Philip W. Anderson Obituary in 1958, Andersondiscovered Aremark in 1949, Williamshockley, Co-Inventor of the Anderson Was Bornin 1923

Total Page:16

File Type:pdf, Size:1020Kb

Philip W. Anderson Obituary in 1958, Andersondiscovered Aremark in 1949, Williamshockley, Co-Inventor of the Anderson Was Bornin 1923 Obituary Philip W. Anderson (1923–2020) Nobel winner who transformed condensed-matter and particle physics. hilip Warren Anderson, who has died glasses, a type of random magnet that contains aged 96, led the development of con- both ferromagnetic and antiferromagnetic densed-matter physics. In 1977, he won interactions. Working with Sam Edwards at the a share of the Nobel Prize in Physics for University of Cambridge, UK, he modelled the his discovery of electron localization, glass’s capacity to ‘remember’ the history of its Pwhereby disordered metals become insula- environment. The Edwards–Anderson model tors, and for his pioneering work on mag- was an early forerunner of the neural networks netism. His studies of superconductors led used in modern machine learning. him to propose how the force carriers between Anderson had an artist’s eye for original subatomic particles, such as photons, acquire interpretation, and worked closely with mass: the Anderson–Higgs mechanism is now experimentalists to develop ideas that led to part of the standard model of particle physics. new fields of study. During a year in Japan in Quantum physics’ early triumphs persuaded 1953, visiting the mathematical physicist Ryogo some that advances would derive exclusively Kubo at the University of Tokyo, he became a from reducing nature to its most fundamental master in the ancient game of Go. Just as he particles. Anderson rejected this view, argu- could instinctively see several moves beyond ing that the emergent properties that develop his opponent, he often reached an under- when matter comes together are equally signif- standing of physics that was hard for others icant. He reasoned that, in science, each new to grasp. Unusually intuitive for a theoretical EMILIO SEGRÈ VISUAL ARCHIVES/AM. INST. PHYS./SPL INST. ARCHIVES/AM. VISUAL EMILIO SEGRÈ level of complexity requires new fields, con- physicist, he was able to reduce complex prob- necting physics, chemistry, biology, computer superconductivity. Whereas magnets con- lems so they would succumb to a minimum of science and economics. centrate fields, superconductors expel them, mathematics. Anderson was born in 1923. The son of a plant allowing them to levitate. Following John To the many younger physicists he men- pathologist, he grew up in Urbana–Champaign, Bardeen, Leon Cooper and Robert Schrieffer’s tored, with whom he generously shared Illinois, and developed an early passion for discovery that superconductivity results from inspiring ideas, he was something of a guru. speed skating. At 16, he went to Harvard Uni- electrons forming Cooper pairs, Anderson real- He would invite them, and their families, for versity in Cambridge, Massachusetts, where ized that these pairs are a kind of pseudospin. dinner, developing lasting friendships. He had he fell in love with physics. During the Second In a magnet, fluctuations in the magnetiza- a passion for the outdoors, spending Sundays World War, he worked on radar at the US Naval tion propagate, forming a spin wave. Cooper gardening and clearing the woodland around Research Laboratory in Washington DC. He pairs are charged, and pseudospin waves his house. first learnt about quantum mechanics when cause an electric current that interacts with From 1967 to 1975, Anderson was a visiting a colleague gave him a precious text on it to the electromagnetic fields, which are carried professor at Cambridge, where he was a close repay a wartime loan. Returning to Harvard by photons. When Anderson calculated the associate of Nevill Mott, the third of the 1977 for graduate work, he studied the effects of motion of photons inside a superconductor, Nobel prizewinners. In 1975, he took up a posi- pressure on the broadening of spectral lines, he found that they acquired a mass. tion at Princeton University in New Jersey, mentored by John Hasbrouck Van Vleck, one Anderson realized that there were still- where he devoted much of his research to high- of