Ammoniten Unterjura2

Total Page:16

File Type:pdf, Size:1020Kb

Ammoniten Unterjura2 Unterer Jura / lower jurassic Biostratigraphische Verbreitung der Unterklasse Ammonoidea im süddeutschen Unterjura. Biostratigraphisch Verbreitungsdaten zusammengestellt nach Angaben aus Schlegelmilch, R. (1998) Biostratigraphic distribution of subclass ammonoidea in the lower jurassic of southern germany. Biostratigraphical data combined by Hettangium Unter-Sinemurium Ober-Sinemurium Unter-Pliensbachium Ober-Pliensbachium Unter-Toarcium Ober-Toarcium informations from Schlegelmilch, R. (1998) alpha 1 alpha 2 alpha 3 beta gamma delta epsilon zeta he he 1 he 2a he 2b si 1a si 1b si 2a si 2b si 2c si 2d pb 1a pb 1b pb 1c pb 2a pb 2b tc 1a tc 1b tc 1c tc 2a tc 2b tc 2c Zonenleitart Subzonenleitart PHYLLOCERATINA: Phyllocerataceae Phylloceratidae Phylloceras (Phylloceras) heterophyllum 1 (1,2) ++ Phylloceras (Phylloceras) pompeckji 56 (2) ++ Phylloceras (Phylloceras) supraliasicum 1 (3) +++ Phylloceras (Zetoceras) zetes 1 (4) ++ Sowerbyceras tortisulcoides 1 (5,6) ++ Holcophylloceras calypso 1 (7) +++ Discophyllitidae Tragophylloceras numismale 2 (1,2) + Tragophylloceras paucicostatum 2 (3) +++ Tragophylloceras undulatum 2 (4) ++ Tragophylloceras ibex 2 (5) + pb 1b Unterer Jura / lower jurassic Biostratigraphische Verbreitung der Unterklasse Ammonoidea im süddeutschen Unterjura. Biostratigraphisch Verbreitungsdaten zusammengestellt nach Angaben aus Schlegelmilch, R. (1998) Biostratigraphic distribution of subclass ammonoidea in the lower jurassic of southern germany. Biostratigraphical data combined by Hettangium Unter-Sinemurium Ober-Sinemurium Unter-Pliensbachium Ober-Pliensbachium Unter-Toarcium Ober-Toarcium informations from Schlegelmilch, R. (1998) alpha 1 alpha 2 alpha 3 beta gamma delta epsilon zeta he he 1 he 2a he 2b si 1a si 1b si 2a si 2b si 2c si 2d pb 1a pb 1b pb 1c pb 2a pb 2b tc 1a tc 1b tc 1c tc 2a tc 2b tc 2c Zonenleitart Subzonenleitart LYTOCERATINA: Lytocerataceae Lytoceratidae Lytoceras fimbriatum 2 (8,9) ++++ Lytoceras aequistriatum 2 (10), 3 (1) + Lytoceras salebrosum 3 (2), 52 (4) ++ Lytoceras siemensi 4 (1) + Lytoceras siemensi nicht belegt + Lytoceras ceratophagumfreybergi 3 (3) + Lytoceras cornucopia 3 (4) + Lytoceras sublineatum 3 (5) ++ Lytoceras jurense 3 (6) + Derolytoceras tortum 3 (7) + Alocolytoceras germaini 4 (2) + Alocolytoceras coarctatum 4 (3) + Alocolytoceras irregulare 4 (4,5) + Alocolytoceras rugiferum 4 (6,7) + Unterer Jura / lower jurassic Biostratigraphische Verbreitung der Unterklasse Ammonoidea im süddeutschen Unterjura. Biostratigraphisch Verbreitungsdaten zusammengestellt nach Angaben aus Schlegelmilch, R. (1998) Biostratigraphic distribution of subclass ammonoidea in the lower jurassic of southern germany. Biostratigraphical data combined by Hettangium Unter-Sinemurium