The History of Early Bee Diversification Based on Five Genes Plus Morphology

Total Page:16

File Type:pdf, Size:1020Kb

The History of Early Bee Diversification Based on Five Genes Plus Morphology The history of early bee diversification based on five genes plus morphology Bryan N. Danforth†, Sedonia Sipes‡, Jennifer Fang§, and Sea´ n G. Brady¶ Department of Entomology, 3119 Comstock Hall, Cornell University, Ithaca, NY 14853 Communicated by Charles D. Michener, University of Kansas, Lawrence, KS, May 16, 2006 (received for review February 2, 2006) Bees, the largest (>16,000 species) and most important radiation of tongued (LT) bee families Megachilidae and Apidae and the pollinating insects, originated in early to mid-Cretaceous, roughly short-tongued (ST) bee families Colletidae, Stenotritidae, Andreni- in synchrony with the angiosperms (flowering plants). Under- dae, Halictidae, and Melittidae sensu lato (s.l.)ʈ (9). Colletidae is standing the diversification of the bees and the coevolutionary widely considered the most basal family of bees (i.e., the sister group history of bees and angiosperms requires a well supported phy- to the rest of the bees), because all females and most males possess logeny of bees (as well as angiosperms). We reconstructed a robust a glossa (tongue) with a bifid (forked) apex, much like the glossa of phylogeny of bees at the family and subfamily levels using a data an apoid wasp (18–22). set of five genes (4,299 nucleotide sites) plus morphology (109 However, several authors have questioned this interpretation (9, characters). The molecular data set included protein coding (elon- 23–27) and have hypothesized that the earliest branches of bee gation factor-1␣, RNA polymerase II, and LW rhodopsin), as well as phylogeny may have been either Melittidae s.l., LT bees, or a ribosomal (28S and 18S) nuclear gene data. Analyses of both the monophyletic group consisting of both. The most recent morpho- DNA data set and the DNA؉morphology data set by parsimony logical analysis of family-level phylogeny in bees (17) obtained two and Bayesian methods yielded a single well supported family-level different tree topologies based on alternative coding of relatively tree topology that places Melittidae as a paraphyletic group at the few mouthpart characters. One tree topology places Colletidae as base of the phylogeny of bees. This topology (‘‘Melittidae-LT sister to the rest of the bees (‘‘Colletidae basal’’), whereas the other basal’’) is significantly better than a previously proposed alterna- places Melittidae s.l.ϩLT bees as sister to the rest of the bees tive topology (‘‘Colletidae basal’’) based both on likelihood and (‘‘Melittidae-LT basal’’). The major difference between the Col- Bayesian methods. Our results have important implications for letidae basal and Melittidae-LT basal topologies involves the place- understanding the early diversification, historical biogeography, ment of the root node of bees (27). Placing the root between host–plant evolution, and fossil record of bees. The earliest Colletidae and the rest of the bees yields the Colletidae basal branches of bee phylogeny include lineages that are predomi- topology, whereas placement of the root node near or within nantly host–plant specialists, suggesting that host–plant specificity Melittidae s.l. yields the Melittidae-LT basal topology. The biolog- is an ancestral trait in bees. Our results suggest an African origin ical implications of these alternative topologies are radically differ- for bees, because the earliest branches of the tree include pre- ent. The Colletidae basal topology implies an Australian and͞or dominantly African lineages. These results also help explain the South American origin for bees and suggests the earliest bees were predominance of Melittidae, Apidae, and Megachilidae among the a mix of floral generalists and