those with whom he shared the Nobel prize. deeper parallels between superconductivity temperature superconductivity (discovered in In 1949, William Shockley, co-inventor of the and particle physics. In 1962, he proposed a 1986 by Georg Bednorz and Alex Müller). transistor, hired Anderson to join the theory mechanism for subatomic force carriers called Anderson’s resonating valence bond (RVB) group at Bell Telephone Laboratories in Murray gauge bosons to acquire mass in a kind of cos- theory, proposed in 1987, once again bor- Hill, New Jersey. Here, Anderson first focused mic superconductor, now known as the Higgs rows ideas from magnetism, positing that on magnetism. Quantum mechanics predicts field after the British physicist Peter Higgs. high- temperature superconductivity results that electrons carry tiny magnetic moments Anderson’s work was prominently cited in from the injection of charge into an insulating called spin. The attraction of fridge magnets Higgs’s 1964 paper predicting the existence quantum spin liquid. High-temperature super- results when spins orient in the same direc- of the Higgs boson. conductivity has still not been achieved, but tion. By contrast, the read heads of hard disk Work on semiconductors at Bell Labs led many think that RVB theory contains the seeds drives rely on an antiferromagnet, in which the Anderson to propose in 1957 that disorder — of how it might be. Although Anderson has left spin alternates direction on adjacent atomic such as that caused by defects and impurities in us, his ideas are still many moves ahead. layers. By combining the effects of electron a material — localizes electron waves, produc- repulsion and quantum mechanics, Anderson ing an insulator. Today, Anderson localization Piers Coleman is a distinguished professor explained how iron atoms become magnetic, is recognized as a general property of all kinds at the Rutgers Center for Materials Theory, and accounted for the interactions that result of waves in disordered media. But the original Rutgers, the State University of New Jersey. in antiferromagnetism. idea was radical and took two decades and the He was a graduate student with Philip W. In 1958, Anderson discovered a remark- contributions of many leading physicists to be Anderson at Princeton in 1980–1984. able parallel between magnetism and developed in detail. Anderson also studied spin e-mail: [email protected] Nature | Vol 581 | 7 May 2020 | 29 ©2020 Spri nger Nature Li mited. All ri ghts reserved. .
Recommended publications
  • The Nobel Prize in Physics: Four Historical Case Studies
    The Nobel Prize in Physics: Four Historical Case Studies By: Hannah Pell, Research Assistant November 2019 From left: Arnold Sommerfeld, Lise Meitner, Chien-Shiung Wu, Satyendra Nath Bose. Images courtesy of the AIP Emilio Segré Visual Archives. Grade Level(s): 11-12, College Subject(s): History, Physics In-Class Time: 50 - 60 minutes Prep Time: 15 – 20 minutes Materials • Photocopies of case studies (found in the Supplemental Materials) • Student internet access Objective Students will investigate four historical case studies of physicists who some physicists and historians have argued should have won a Nobel Prize in physics: Arnold Sommerfeld, Lise Meitner, Chien-Shiung Wu, and Satyendra Nath Bose. With each Case Study, students examine the historical context surrounding the prize that year (if applicable) as well as potential biases inherent in the structure of the Nobel Prize committee and its selection process. Students will summarize arguments for why these four physicists should have been awarded a Nobel Prize, as well as potential explanations for why they were not awarded the honor. Introduction Introduction to the Nobel Prize In 1895, Alfred Nobel—a Swedish chemist and engineer who invented dynamite—signed into his will that a large portion of his vast fortune should be used to create a series of annual prizes awarded to those who “confer the greatest benefit on mankind” in physics, chemistry, physiology or medicine, 1 literature, and peace.1 (The Nobel Prize in economics was added later to the collection of disciplines in 1968). Thus, the Nobel Foundation was founded as a private organization in 1900 and the first Nobel Prizes were awarded in 1901.