Ober-Sinemurium Unter-Pliensbachium Ober-Pliensbachium Unter-Toarcium Ober-Toarcium informations from Schlegelmilch, R. (1998) alpha 1 alpha 2 alpha 3 beta gamma delta epsilon zeta he he 1 he 2a he 2b si 1a si 1b si 2a si 2b si 2c si 2d pb 1a pb 1b pb 1c pb 2a pb 2b tc 1a tc 1b tc 1c tc 2a tc 2b tc 2c Zonenleitart Subzonenleitart Alocolytoceras wrighti 4 (8), 53 (1) + Pleurolytoceras hircinum 4 (9) + Pleurolytoceras propehircinum 4 (10) + AMMONITINA: Psilocerataceae Psiloceratidae Psiloceratinae Neophyllites brevicellatus 4 (11) + Neophyllites antecedens 4 (12) + Psilophyllites hagenowii 4 (13) + he 2a Psiloceras (Psiloceras) planorbis 4 (14) + he 1 he 1 1 Psiloceras (Psiloceras) plicatulum 4 (15) + Psiloceras (Psiloceras) becki 5 (1) + Psiloceras (Psiloceras) calliphylloides 5 (2) + Unterer Jura / lower jurassic Biostratigraphische Verbreitung der Unterklasse Ammonoidea im süddeutschen Unterjura. Biostratigraphisch Verbreitungsdaten zusammengestellt nach Angaben aus Schlegelmilch, R. (1998) Biostratigraphic distribution of subclass ammonoidea in the lower jurassic of southern germany. Biostratigraphical data combined by Hettangium Unter-Sinemurium Ober-Sinemurium Unter-Pliensbachium Ober-Pliensbachium Unter-Toarcium Ober-Toarcium informations from Schlegelmilch, R. (1998) alpha 1 alpha 2 alpha 3 beta gamma delta epsilon zeta he he 1 he 2a he 2b si 1a si 1b si 2a si 2b si 2c si 2d pb 1a pb 1b pb 1c pb 2a pb 2b tc 1a tc 1b tc 1c tc 2a tc 2b tc 2c Zonenleitart Subzonenleitart Psiloceras (Psiloceras) distinctum 5 (3) + Psiloceras (Psiloceras) tenerum 5 (4) + Psiloceras (Curviceras) subangulare 5 (5) + Psiloceras (Curviceras) capraibex 5 (6) ++ Psiloceras (Curviceras) engonium 57 (4) + Psiloceras (Caloceras) johnstoni 5 (7,8) + he 1 2 Psiloceras (Caloceras) franconicum 57 (3) + Psiloceras (Discamphiceras) megastoma 5 (9) + Psiloceras (Discamphiceras) longipontimum 5 (10) + Psiloceras (Discamphiceras) nuertingense 6 (1) + Psiloceras (Discamphiceras) harpoptychum 6 (2) + Schlotheimiinae Saxoceras schroederi 7 (1) + Saxoceras pseudoalpinum 6 (3) + Schlotheimia angulata 6 (4) + he 2b Schlotheimia angulata 6 (5) + densicstata Unterer Jura / lower jurassic Biostratigraphische Verbreitung der Unterklasse Ammonoidea im süddeutschen Unterjura. Biostratigraphisch Verbreitungsdaten zusammengestellt nach Angaben aus Schlegelmilch, R. (1998) Biostratigraphic distribution of subclass ammonoidea in the lower jurassic of southern germany. Biostratigraphical data combined by Hettangium Unter-Sinemurium Ober-Sinemurium Unter-Pliensbachium Ober-Pliensbachium Unter-Toarcium Ober-Toarcium informations from Schlegelmilch, R. (1998) alpha 1 alpha 2 alpha 3 beta gamma delta epsilon zeta he he 1 he 2a he 2b si 1a si 1b si 2a si 2b si 2c si 2d pb 1a pb 1b pb 1c pb 2a pb 2b tc 1a tc 1b tc 1c tc 2a tc 2b tc 2c Zonenleitart Subzonenleitart