specialists. Melittidae-LT basal earliest fossil bees. implies an African origin for bees and indicates that the earliest bees were likely to have been floral specialists. These alternative topol- bee phylogeny ͉ bee evolution ͉ molecular evolution ͉ ogies also have implications for understanding the fossil record and molecular systematics ͉ coevolution antiquity of bees. To resolve the root node of bees, we combined Ͼ4,000 bp of ngiosperms (flowering plants), with an estimated 250,000– DNA sequence data with the previous morphological data set of A260,000 species (1), represent the largest and most diverse Alexander and Michener (17). We report here the results of an lineage of vascular plants on earth. To Darwin, the rapid analysis of the largest molecular and morphological study to date on emergence and early diversification of the angiosperms was an ‘‘abominable mystery’’ (ref. 2 and refs. therein). Among the most Author contributions: B.N.D. and S.S. designed research; B.N.D., S.S., J.F., and S.G.B. important traits attributable to the explosive radiation of the performed research; S.G.B. contributed new reagents͞analytical tools; B.N.D. analyzed angiosperms is animal-mediated pollination (3–7). Insects are by data; and B.N.D. wrote the paper. Ϸ far the most important animal pollinators ( 70% of angiosperm The authors declare no conflict of interest. species are insect pollinated; ref. 8) and among insects, bees are Freely available online through the PNAS open access option. the most specialized and important pollinator group. All of the Ͼ Abbreviations: ST, short-tongued; LT, long-tongued; GTR, general time-reversible; IϩG, 16,000 species of bees living today (9) rely virtually exclusively gamma distribution plus a proportion of invariant sites; s.l., sensu lato; s.s., sensu stricto. on angiosperm products, including pollen and nectar for adult Data deposition: The sequences reported in this paper have been deposited in the GenBank and larval nutrition (10), floral oils for larval nutrition (11, 12), database (accession nos. listed in Table 4, which is published as supporting information on floral waxes and perfumes that serve as sexual attractants (13), the PNAS web site). The data matrix has been deposited in the TreeBASE database, and resins for nest construction (14). Bees are morphologically www.treebase.org (accession nos. M2878 and S1599). adapted to collecting, manipulating, carrying, and storing pollen †To whom correspondence should be addressed. E-mail: [email protected]. and other plant products (15, 16), and many bee species are ‡Present address: Department of Plant Biology, Life Science II 420, Mailcode 6509, Southern specialists on one or a few closely related host plants (10). Illinois University, Carbondale, IL 62901-6509. One step toward resolving Darwin’s ‘‘abominable mystery’’ is to §Present address: Department of Physiology, P.O. Box 245051, University of Arizona, develop a better understanding of the role that bees played in the Tucson, AZ 85724-5051. evolutionary history and diversification of the angiosperms. A ¶Present address: Department of Entomology and Laboratories of Analytical Biology, Smithsonian Institution, Suitland, MD 20746. robust phylogeny of bees would allow us to infer attributes of the ʈMelittidae in the sense of Michener (9) is a paraphyletic group based on our results. We early bees and to reconstruct the types of interactions that existed refer to the three melittid subfamilies as families, following an earlier suggestion by between the earliest bees and their angiosperm hosts. Higher-level Alexander and Michener (17). The three families are Melittidae (s.s.), Dasypodaidae, and (family- and subfamily-level) bee phylogeny is poorly understood. Meganomiidae. Currently, bees are divided into seven extant families: the long- © 2006 by The National Academy of Sciences of the USA 15118–15123 ͉ PNAS ͉ October 10, 2006 ͉ vol. 103 ͉ no. 41 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0604033103 Downloaded by guest on September 28, 2021 Cerceris sp. 77 Stigmus sp. 69 95 Clypeadon sp. 86 Philanthus gibbosus 80 Ochleroptera bipunctata 100 Bicyrtes ventralis 83 100 Bembix americana 100 98 100 Xerostictia sp. 97 100 Sceliphron caementarium Isodontia mexicana 100 99 61 100 Podalonia sp. 51 79 Anacrabro ocellatus 99 Plenoculus sp. 81 99 Tachysphex sp. 100 96 100 Hesperapis richtersveldensis 100 Hesperapis larreae 100 100 Hesperapis regularis 100 Dasypodaidae 100 75 Haplomelitta griseonigra 100 Dasypoda argentata 68 Dasypoda hirtipes 100 74 Dasypoda visnaga Meganomia binghami Meganomiidae 99 100 Macropis europaea 98 100 Macropis nuda 77 100 Rediviva mcgregori 88 100 100 Redivivoides simulans Melitta eickworti Melittidae s.s. 100 100 79 Melitta arrogans 100 100 Melitta leporina (A) 79 100 Melitta leporina (B) Fideliopsis major 100 51 Anthidium oblongatum Bees 100 98 66 Chelostoma fuliginosum Megachilidae 96 Lithurgus echinocacti 86 100 Megachile pugnata 90 84 100 Anthophora montana 100 Pachymelus peringueyi 94 98 Centris rhodopus 72 Ctenoplectra albolimbata 92 98 81 Apis mellifera Leiopodus singularis 56 Ceratina calcarata Apidae 58 Holcopasites ruthae LT bees 59 63 Paranomada velutina 73 Triepeolus robustus 100 EVOLUTION 78 Thyreus delumbatus 100 Zacosmia maculata 86 Protoxaea gloriosa 100 Megandrena enceliae 60 60 100 Alocandrena porteri 99 56 Andrena brooksi 99 100 Melitturga clavicornis Andrenidae 100 100 Panurgus calcaratus 100 100 Calliopsis pugionis 100 Calliopsis anthidia 100 Calliopsis fracta 97 Dieunomia nevadensis 87 98 98 Pseudapis unidentata 98 Nomioides facilis 64 88 79 Augochlorella pomoniella 100 91 97 72 Agapostemon tyleri 100 95 Halictus rubicundus 100 Conanthalictus wilmattae Halictidae 85 Penapis penai 98 Xeralictus bicuspidariae 88 65 91 100 Rophites algirus 62 60 90 100 Dufourea mulleri 72 Systropha curvicornis Stenotritus sp. 100 Diphaglossa gayi Stenotritidae
Recommended publications
  • A Second Contribution to the Biology of Ctenocolletes Bees (Hymenoptera: Apoidea: Stenotritidae)
    Rec. West. AU8t. Mus. 1987. 13(2): 189-201 A second contribution to the biology of Ctenocolletes bees (Hymenoptera: Apoidea: Stenotritidae) Terry F. Houston* Abstract Field observations of adult behaviour (particularly foraging and mating) and nests of five species of Ctenocolletes are presented and compared with earlier obser­ vations. All studied species are solitary and ground-nesting. Nests are unusual in lacking tumuli and those of C. albomarginatus and C. nicholsoni are remarkably deep (2.7-3.2 m). C. fulvescens is unusual in the genus in having a summer/autumn (rather than a winter/spring) flight season and in exhibiting matinal foraging in females and a bimodal flight pattern in males. Conjugate flight of mating pairs and territorial hovering and darting flights of males are recorded for additional ,species. Meloidae (Coleoptera) are confirmed as cleptoparasites in nests of C. nicholsoni and a Crassifoenus species (Hymen­ optera: Gasteruptiidae) is recorded from nests or nesting areas of four Ctenocolletes species. Introduction In a previous paper (Houston 1984), I recorded the first details of the bionomics of bees in the genus Ctenocolletes. Nests of only one species (C. ordensis Michener) were described and much of the information on adult behaviour was fragmentary, providing only a very incomplete picture of the bionomics of the genus as a whole. The observations presented here were made opportunistically during field work at various Western Australian localities in 1983-1985 and are similarly fragmentary. Nevertheless, they augment and significantly extend earlier ob­ servations. Examination of the nests of several species has revealed some sig­ nificant interspecific differences and discovery of the nests of C.