    [Show full text]
  • Muonium Gravity Seminar Wichita-6-17
    Antimatter Gravity MICE-U.S. Plans withDaniel Muons M. Kaplan US Spokesperson, MICE Collaboration Daniel M. Kaplan Physics Seminar WichitaMuTAC State Review Univ. June Fermilab16, 2017 16–17 March, 2006 Outline • Dramatis Personae • A Bit of History - antimatter, the baryon asymmetry of the universe, and all that... • The Ideas, The Issues, The Opportunities • Required R&D • Conclusions Our story’s a bit complicated, so please bear with me! ...and stop me if you have a question! D. M. Kaplan, IIT An#ma&er Gravity Seminar 2/41 Matter & Energy • After many decades of experimentation with subatomic particles, we now know whatDramatis everything is made of... Personae Baryons & antibaryons : p== uud & p uud ΛΛ==uds & uds ... Mesons : K00== ds & K ds B00== db & B db B+ == ub & B− ub ... ∓ ∓ ∓ Leptons : e , µ , τ , ν’s D. M. Kaplan, IIT An#ma&er Gravity Seminar 3/41 Matter & Energy • After many decades of experimentation with subatomic particles, we now know whatDramatis everything is made of... Personae “Imperfect mirror” Baryons & antibaryons : Antip== uud & p uud ΛΛ==uds & uds ... Mesons : Anti K00== ds & K ds B00== db & B db Anti B+ == ub & B− ub ... Antimatter Leptons : e∓, µ∓, τ∓, ν’s • And, don’t forget: antimatter and matter annihilate on contact D. M. Kaplan, IIT An#ma&er Gravity Seminar 3/41 Outline • Dramatis Personae ➡ • A Bit of History - antimatter, the baryon asymmetry of the universe, and all that... • The Ideas, The Issues, The Opportunities • Muonium Gravity Experiment • Required R&D • Conclusions D. M. Kaplan, IIT An#ma&er Gravity Seminar 4/41 Our story begins with..
    [Show full text]
  • A DIALOGUE on the THEORY of HIGH Tc
    A DIALOGUE ON THE THEORY OF HIGH Tc Superconducting Bi2Sr2CaCu2O,, as seen with reflected differential interference contrast microscopy. This view of the ab plane surface of a platelet of the ceramic material shows this high-temperature superconductor's strong planar structure. (Photomicrograph by Michael W. Davidson, W. Jack Rink and Joseph B. Schlenoff, Florida State University.) Figure 1 5 4 PHYSICS TODAY JUNE 1991 The give-and-take between two solid-state theorists offers insight into materials with high superconducting transition temperatures and illustrates the kind of thinking that goes into developing a new theory. Philip W. Anderson and Robert Schrieffer Although ideas that would explain the behavior of the formalism to do their calculations.' I believe they are high-temperature superconducting materials have been wrong. I'd like to hear your opinion, but first let me say a offered almost since their discovery, high-Tt. theory is still couple of things that bear on this question. In the first very much in flux. Two of the leading figures in condensed place, I think few people realize that we now know of at matter theory are Philip Anderson, the Joseph Henry least six different classes of electron superconductors, and Professor of Physics at Princeton University, and Robert two other BCS fluids as well. Out of these only one obeys Schrieffer, Chancellor's Professor at the University of the so-called conventional theory—that is, BCS with California, Santa Barbara. Anderson's ideas have fo- phonons that fit unmodified versions of Eliashberg's cused, in his own words, "on a non-Fermi-liquid normal equations.
    [Show full text]
  • Nobel Laureates with Their Contribution in Biomedical Engineering
    NOBEL LAUREATES WITH THEIR CONTRIBUTION IN BIOMEDICAL ENGINEERING Nobel Prizes and Biomedical Engineering In the year 1901 Wilhelm Conrad Röntgen received Nobel Prize in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him. Röntgen is considered the father of diagnostic radiology, the medical specialty which uses imaging to diagnose disease. He was the first scientist to observe and record X-rays, first finding them on November 8, 1895. Radiography was the first medical imaging technology. He had been fiddling with a set of cathode ray instruments and was surprised to find a flickering image cast by his instruments separated from them by some W. C. Röntgenn distance. He knew that the image he saw was not being cast by the cathode rays (now known as beams of electrons) as they could not penetrate air for any significant distance. After some considerable investigation, he named the new rays "X" to indicate they were unknown. In the year 1903 Niels Ryberg Finsen received Nobel Prize in recognition of his contribution to the treatment of diseases, especially lupus vulgaris, with concentrated light radiation, whereby he has opened a new avenue for medical science. In beautiful but simple experiments Finsen demonstrated that the most refractive rays (he suggested as the “chemical rays”) from the sun or from an electric arc may have a stimulating effect on the tissues. If the irradiation is too strong, however, it may give rise to tissue damage, but this may to some extent be prevented by pigmentation of the skin as in the negro or in those much exposed to Niels Ryberg Finsen the sun.
