Symmetry Versus Balance in Balancing Networks for Dipolar Antennas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mutual Inductance and Transformer Theory Questions: 1 Through 15 Lab Exercise: Transformer Voltage/Current Ratios (Question 61)
ELTR 115 (AC 2), section 1 Recommended schedule Day 1 Topics: Mutual inductance and transformer theory Questions: 1 through 15 Lab Exercise: Transformer voltage/current ratios (question 61) Day 2 Topics: Transformer step ratio Questions: 16 through 30 Lab Exercise: Auto-transformers (question 62) Day 3 Topics: Maximum power transfer theorem and impedance matching with transformers Questions: 31 through 45 Lab Exercise: Auto-transformers (question 63) Day 4 Topics: Transformer applications, power ratings, and core effects Questions: 46 through 60 Lab Exercise: Differential voltage measurement using the oscilloscope (question 64) Day 5 Exam 1: includes Transformer voltage ratio performance assessment Lab Exercise: work on project Project: Initial project design checked by instructor and components selected (sensitive audio detector circuit recommended) Practice and challenge problems Questions: 66 through the end of the worksheet Impending deadlines Project due at end of ELTR115, Section 3 Question 65: Sample project grading criteria 1 ELTR 115 (AC 2), section 1 Project ideas AC power supply: (Strongly Recommended!) This is basically one-half of an AC/DC power supply circuit, consisting of a line power plug, on/off switch, fuse, indicator lamp, and a step-down transformer. The reason this project idea is strongly recommended is that it may serve as the basis for the recommended power supply project in the next course (ELTR120 – Semiconductors 1). If you build the AC section now, you will not have to re-build an enclosure or any of the line-power circuitry later! Note that the first lab (step-down transformer circuit) may serve as a prototype for this project with just a few additional components. -
Scattering Parameters
Scattering Parameters Motivation § Difficult to implement open and short circuit conditions in high frequencies measurements due to parasitic L’s and C’s § Potential stability problems for active devices when measured in non-operating conditions § Difficult to measure V and I at microwave frequencies § Direct measurement of amplitudes/ power and phases of incident and reflected traveling waves 1 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 Scattering Parameters Motivation § Difficult to implement open and short circuit conditions in high frequencies measurements due to parasitic L’s and C’s § Potential stability problems for active devices when measured in non-operating conditions § Difficult to measure V and I at microwave frequencies § Direct measurement of amplitudes/ power and phases of incident and reflected traveling waves 2 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 1 General Network Formulation V + I + 1 1 Z Port Voltages and Currents 0,1 I − − + − + − 1 V I V = V +V I = I + I 1 1 k k k k k k V1 port 1 + + V2 I2 I2 V2 Z + N-port 0,2 – port 2 Network − − V2 I2 + VN – I Characteristic (Port) Impedances port N N + − + + VN I N Vk Vk Z0,k = = − + − Z0,N Ik Ik − − VN I N Note: all current components are defined positive with direction into the positive terminal at each port 3 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 Impedance Matrix I1 ⎡V1 ⎤ ⎡ Z11 Z12 Z1N ⎤ ⎡ I1 ⎤ + V1 Port 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - V2 Z21 Z22 Z2N I2 ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ I2 + ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ V2 Port 2 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - V Z Z Z I N-port ⎣ N ⎦ ⎣ N1 N 2 NN ⎦ ⎣ N ⎦ Network I N [V]= [Z][I] V + Port N N + - V Port i i,oc- Open-Circuit Impedance Parameters Port j Ij N-port Vi,oc Zij = Network I j Port N Ik =0 for k≠ j 4 Prof. -
Brief Study of Two Port Network and Its Parameters
© 2014 IJIRT | Volume 1 Issue 6 | ISSN : 2349-6002 Brief study of two port network and its parameters Rishabh Verma, Satya Prakash, Sneha Nivedita Abstract- this paper proposes the study of the various ports (of a two port network. in this case) types of parameters of two port network and different respectively. type of interconnections of two port networks. This The Z-parameter matrix for the two-port network is paper explains the parameters that are Z-, Y-, T-, T’-, probably the most common. In this case the h- and g-parameters and different types of relationship between the port currents, port voltages interconnections of two port networks. We will also discuss about their applications. and the Z-parameter matrix is given by: Index Terms- two port network, parameters, interconnections. where I. INTRODUCTION A two-port