    [Show full text]
  • Managing Alternative Pollinators a Handbook for Beekeepers, Growers, and Conservationists
    Managing Alternative Pollinators A Handbook for Beekeepers, Growers, and Conservationists ERIC MADER • MARLA SPIVAK • ELAINE EVANS Fair Use of this PDF file of Managing Alternative Pollinators: A Handbook for Beekeepers, Growers, and Conservationists, SARE Handbook 11, NRAES-186 By Eric Mader, Marla Spivak, and Elaine Evans Co-published by SARE and NRAES, February 2010 You can print copies of the PDF pages for personal use. If a complete copy is needed, we encourage you to purchase a copy as described below. Pages can be printed and copied for educational use. The book, authors, SARE, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Managing Alternative Pollinators: A Handbook for Beekeepers, Growers, and Conservationists, SARE Handbook 11, by Eric Mader, Marla Spivak, and Elaine Evans, and co- published by SARE and NRAES.---- No use of the PDF should diminish the marketability of the printed version. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES secure web site, www.nraes.org, or by calling (607) 255-7654. The book can also be purchased from SARE, visit www.sare.org. The list price is $23.50 plus shipping and handling. Quantity discounts are available. SARE and NRAES discount schedules differ. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org SARE 1122 Patapsco Building University of Maryland College Park, MD 20742-6715 (301) 405-8020 (301) 405-7711 – Fax www.sare.org More information on SARE and NRAES is included at the end of this PDF.
    [Show full text]
  • BÖCEKLERİN SINIFLANDIRILMASI (Takım Düzeyinde)
    BÖCEKLERİN SINIFLANDIRILMASI (TAKIM DÜZEYİNDE) GÖKHAN AYDIN 2016 Editör : Gökhan AYDIN Dizgi : Ziya ÖNCÜ ISBN : 978-605-87432-3-6 Böceklerin Sınıflandırılması isimli eğitim amaçlı hazırlanan bilgisayar programı için lütfen aşağıda verilen linki tıklayarak programı ücretsiz olarak bilgisayarınıza yükleyin. http://atabeymyo.sdu.edu.tr/assets/uploads/sites/76/files/siniflama-05102016.exe Eğitim Amaçlı Bilgisayar Programı ISBN: 978-605-87432-2-9 İçindekiler İçindekiler i Önsöz vi 1. Protura - Coneheads 1 1.1 Özellikleri 1 1.2 Ekonomik Önemi 2 1.3 Bunları Biliyor musunuz? 2 2. Collembola - Springtails 3 2.1 Özellikleri 3 2.2 Ekonomik Önemi 4 2.3 Bunları Biliyor musunuz? 4 3. Thysanura - Silverfish 6 3.1 Özellikleri 6 3.2 Ekonomik Önemi 7 3.3 Bunları Biliyor musunuz? 7 4. Microcoryphia - Bristletails 8 4.1 Özellikleri 8 4.2 Ekonomik Önemi 9 5. Diplura 10 5.1 Özellikleri 10 5.2 Ekonomik Önemi 10 5.3 Bunları Biliyor musunuz? 11 6. Plocoptera – Stoneflies 12 6.1 Özellikleri 12 6.2 Ekonomik Önemi 12 6.3 Bunları Biliyor musunuz? 13 7. Embioptera - webspinners 14 7.1 Özellikleri 15 7.2 Ekonomik Önemi 15 7.3 Bunları Biliyor musunuz? 15 8. Orthoptera–Grasshoppers, Crickets 16 8.1 Özellikleri 16 8.2 Ekonomik Önemi 16 8.3 Bunları Biliyor musunuz? 17 i 9. Phasmida - Walkingsticks 20 9.1 Özellikleri 20 9.2 Ekonomik Önemi 21 9.3 Bunları Biliyor musunuz? 21 10. Dermaptera - Earwigs 23 10.1 Özellikleri 23 10.2 Ekonomik Önemi 24 10.3 Bunları Biliyor musunuz? 24 11. Zoraptera 25 11.1 Özellikleri 25 11.2 Ekonomik Önemi 25 11.3 Bunları Biliyor musunuz? 26 12.