    [Show full text]
  • Sommerfeld: the Eternal Nobel Candidate Sommerfeld: the Eternal Nobel Candidate
    FollowFollow us soWe uswe wantso canVisit we youchat uscan onin onchat ourYoutube Twitter! onGoogle+ Facebook! circles :) Sharing knowledge for a Books Authors Collaborators English Sign in better future Science Technology Economy Environment Humanities About Us Home Sommerfeld: the Eternal Nobel Candidate Sommerfeld: the Eternal Nobel Candidate Share 24 July 2017 Physics, Science Augusto Beléndez Sign in or register to rate this publication Full Professor of Applied Physics at the University In late 1928, a famous German physicist wrote to one of his colleagues to tell him with of Alicante (Spain) since chagrin that he had once again been passed over for the Nobel Prize in Physics: 1996. [...] 7 “But to dispel all suspicion of false modesty, I must simultaneously note that it is gradually posts becoming a public scandal that I have still not received the Prize [Nobel Prize in Physics].” (1) The theoretical physicist Arnold Sommerfeld (1868-1951) was born in Königsberg, a city Related topics in what was formerly East Prussia, today Kaliningrad in Russia, and also the birthplace of the mathematicians Christian Goldbach and David Hilbert, the philosopher Immanuel Kant and Aeronautics Astrophysics the writer E. T. A. Hoffmann. After receiving his doctorate from the University of Königsberg Biology Biomedicine in 1891, he moved to the University of Göttingen, the mecca of mathematics in Germany at General Science Genetics that time, where he eventually became assistant to the mathematician Felix Klein and gave Mathematics Medicine classes on mathematics and theoretical physics. After spending some years at RWTH @en Physics Aachen University, in 1906 he succeeded Ludwig Boltzmann as professor of theoretical physics and director of the Institute of Theoretical Physics at the University of Munich, View all OpenMind topics where he set up a school of theoretical physics which gained worldwide renown.
    [Show full text]
  • Leon Ledermanrecalls How Gilberto Bernardini Helped Him to Rediscover
    REMINISCENCE Life in physics and the crucial sense of wonder Leon Lederman recalls how Gilberto Bernardini helped him to rediscover his enthusiasm for experimental physics, setting him on the road that would eventually lead to Stockholm and a Nobel prize in physics. As a grad student at Columbia around 1950, I had the rare oppor- tunity of meeting Albert Einstein. We were instructed to sit on a bench that would intersect Einstein’s path to lunch at his Princeton home. A fellow student and I sprang up when Einstein came by, accompanied by his assistant who asked if he would like to meet some students. “Yah,” the professor said and addressed my colleague, “Vot are you studying?” “I’m doing a thesis on quantum theory.” “Ach!” said Einstein, “A vaste of time!” He turned to me: “And vot are you doing?” I was more confident: “I’m studying experimentally the proper- ties of pions.” “Pions, pions! Ach, vee don’t understand de electron! Vy bother mit pions? Vell, good luck boys!” So, in less than 30 seconds, the Great Physicist had demol- ished two of the brightest – and best-looking – young physics Inspiration: Gilberto Bernardini, expressive and enthusiastic as ever. students. But we were on cloud nine. We had met the greatest scientist who ever lived! Some years before this memorable event, I had recently been discharged from the US army, having been drafted three years earlier to help General Eisenhower with a problem he had in Europe. It was called World War II. Our troop ship docked at the Battery and, having had a successful poker-driven ocean cross- ing, I taxied to Columbia University and registered as a physics grad student for the fall semester.
    [Show full text]
  • K. Alex Müller Nobel Prize in Physics 1987
    K. Alex Müller Nobel Prize in Physics 1987 is convinced that he at last has a water- no one took him seriously. “Exactly tight explanation for the phenomenon that motivated me. I wanted to swim that he and J. Georg Bednorz discovered against the current.” 28 years ago: High-temperature super- He says that he owes his persistence conductivity in copper oxides. This and his desire to think outside the box should bring a decades-long dispute to his childhood, which was not easy, to a happy end, at least from Müller’s as Müller explains. The son of a sales- perspective. With his explanation, how- man and grandson of a chocolate man- ever, Müller has launched a new debate ufacturer, Karl Alex spent part of his on the distribution of matter in the uni- childhood in Lugano. After the early verse. But more of that later. death of his mother, when he was just Erice, Sicily, summer 1983: K. Alex eleven, he went to boarding school in Müller is sitting on a bench in the cas- Schiers. Holidays were spent with his Nobel Prize in Physics 1987 “for the tle grounds and enjoying the view. As pioneering discovery of super- he gazes into the distance, his mind K. Alex Müller was 56 when conductivity in ceramic materials” buzzes with ideas. He had just listened he decided to take on a new to a lecture by Harry Thomas which * 20 April 1927 in Basel challenge – researching dealt with the possible existence of superconductors. 1962–1970 Privatdozent Jahn-Teller polarons – “quasi-parti- 1970–1987 Adjunct Professor cles” that occur when electrons move 1987–1994 Professor of Solid-State Physics through a crystal lattice.