network (a kind of four-terminal network or quadripole) is an electrical network (circuit) or device with two pairs of terminals to connect to external circuits. Two For the general case of an N-port network, terminals constitute a port if the currents applied to them satisfy the essential requirement known as the port condition: the electric current entering one terminal must equal the current emerging from the The input impedance of a two-port network is given other terminal on the same port. The ports constitute by: interfaces where the network connects to other networks, the points where signals are applied or outputs are taken. In a two-port network, often port 1 where ZL is the impedance of the load connected to is considered the input port and port 2 is considered port two. -
LTC3723-1/LTC3723-2 Synchronous Push-Pull PWM Controllers
LTC3723-1/LTC3723-2 Synchronous Push-Pull PWM Controllers FEATURES DESCRIPTIO U ■ High Efficiency Synchronous Push-Pull PWM The LTC®3723-1/LTC3723-2 synchronous push-pull PWM ■ 1.5A Sink, 1A Source Output Drivers controllers provide all of the control and protection func- ■ Supports Push-Pull, Full-Bridge, Half-Bridge, and tions necessary for compact and highly efficient, isolated Forward Topologies power converters. High integration minimizes external ■ Adjustable Push-Pull Dead-Time and Synchronous component count, while preserving design flexibility. Timing The robust push-pull output stages switch at half the ■ Adjustable System Undervoltage Lockout and Hysteresis oscillator frequency. Dead-time is independently pro- ■ Adjustable Leading Edge Blanking grammed with an external resistor. Synchronous rectifier ■ Low Start-Up and Quiescent Currents timing is adjustable to optimize efficiency. A UVLO pro- ■ Current Mode (LTC3723-1) or Voltage Mode gram input provides precise system turn-on and turn off (LTC3723-2) Operation voltages. The LTC3723-1 features peak current mode ■ Single Resistor Slope Compensation control with programmable slope compensation and lead- ■ ing edge blanking, while the LTC3723-2 employs voltage VCC UVLO and 25mA Shunt Regulator ■ Programmable Fixed Frequency Operation to 1MHz mode control with voltage feedforward capability. ■ 50mA Synchronous Output Drivers The LTC3723-1/LTC3723-2 feature extremely low operat- ■ Soft-Start, Cycle-by-Cycle Current Limiting and ing and start-up currents. Both devices provide reliable Hiccup Mode Short-Circuit Protection short-circuit and overtemperature protection. The ■ 5V, 15mA Low Dropout Regulator LTC3723-1/LTC3723-2 are offered in a 16-pin SSOP ■ Available in 16-Pin SSOP Package package. -
THE ULTIMATE Tesla Coil Design and CONSTRUCTION GUIDE the ULTIMATE Tesla Coil Design and CONSTRUCTION GUIDE
THE ULTIMATE Tesla Coil Design AND CONSTRUCTION GUIDE THE ULTIMATE Tesla Coil Design AND CONSTRUCTION GUIDE Mitch Tilbury New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-159589-9 The material in this eBook also appears in the print version of this title: 0-07-149737-4. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. -
Report of Contributions
MT25 Conference 2017 - Timetable, Abstracts, Orals and Posters Report of Contributions https://indico.cern.ch/e/MT25-2017 MT25 Conferenc … / Report of Contributions 3D Electromagnetic Analysis of Tu … Contribution ID: 5 Type: Poster Presentation of 1h45m 3D Electromagnetic Analysis of Tubular Permanent Magnet Linear Launcher Tuesday, 29 August 2017 13:15 (1h 45m) A short stroke and large thrust axial magnetized tubular permanent magnet linear launcher (TPMLL) with non-ferromagnetic rings is presented in this paper. Its 3D finite element (FE) models are estab- lished for sensitivity analyses on some parameters, such as air gap thickness, permanent magnet thickness, permanent magnet width, stator yoke thickness and four types of permanent magnet material, ferrite, NdFeB, AlNiCO5 and Sm2CO17 are conducted to achieve greatest thrust. Then its 2D finite element (FE) models are also established. The electromagnetic thrusts calculated by 2D and 3D finite element method (FEM) and got from prototype test are compared. Moreover, the prototype static and dynamic tests are conducted to verify the 2D and 3D electromagnetic analysis. The FE software FLUX provides the interface with the MATLAB/Simulink to establish combined simulation. To improve the accuracy of the simulation, the combined simulation between the model of the control system in Matlab/Simulink and the 3D FE model of the TPMLL in FLUX is built in this paper. The combined simulation between the control system and the 3D FE modelof the TPMLL is built. A prototype is manufactured according to the final designed dimensions. The photograph of the developed TPMLL prototype with thrust sensor and the magnetic powder brake as the load are shown. -