    [Show full text]
  • Hymenoptera: Colletidae): Emerging Patterns from the Southern End of the World Eduardo A
    Journal of Biogeography (J. Biogeogr.) (2011) ORIGINAL Biogeography and diversification of ARTICLE colletid bees (Hymenoptera: Colletidae): emerging patterns from the southern end of the world Eduardo A. B. Almeida1,2*, Marcio R. Pie3, Sea´n G. Brady4 and Bryan N. Danforth2 1Departamento de Biologia, Faculdade de ABSTRACT Filosofia, Cieˆncias e Letras, Universidade de Aim The evolutionary history of bees is presumed to extend back in time to the Sa˜o Paulo, Ribeira˜o Preto, SP 14040-901, Brazil, 2Department of Entomology, Comstock Early Cretaceous. Among all major clades of bees, Colletidae has been a prime Hall, Cornell University, Ithaca, NY 14853, example of an ancient group whose Gondwanan origin probably precedes the USA, 3Departamento de Zoologia, complete break-up of Africa, Antarctica, Australia and South America, because Universidade Federal do Parana´, Curitiba, PR modern lineages of this family occur primarily in southern continents. In this paper, 81531-990, Brazil, 4Department of we aim to study the temporal and spatial diversification of colletid bees to better Entomology, National Museum of Natural understand the processes that have resulted in the present southern disjunctions. History, Smithsonian Institution, Washington, Location Southern continents. DC 20560, USA Methods We assembled a dataset comprising four nuclear genes of a broad sample of Colletidae. We used Bayesian inference analyses to estimate the phylogenetic tree topology and divergence times. Biogeographical relationships were investigated using event-based analytical methods: a Bayesian approach to dispersal–vicariance analysis, a likelihood-based dispersal–extinction– cladogenesis model and a Bayesian model. We also used lineage through time analyses to explore the tempo of radiations of Colletidae and their context in the biogeographical history of these bees.
    [Show full text]
  • Genomes of the Hymenoptera Michael G
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 2-2018 Genomes of the Hymenoptera Michael G. Branstetter U.S. Department of Agriculture Anna K. Childers U.S. Department of Agriculture Diana Cox-Foster U.S. Department of Agriculture Keith R. Hopper U.S. Department of Agriculture Karen M. Kapheim Utah State University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/eeob_ag_pubs Part of the Behavior and Ethology Commons, Entomology Commons, and the Genetics and Genomics Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ eeob_ag_pubs/269. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Genomes of the Hymenoptera Abstract Hymenoptera is the second-most sequenced arthropod order, with 52 publically archived genomes (71 with ants, reviewed elsewhere), however these genomes do not capture the breadth of this very diverse order (Figure 1, Table 1). These sequenced genomes represent only 15 of the 97 extant families. Although at least 55 other genomes are in progress in an additional 11 families (see Table 2), stinging wasps represent 35 (67%) of the available and 42 (76%) of the in progress genomes.
    [Show full text]
  • A Supermatrix Approach to Apoid Phylogeny and Biogeography Shannon M Hedtke1*, Sébastien Patiny2 and Bryan N Danforth1
    Hedtke et al. BMC Evolutionary Biology 2013, 13:138 http://www.biomedcentral.com/1471-2148/13/138 RESEARCH ARTICLE Open Access The bee tree of life: a supermatrix approach to apoid phylogeny and biogeography Shannon M Hedtke1*, Sébastien Patiny2 and Bryan N Danforth1 Abstract Background: Bees are the primary pollinators of angiosperms throughout the world. There are more than 16,000 described species, with broad variation in life history traits such as nesting habitat, diet, and social behavior. Despite their importance as pollinators, the evolution of bee biodiversity is understudied: relationships among the seven families of bees remain controversial, and no empirical global-level reconstruction of historical biogeography has been attempted. Morphological studies have generally suggested that the phylogeny of bees is rooted near the family Colletidae, whereas many molecular studies have suggested a root node near (or within) Melittidae. Previous molecular studies have focused on a relatively small sample of taxa (~150 species) and genes (seven at most). Public databases contain an enormous amount of DNA sequence data that has not been comprehensively analysed in the context of bee evolution. Results: We downloaded, aligned, concatenated, and analysed all available protein-coding nuclear gene DNA sequence data in GenBank as of October, 2011. Our matrix consists of 20 genes, with over 17,000 aligned nucleotide sites, for over 1,300 bee and apoid wasp species, representing over two-thirds of bee genera. Whereas the matrix is large in terms of number of genes and taxa, there is a significant amount of missing data: only ~15% of the matrix is populated with data.