    [Show full text]
  • The Nobel Prize in Physics 2020
    PRESS RELEASE 6 October 2020 The Nobel Prize in Physics 2020 The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics 2020 with one half to and the other half jointly to Roger Penrose Reinhard Genzel Andrea Ghez University of Oxford, UK Max Planck Institute for Extraterrestrial Physics, University of California, Los Angeles, USA Garching, Germany and University of California, Berkeley, USA “for the discovery that black hole “for the discovery of a supermassive compact object formation is a robust prediction of at the centre of our galaxy” the general theory of relativity” Black holes and the Milky Way’s darkest secret Three Laureates share this year’s Nobel Prize in dizzying speeds. Around four million solar masses are Physics for their discoveries about one of the most packed together in a region no larger than our solar system. exotic phenomena in the universe, the black hole. Using the world’s largest telescopes, Genzel and Ghez Roger Penrose showed that the general theory of developed methods to see through the huge clouds of inter- relativity leads to the formation of black holes. stellar gas and dust to the centre of the Milky Way. Stret- Reinhard Genzel and Andrea Ghez discovered that an ching the limits of technology, they refned new techniques invisible and extremely heavy object governs the orbits to compensate for distortions caused by the Earth’s of stars at the centre of our galaxy. A supermassive atmosphere, building unique instruments and committing black hole is the only currently known explanation. themselves to long-term research.
    [Show full text]
  • The Nobel Prize
    The Nobel Prize The Nobel Prize is the first international award given yearly since 1901 for achievements in physics, chemistry, physiology or medicine, literature and peace. Nobel Prize Facts 1901 – 2004 Total Science Prizes – 505 Physics: 172 Chemistry: 151 Physiology or Medicine: 182 Prizes are not awarded every year: 1940 – 1942: no prizes in any category were awarded Prize may be shared by up to three people Prize cannot be awarded posthumously Men:Women: 494:11 Mother-daughter winners: Curies (chemistry) Father-son: Siegbahn, Bohr, Bragg, Thomson (physics) Husband-wife: Curie (physics), Cori (physiology) Uncle-nephew: Chandrasakhar (physics) Brothers: Tinbergens (physiology, economics) Double winner/physics: Bardeen Double winner/chemistry: Sanger Double winner/different disciplines: Curie (physics, chemistry), Pauling (chemistry, peace) Country Physics Chemistry Medicine U.S. 66 47 90 Germany 27 26 18 Britain 21 23 20 France 11 7 9 USSR 6 1 2 Netherlands 6 2 3 Switzerland 4 5 -- Sweden 4 4 7 Austria 4 2 4 Canada 3 3 -- Denmark 3 1 6 Argentina -- 1 1 Belgium -- 1 2 Czechoslovakia -- 1 -- Italy 3 1 2 Japan 3 1 -- Finland -- 1 -- India 1 -- -- Mexico -- 1 -- Norway -- 1 -- Pakistan 1 -- -- South Africa -- 1 -- Australia -- -- 1 Hungary -- -- 1 Portugal -- -- 1 Spain -- -- 1 The Nobel Foundation The Nobel Foundation is a private institution established in 1900 based on the will of Alfred Nobel. The Foundation manages the assets made available through the will for the awarding of the Nobel Prize in Physics, Chemistry, Physiology or Medicine, Literature and Peace. It represents the Nobel institutions externally and administers informational activities and arrangements surrounding the presentation of the Nobel Prize.
