbara Schrader, Vegetation Ecologist USFS Alaska Region, State and Private Forestry/Forest Health Protection: Paul Hennon, Pathologist; Ed Holsten, Entomologist (retired); Jim Kruse, Entomologist Executive Summary This document assesses the current status of invasive species in Alaska’s ecosystems, with emphasis on the State’s two national forests. Lists of invasive species were developed in several taxonomic groups including plants, terrestrial and aquatic organisms, tree pathogens and insects. Sixty-three plant species have been ranked according to their invasive characteristics. Spotted knapweed, Japanese knotweed, reed canarygrass, white sweetclover, ornamental jewelweed, Canada thistle, bird vetch, orange hawkweed, and garlic mustard were among the highest-ranked species. A number of non-native terrestrial fauna species have been introduced or transplanted in Alaska. At this time only rats are considered to be causing substantial ecological harm. The impacts of non-native slugs in estuaries are unknown, and concern exists about the expansion of introduced elk populations in southeast Alaska. Northern pike represents the most immediate concern among aquatic species, but several other species (Atlantic salmon, Chinese mitten crab, and New Zealand mudsnail) could invade Alaska in the future. No tree pathogen is currently damaging Alaska’s native tree species but several fungal species from Europe and Asia could cause considerable damage if introduced. Four introduced insects are currently established and causing defoliation and tree mortality to spruce, birch, and larch.
    [Show full text]
  • NEMF MASTERLIST - Sorted by Taxonomy
    NEMF MASTERLIST - Sorted by Taxonomy Sunday, April 24, 2011 Page 1 of 80 Kingdom Phylum Class Order Family Genus and Species Amoebozoa Mycetomycota Protosteliomycetes Protosteliales Ceratiomyxaceae Ceratiomyxa fruticulosa var. fruticulosa Ceratiomyxa fruticulosa var. globosa Ceratiomyxa fruticulosa var. poroides Mycetozoa Myxogastrea Incertae Sedis in Myxogastrea Stemonitidaceae Brefeldia maxima Comatricha dictyospora Comatricha nigra Comatricha sp. Comatricha typhoides Lamproderma sp. Stemonitis axifera Stemonitis axifera, cf. Stemonitis fusca Stemonitis herbatica Stemonitis nigrescens Stemonitis smithii Stemonitis sp. Stemonitis splendens Fungus Ascomycota Ascomycetes Boliniales Boliniaceae Camarops petersii Capnodiales Capnodiaceae Capnodium tiliae Diaporthales Valsaceae Cryphonectria parasitica Valsaria peckii Elaphomycetales Elaphomycetaceae Elaphomyces granulatus Elaphomyces muricatus Elaphomyces sp. Erysiphales Erysiphaceae Erysiphe polygoni Microsphaera alni Microsphaera alphitoides Microsphaera penicillata Uncinula sp. Halosphaeriales Halosphaeriaceae Cerioporiopsis pannocintus Hysteriales Hysteriaceae Glonium stellatum Hysterium angustatum Micothyriales Microthyriaceae Microthyrium sp. Mycocaliciales Mycocaliciaceae Phaeocalicium polyporaeum Ostropales Graphidaceae Graphis scripta Stictidaceae Cryptodiscus sp. 1 Peltigerales Collemataceae Leptogium cyanescens Peltigeraceae Peltigera canina Peltigera evansiana Peltigera horizontalis Peltigera membranacea Peltigera praetextala Pertusariales Icmadophilaceae Dibaeis baeomyces Pezizales
    [Show full text]
  • Microfungi of the Tatra Mountains. Part 7. Correction of Some Data From
    Acta Mycologica DOI: 10.5586/am.1081 REVIEW Publication history Received: 2016-09-19 Accepted: 2016-12-01 Microfungi of the Tatra Mountains. Part 7. Published: 2016-12-30 Correction of some data from herbaria and Handling editor Maria Rudawska, Institute of Dendrology, Polish Academy of the literature Sciences, Poland Authors’ contributions Monika Kozłowska1*, Wiesław Mułenko1, Kamila Bacigálová2, MK, WM: contributed to the 1 1 1 idea of research; all authors Agata Wołczańska , Urszula Świderska-Burek , Magdalena Pluta contributed to manuscript 1 Department of Botany and Mycology, Maria Curie-Skłodowska University, Akademicka 19, preparation; MK, WM: writing 20-033 Lublin, Poland the manuscript; WM approved 2 Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, 845 23 Bratislava, Slovakia the final version of the manuscript * Corresponding author. Email: [email protected] Funding The study was supported by Abstract the Polish State Committee for Scientific Research (grant The Tatra Mts are located on the border of two countries – Poland and Slovakia. It No. 2/P04C/089/27 and No. N/ is a unique, extremely geobotanically-differentiated region, protected by law and N304/172436), by the Grant listed on the UNESCO Biosphere Reserve List as an internationally recognized Agency VEGA Bratislava Slovakia (projects No. 2/0106/10 area. Due to the high nature values of the Tatra Mts, varied research, including and 2/0051/13) and from mycological, has been intensively conducted on this area for many years. The first the Department of Botany data on the microscopic fungi of the Tatras comes from to the second half of the and Mycology, Maria Curie- nineteenth century and spans more than 150 years.
    [Show full text]
  • Common Larch-Willow Rust -Melampsora Capraearum a Number of Rust Fungi Infect Larch and Willow Trees
    U.S. Department of Agriculture, Agricultural Research Service Systematic Mycology and Microbiology Laboratory - Invasive Fungi Fact Sheets Common larch-willow rust -Melampsora capraearum A number of rust fungi infect larch and willow trees. If the teliospores are present on upper surface of willow leaves, Melampsora caprearum can be easily differentiated by the thickened apex of the teliospores. Also on willow, the uredinial stage is more difficult to distinguish from other species of Melampsora. The inconspicuous spermagonial and aecial stages occur on larch in spring. Recent molecular studies have confirmed that these are distinct species that can be identified using molecular diagnostic tools (Nakamura et al. 1998, Pei et al. 2005). Pei & McCracken (2005) present a recent account of these rust fungi. Melampsora caprearum is the most common species of this genus on larch in Europe. Melampsora capraearum Thum. 1879 Spermogonia amphigenous, type 3 (Hiratsuka, 1992). Aecia hypophyllous, pale orange; aeciospores globose or broadly ellipsoid, 15-25 × 12-20 µm, finely and densely verrucose, walls 1.5-2 µm, thick, germ pores scattered. Uredinia hypophyllous, occasionally epiphyllous, 1-3 mm; urediniospores globose or broadly ellipsoid, 14-26 × 13-23 µm, walls 2-4 µm thick, distantly echinulate, germ pores scattered; paraphyses capitate, 50-60 x 18-30 µm, walls thickened at apex, up to 6 µm. Telia epiphyllous, subcuticular, 1 mm or more wide, dark reddish-brown; teliospores 25-45 × 7-17 µm, walls 1 µm thick at side, 5-10 µm thick above, with an apical germ pore. See Hiratsuka (1992) and for a more detailed description. Host range: Spermagonial and aecial stages on various species of Larix, mostly commonly on Larix decidua and L.
    [Show full text]