    [Show full text]
  • The History of Early Bee Diversification Based on Five Genes Plus Morphology
    The history of early bee diversification based on five genes plus morphology Bryan N. Danforth†, Sedonia Sipes‡, Jennifer Fang§, and Sea´ n G. Brady¶ Department of Entomology, 3119 Comstock Hall, Cornell University, Ithaca, NY 14853 Communicated by Charles D. Michener, University of Kansas, Lawrence, KS, May 16, 2006 (received for review February 2, 2006) Bees, the largest (>16,000 species) and most important radiation of tongued (LT) bee families Megachilidae and Apidae and the pollinating insects, originated in early to mid-Cretaceous, roughly short-tongued (ST) bee families Colletidae, Stenotritidae, Andreni- in synchrony with the angiosperms (flowering plants). Under- dae, Halictidae, and Melittidae sensu lato (s.l.)ʈ (9). Colletidae is standing the diversification of the bees and the coevolutionary widely considered the most basal family of bees (i.e., the sister group history of bees and angiosperms requires a well supported phy- to the rest of the bees), because all females and most males possess logeny of bees (as well as angiosperms). We reconstructed a robust a glossa (tongue) with a bifid (forked) apex, much like the glossa of phylogeny of bees at the family and subfamily levels using a data an apoid wasp (18–22). set of five genes (4,299 nucleotide sites) plus morphology (109 However, several authors have questioned this interpretation (9, characters). The molecular data set included protein coding (elon- 23–27) and have hypothesized that the earliest branches of bee gation factor-1␣, RNA polymerase II, and LW rhodopsin), as well as phylogeny may have been either Melittidae s.l., LT bees, or a ribosomal (28S and 18S) nuclear gene data.
    [Show full text]
  • (Hymenoptera, Apoidea, Anthophila) in Serbia
    ZooKeys 1053: 43–105 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1053.67288 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Contribution to the knowledge of the bee fauna (Hymenoptera, Apoidea, Anthophila) in Serbia Sonja Mudri-Stojnić1, Andrijana Andrić2, Zlata Markov-Ristić1, Aleksandar Đukić3, Ante Vujić1 1 University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia 2 University of Novi Sad, BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia 3 Scientific Research Society of Biology and Ecology Students “Josif Pančić”, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia Corresponding author: Sonja Mudri-Stojnić ([email protected]) Academic editor: Thorleif Dörfel | Received 13 April 2021 | Accepted 1 June 2021 | Published 2 August 2021 http://zoobank.org/88717A86-19ED-4E8A-8F1E-9BF0EE60959B Citation: Mudri-Stojnić S, Andrić A, Markov-Ristić Z, Đukić A, Vujić A (2021) Contribution to the knowledge of the bee fauna (Hymenoptera, Apoidea, Anthophila) in Serbia. ZooKeys 1053: 43–105. https://doi.org/10.3897/zookeys.1053.67288 Abstract The current work represents summarised data on the bee fauna in Serbia from previous publications, collections, and field data in the period from 1890 to 2020. A total of 706 species from all six of the globally widespread bee families is recorded; of the total number of recorded species, 314 have been con- firmed by determination, while 392 species are from published data. Fourteen species, collected in the last three years, are the first published records of these taxa from Serbia:Andrena barbareae (Panzer, 1805), A.