IEEE/PES Transformers Committee
Transformers Committee Chair: Sue McNelly Vice Chair: Bruce Forsyth Secretary: Ed teNyenhuis Treasurer: Paul Boman Awards Chair/Past Chair: Stephen Antosz Standards Coordinator: Jim Graham IEEE/PES Transformers Committee Spring 2019 Meeting Minutes Anaheim, CA March 24 – 28, 2019 Unapproved (These minutes are on the agenda to be approved at the next meeting in Fall 2019) TABLE OF CONTENTS GENERAL ADMINISTRATIVE ITEMS 1.0 Agenda 2.0 Attendance OPENING SESSION – MONDAY MARCH 25, 2019 3.0 Approval of Agenda and Previous Minutes – Susan McNelly 4.0 Chair’s Remarks & Report – Susan McNelly 5.0 Vice Chair’s Report – Bruce Forsyth 6.0 Secretary’s Report – Ed teNyenhuis 7.0 Treasurer’s Report – Paul Boman 8.0 Awards Report – Stephen Antosz 9.0 Administrative SC Meeting Report – Susan McNelly 10.0 Standards Report – Jim Graham 11.0 Liaison Reports 11.1. CIGRE – Craig Swinderman 11.2. IEC TC14 – Phil Hopkinson 11.3. Standards Coordinating Committee, SCC No. 18 (NFPA/NEC) – David Brender 11.4. Standards Coordinating Committee, SCC No. 4 (Electrical Insulation) – Evanne Wang 11.5. ASTM D27 – Tom Prevost 12.0 Approval of Transformer Committee P&P Manual - Bruce Forsyth 13.0 Hot Topics for the Upcoming – Subcommittee Chairs 14.0 Opening Session Adjournment CLOSING SESSION – THURSDAY MARCH 28, 2019 15.0 Chair’s Remarks and Announcements – Susan McNelly 16.0 Meetings Planning SC Minutes & Report – Tammy Behrens 17.0 Reports from Technical Subcommittees (decisions made during the week) 18.0 Report from Standards Subcommittee (issues from the week) 19.0 -
Instruction Manual Installation Operation Copyright © 2012 Kato Engineering, Inc
Instruction Manual Installation Operation Copyright © 2012 Kato Engineering, Inc. All rights reserved Maintenance Motor-Generator Set Synchronous Common Shaft Publication 350-03006-00 (07/18/2012) Kato Engineering, Inc. | P.O. Box 8447 | Mankato, MN USA 56002-8447 | Tel: 507-625-4011 [email protected] | www.KatoEngineering.com | Fax: 507-345-2798 Copyright © 2012 Kato Engineering, Inc. All rights reserved Page 1 Table of Contents Introduction............................................................................... 4 Foreword..................................................................................... 4 Safety instructions.......................................................................4 Ratings/description......................................................................4 Construction and Operating Principles.................................. 5 Stator...........................................................................................5 Rotor........................................................................................... 5 Brushless exciters....................................................................... 6 Installation................................................................................. 7 Receiving inspection................................................................... 7 Unpacking and moving............................................................... 7 Location...................................................................................... 7 Mounting.................................................................................... -
Current Transformer Theory & Testing
Current Transformer Theory & Testing Hands On Relay School 2016 Jay Anderson – Omicron [email protected] www.OmicronEnergy.com Agenda • Introduction • Current Transformer Basics • Construction & Types • Industry Standards • Applications • Testing Current Transformer Basics © OMICRON Page 3 Function of Current Transformers • Convert Primary Power Signals to Manageable Values for • Indicating Meters • Revenue Metering • Protective Relay Systems • Power Generation • Plant Monitoring Systems • Fault Recorders • SCADA • Overall Electric Grid Monitoring (Local Dispatch & ISO Level) • Building (Energy) Management Systems (HVAC,refrigeration...) • Load Control January 19, 2016 Page: 4 Current Transformers • Insulation from High Voltages and Currents • Isolation from other systems • Safety • Standardization • Accuracy ( Ratio & Phase) • Typically Low Power Rating • Thermal Considerations • Burden Considerations January 19, 2016 Page: 5 Current Transformers • Insulation Consistent With Voltage Use • Wide Range of Current to Replicate (Unlike VTs) • Metering or Protective Class Ratings • Typically Unprotected • Dangerous When Open Circuited January 19, 2016 Page: 6 Compliance & Standards Instrument Transformers Are Expected to Perform & Conform IEEE ANSI IEC in Europe & Asia NERC Reliability Standards in US Supported standards • IEEE C57.13 standard requirements for instrument transformers • IEEE C57.13.6 standard for high-accuracy instrument transformers • IEC 60044-1 current transformers • IEC 60044-6 requirements for protective current -