    [Show full text]
  • Popular Science Background
    THE NOBEL PRIZE IN PHYSICS 2016 POPULAR SCIENCE BACKGROUND Strange phenomena in matter’s fatlands This year’s Laureates opened the door on an unknown world where matter exists in strange states. The Nobel Prize in Physics 2016 is awarded with one half to David J. Thouless, University of Washington, Seattle, and the other half to F. Duncan M. Haldane, Princeton University, and J. Michael Kosterlitz, Brown Univer- sity, Providence. Their discoveries have brought about breakthroughs in the theoretical understanding of matter’s mysteries and created new perspectives on the development of innovative materials. David Thouless, Duncan Haldane, and Michael Kosterlitz have used advanced mathematical methods to explain strange phenomena in unusual phases (or states) of matter, such as superconductors, super- fuids or thin magnetic flms. Kosterlitz and Thouless have studied phenomena that arise in a fat world – on surfaces or inside extremely thin layers that can be considered two-dimensional, compared to the three dimensions (length, width and height) with which reality is usually described. Haldane has also studied matter that forms threads so thin they can be considered one-dimensional. The physics that takes place in the fatlands is very dif- ferent to that we recognise in the world around us. Even if very thinly distributed matter consists of millions of atoms, and even if each atom’s behaviour can be explai- Plasma ned using quantum physics, atoms display completely diferent properties when lots of them come together. New collective phenomena are being continually disco- vered in these fatlands, and condensed matter physics is now one of the most vibrant felds in physics.
    [Show full text]
  • From the President New Program to Boost Membership
    July August 2011 · Volume 20, Number 4 New Program to From the President Boost Membership igma Xi’s new Member-Get-A-Member Dear Colleagues and Companions in Zealous Research program gives all active Sigma Xi It is indeed an honor for me to have been elected president of our Smembers a chance to earn a free year international honor society for scientists and engineers. Sigma Xi of membership by was created 125 years ago with high ideals, a worthy mission and recommending five an inspiring vision that remain critical to science and engineering in the 21st Century. new members during As incoming president, I will seek to further the mission of Sigma Xi. a one-year period. Public confidence in the fundamental truths derived from application of science is Active Sigma Xi members should perhaps more critical now than at any time in the history of our honor society. From recommend their qualified friends, students, openness in research to accuracy in conducting and reporting research to integrity in colleagues and fellow scientists and engineers the peer review process and authorship, we have an obligation to our members and the to the honor of Sigma Xi membership. Any public to focus on these issues. active Sigma Xi member who recommends I applaud my friend and colleague, our immediate past-president, Joe Whitaker. Dr. five new members who are then approved Whitaker deserves our gratitude for providing outstanding leadership and initiating for membership between now and June 30, a new hope for the evolution of our esteemed honor society. My intention will be to 2012 will receive one free year of Sigma Xi build upon the spark Joe ignited during his tenure, and implement an enabling strategy membership.
    [Show full text]
  • Enrico Fermi Fermi Questions in Everyday Life
    Enrico Fermi Enrico Fermi (1901-1954) was an Italian physicist who made significant discoveries in nuclear physics and quantum mechanics. In 1938, he received the Nobel Prize in physics for his discovery of nuclear reactions caused by slow neutrons. This mechanism led directly to the development of atomic bombs and nuclear fission reactors. After receiving his Nobel Prize, he emigrated with his family to the United States to escape the fascist regime of Benito Mussolini, where he soon began contributing to the Manhattan Project. Fermi was famous for being able to make good estimates in situations where very little information was known. When the first nuclear bomb was tested, Fermi was nearby to observe. To get a preliminary estimate of the amount of energy released, he sprinkled small pieces of paper in the air and observed what happened when the shock wave reached them. (Being so close to the bomb on this and many other occasions exposed Fermi to dangerous radiation that led to his death by stomach cancer at the age of 53. Fermi was aware of the danger, but chose to work on this project anyway because he believed that the work was vital in the fight against Fascism.) Fermi often amused his friends and students by inventing and solving whimsical questions such as \How many piano tuners are there in Chicago?". A \Fermi Question" asks for a quick estimate of a quantity that seems difficult or impossible to determine precisely. Fermi's approach to such questions was to use common sense and rough estimates of quantities to piece together a ball-park value.
    [Show full text]