    [Show full text]
  • Phylogeny and Evolution of Wasps, Ants and Bees (Hymenoptera, Chrysidoidea, Vespoidea and Apoidea) Phylogeny of Aculeata D. J. B
    Phylogeny and evolution of wasps, ants and bees (Hymenoptera, Chrysidoidea, Vespoidea and Apoidea) DENIS J. BROTHERS Accepted 25 November 1998 Brothers, D. J. (1999) Phylogeny and evolution of wasps, ants and bees (Hymenoptera, Chrysidoidea, Vespoidea and Apoidea). Ð Zoologica Scripta 28, 233±249. The comprehensive cladistic study of family-level phylogeny in the Aculeata (sensu lato)by Brothers & Carpenter, published in 1993, is briefly reviewed and re-evaluated, particularly with respect to the sections dealing with Vespoidea and Apoidea. This remains the most recent general treatment of the subject, but several of the relationships indicated are only weakly supported, notably those of Pompilidae and Rhopalosomatidae. Characters used were almost entirely morphological, and re-evaluation of ground-plan states and hypotheses of character-state changes, specially from examination of different exemplars, is likely to lead to slightly different conclusions for some taxa, as is the use of additional or new characters, including molecular ones. The relationships of taxa within the Vespoidea are much better known than for those in the Apoidea, but recent work on the two major groups of bees (by Michener and colleagues) and various groups of sphecoid wasps (by Alexander and Melo) have provided greater clarity, for some families at least. A single cladogram showing the putative relationships of those taxa which should be recognized at the family level for the entire Aculeata is presented. These are, for the Chrysidoidea, Apoidea and Vespoidea, respectively (limits indicated by curly brackets): {Plumariidae + (Scolebythidae + ((Bethylidae + Chrysididae) + (Sclerogibbidae + (Dryinidae + Embolemidae))))} + ({Heterogynaidae + (Ampulicidae + (Sphecidae + (Crabronidae + Apidae)))} + {Sierolomorphidae + ((Tiphiidae + (Sapygidae + Mutillidae)) + ((Pompilidae + Rhopalosomatidae) + (Bradynobaenidae + (Formicidae + (Vespidae + Scoliidae)))))}).
    [Show full text]
  • Author Queries Journal: Proceedings of the Royal Society B Manuscript: Rspb20110365
    Author Queries Journal: Proceedings of the Royal Society B Manuscript: rspb20110365 SQ1 Please supply a title and a short description for your electronic supplementary material of no more than 250 characters each (including spaces) to appear alongside the material online. Q1 Please clarify whether we have used the units Myr and Ma appropriately. Q2 Please supply complete publication details for Ref. [23]. Q3 Please supply publisher details for Ref. [26]. Q4 Please supply title and publication details for Ref. [42]. Q5 Please provide publisher name for Ref. [47]. SQ2 Your paper has exceeded the free page extent and will attract page charges. ARTICLE IN PRESS Proc. R. Soc. B (2011) 00, 1–8 1 doi:10.1098/rspb.2011.0365 65 2 Published online 00 Month 0000 66 3 67 4 68 5 Why do leafcutter bees cut leaves? New 69 6 70 7 insights into the early evolution of bees 71 8 1 1 2,3 72 9 Jessica R. Litman , Bryan N. Danforth , Connal D. Eardley 73 10 and Christophe J. Praz1,4,* 74 11 75 1 12 Department of Entomology, Cornell University, Ithaca, NY 14853, USA 76 2 13 Agricultural Research Council, Private Bag X134, Queenswood 0121, South Africa 77 3 14 School of Biological and Conservation Sciences, University of KwaZulu-Natal, Private Bag X01, 78 15 Scottsville, Pietermaritzburg 3209, South Africa 79 4 16 Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchatel, Emile-Argand 11, 80 17 2000 Neuchatel, Switzerland 81 18 Stark contrasts in clade species diversity are reported across the tree of life and are especially conspicuous 82 19 when observed in closely related lineages.