Solutions to Problems
Solutions to Problems Chapter l 2.6 1.1 (a)M-IC3T3/2;(b)M-IL-3y4J2; (c)ML2 r 2r 1 1.3 (a) 102.5 W; (b) 11.8 V; (c) 5900 W; (d) 6000 w 1.4 Two in series connected in parallel with two others. The combination connected in series with the fifth 1.5 6 V; 16 W 1.6 2 A; 32 W; 8 V 1.7 ~ D.;!b n 1.8 in;~ n 1.9 67.5 A, 82.5 A; No.1, 237.3 V; No.2, 236.15 V; No. 3, 235.4 V; No. 4, 235.65 V; No.5, 236.7 V Chapter 2 2.1 3il + 2i2 = 0; Constraint equation, 15vl - 6v2- 5v3- 4v4 = 0 i 1 - i2 = 5; i 1 = 2 A; i2 = - 3 A -6v1 + l6v2- v3- 2v4 = 0 2.2 va\+va!=-5;va=2i2;va=-3il; -5vl- v2 + 17v3- 3v4 = 0 -4vl - 2vz- 3v3 + l8v4 = 0 i1 = 2 A;i2 = -3 A 2.7 (a) 1 V ±and 2.4 .!?.; (b) 10 V +and 2.3 v13 + v2 2 = 0 (from supernode 1 + 2); 10 n; (c) 12 V ±and 4 n constraint equation v1- v2 = 5; v1 = 2 V; v2=-3V 2.8 3470 w 2.5 2.9 384 000 w 2.10 (a) 1 .!?., lSi W; (b) Ra = 0 (negative values of Ra not considered), 162 W 2.11 (a) 8 .!?.; (b),~ W; (c) 4 .!1. 2.12 ! n. By the principle of superposition if 1 A is fed into any junction and taken out at infinity then the currents in the four branches adjacent to the junction must, by symmetry, be i A. -
Distribution Transformers–Medium and High Voltage Section 21
Distribution Transformers–Medium and High Voltage Section 21 com . Secondary Substation – SST .....................................................21-2 Three-phase Padmounted – PADS ..........................................21-4 Single-Phase Pole-Mounted – POLES......................................21-6 Network Transformers ..............................................................21-9 Voltage Regulators VR-1 .............................................................................................................21-10 Bushing Potential Devices......................................................21-13 ElectricalPartManuals . Publications and Reference: See Section 22 for a complete list of additional product-related publications Rev. 1/08 ® 21-1 Prices and data subject www.geelectrical.com BuyLog Catalog wwwto change without notice Distribution Transformers–Medium and High Voltage Section 21 GE-PROLEC® Liquid Filled Secondary Substation Transformers-SST GE-PROLEC® Secondary Substation Transformers will meet all of your industrial applications for power distribution. These transformers have a robust construction and are designed with the capability to coordinate with a wide diversity of equipment such as switchboards, LIS, MCCs, etc. com Applications Industrial . —Oil and Gas —Chemical Industry —Paper Industry —Steel Industry —Cement Industry Commercial —Airports —Stadiums —Office Building —Waste Water General Construction Features —Stores —The liquid insulated, secondary type substation transformer Utility is designed, manufactured -
2-PORT CIRCUITS Objectives
Notes for course EE1.1 Circuit Analysis 2004-05 TOPIC 10 – 2-PORT CIRCUITS Objectives: . Introduction . Re-examination of 1-port sub-circuits . Admittance parameters for 2-port circuits . Gain and port impedance from 2-port admittance parameters . Impedance parameters for 2-port circuits . Hybrid parameters for 2-port circuits 1 INTRODUCTION Amplifier circuits are found in a large number of appliances, including radios, TV, video, audio, telephony (mobile and fixed), communications and instrumentation. The applications of amplifiers are practically unlimited. It is clear that an amplifier circuit has an input signal and an output signal. This configuration is represented by a device called a 2-port circuit, which has an input port for the input signal and an output port for the output signal. In this topic, we look at circuits from this point of view. To develop the idea of 2-port circuits, consider a general 1-port sub-circuit of the type we are very familiar with: The basic passive elements, resistor, inductor and capacitor, and the independent sources, are the simplest 1-port sub-circuits. A more general 1-port sub-circuit contains any number of interconnected resistors, capacitors, inductors, and sources and could have many nodes. Sometimes, perhaps when we have finished designing a circuit, we become less interested in the detail of the elements interconnected in the circuit and are happy to represent the 1-port circuit by how it behaves at its terminals. This is achieved by use of circuit analysis to determine the relationship between the voltage V1 across the terminals and the current I1 flowing through the terminals which leads to a Thevenin or Norton equivalent circuit, which can be used as a simpler replacement for the original complex circuit.