    [Show full text]
  • Evolution of the Insects
    CY501-C11[407-467].qxd 3/2/05 12:56 PM Page 407 quark11 Quark11:Desktop Folder:CY501-Grimaldi:Quark_files: But, for the point of wisdom, I would choose to Know the mind that stirs Between the wings of Bees and building wasps. –George Eliot, The Spanish Gypsy 11HHymenoptera:ymenoptera: Ants, Bees, and Ants,Other Wasps Bees, and The order Hymenoptera comprises one of the four “hyperdi- various times between the Late Permian and Early Triassic. verse” insectO lineages;ther the others – Diptera, Lepidoptera, Wasps and, Thus, unlike some of the basal holometabolan orders, the of course, Coleoptera – are also holometabolous. Among Hymenoptera have a relatively recent origin, first appearing holometabolans, Hymenoptera is perhaps the most difficult in the Late Triassic. Since the Triassic, the Hymenoptera have to place in a phylogenetic framework, excepting the enig- truly come into their own, having radiated extensively in the matic twisted-wings, order Strepsiptera. Hymenoptera are Jurassic, again in the Cretaceous, and again (within certain morphologically isolated among orders of Holometabola, family-level lineages) during the Tertiary. The hymenopteran consisting of a complex mixture of primitive traits and bauplan, in both structure and function, has been tremen- numerous autapomorphies, leaving little evidence to which dously successful. group they are most closely related. Present evidence indi- While the beetles today boast the largest number of cates that the Holometabola can be organized into two major species among all orders, Hymenoptera may eventually rival lineages: the Coleoptera ϩ Neuropterida and the Panorpida. or even surpass the diversity of coleopterans (Kristensen, It is to the Panorpida that the Hymenoptera appear to be 1999a; Grissell, 1999).
    [Show full text]
  • Sphecos: a Forum for Aculeate Wasp Researchers
    SPHECOS Number 4 - January 1981 A Newsletter for Aculeate Wasp Researchers Arnold S. Menke, editor Systematic Entomology Laboratory, USDA c/o u. S. National Museum of Natural History washington DC 20560 Notes from the Editor This issue of Sphecos consists mainly of autobiographies and recent literature. A highlight of the latter is a special section on literature of the vespid subfamily Vespinae compiled and submitted by Robin Edwards (seep. 41). A few errors in issue 3 have been brought to my attention. Dr. Mickel was declared to be a "multillid" expert on page l. More seriously, a few typographical errors crept into Steyskal's errata paper on pages 43-46. The correct spellings are listed below: On page 43: p. 41 - Aneusmenus --- p. 108 - Zaschizon:t:x montana and z. Eluricincta On page 45: p. 940 - ----feminine because Greek mastix --- p. 1335 - AmEl:t:oEone --- On page 46: p. 1957 - Lasioglossum citerior My apologies to Dr. Mickel and George Steyskal. I want to thank Helen Proctor for doing such a fine job of typing the copy for Sphecos 3 and 4. Research News Ra:t:mond Wah is, Zoologie generale et Faunistique, Faculte des Sciences agronomiques, 5800 GEMBLOUX, Belgium; home address: 30 rue des Sept Collines 4930 CHAUDFONTAINE, Belgium (POMPILIDAE of the World), is working on a revision of the South American genus Priochilus and is also preparing an annotated key of the members of the Tribe Auplopodini in Australia (AuElOEUS, Pseudagenia, Fabriogenia, Phanagenia, etc.). He spent two weeks in London (British Museum) this summer studying type specimens and found that Turner misinterpreted all the old species and that his key (1910: 310) has no practical value.
    [Show full text]