Schlotheimia striatissima 6 (6) ++ he 2b 1 Schlotheimia polyeides 6 (7) + Schlotheimia angulosa 7 (2) + Schlotheimia germanica 8 (1) + Schlotheimia depressa 7 (3,4) ++ he 2b 2 Schlotheimia intermedia 8 (2) + Schlotheimia hoelderi 7 (5) + Schlotheimia tenuis 57 (5) + Schlotheimia stenorhyncha 57 (1) + Angulaticeras ventricosum 7 (6), 8 (3) + Angulaticeras angulatoides 7 (7,8) + Angulaticeras charmassei 9 (1) + Angulaticeras martinischmidti 9 (2) + Angulaticeras lacunatum 8 (5) ++ si 2b Angulaticeras rumpens 8 (6) ++ Angulaticeras sulcatum 8 (7,8) ++++ Angulaticeras deletum 9 (3) + Angulaticeras boucaultianum 9 (4) ++ Unterer Jura / lower jurassic Biostratigraphische Verbreitung der Unterklasse Ammonoidea im süddeutschen Unterjura. Biostratigraphisch Verbreitungsdaten zusammengestellt nach Angaben aus Schlegelmilch, R. (1998) Biostratigraphic distribution of subclass ammonoidea in the lower jurassic of southern germany. Biostratigraphical data combined by Hettangium Unter-Sinemurium Ober-Sinemurium Unter-Pliensbachium Ober-Pliensbachium Unter-Toarcium Ober-Toarcium informations from Schlegelmilch, R. (1998) alpha 1 alpha 2 alpha 3 beta gamma delta epsilon zeta he he 1 he 2a he 2b si 1a si 1b si 2a si 2b si 2c si 2d pb 1a pb 1b pb 1c pb 2a pb 2b tc 1a tc 1b tc 1c tc 2a tc 2b tc 2c Zonenleitart Subzonenleitart Angulaticeras densilobatum 9 (5) + Angulaticeras marmoreum 8 (4) + Arietitidae Alsatitinae Alsatites laqueus 10 (1) + he 2a 2 Alsatites quedlinburgensis 10 (2) + Alsatites sironotus 10 (3) + Alsatites liasicus 10 (4) + he 2a he 2a 2 Alsatites schalchi 58 (6) ? Paracaloceras laqueoides 10 (5) ++ Tmaegoceras crassiceps 10 (6) + Tmaegoceras dorsosulcus 10 (7) ++ Unterer Jura / lower jurassic Biostratigraphische Verbreitung der Unterklasse Ammonoidea im süddeutschen Unterjura. Biostratigraphisch Verbreitungsdaten zusammengestellt nach Angaben aus Schlegelmilch, R. (1998) Biostratigraphic distribution of subclass ammonoidea in the lower jurassic of southern germany. Biostratigraphical data combined by Hettangium Unter-Sinemurium Ober-Sinemurium Unter-Pliensbachium Ober-Pliensbachium Unter-Toarcium Ober-Toarcium informations from Schlegelmilch, R. (1998) alpha 1 alpha 2 alpha 3 beta gamma delta epsilon zeta he he 1 he 2a he 2b si 1a si 1b si 2a si 2b si 2c si 2d pb 1a pb 1b pb 1c pb 2a pb 2b tc 1a tc 1b tc 1c tc 2a tc 2b tc 2c Zonenleitart Subzonenleitart Coroniceratinae Vermiceras spiratissimum 10 (8) + si 1a 1 Vermiceras scylla 10 (9) + si 1a 2 Vermiceras latislucatum 11 (1) + + Coroniceras longidomus 11 (2) + si 1a 1 Coroniceras brevidorsale 11 (3) + Coroniceras deffneri 11 (4) + Coroniceras rotiforme 12 (1-2) + si 1a 2 Coroniceras hyatti 12 (3) + Coroniceras coronaries 12 (4) + Coroniceras multicostatum 13 (1) + Coroniceras dumortieri 13 (2) ++ Coroniceras reynesi 13 (3) + Coroniceras sinemuriense 13 (4) + Arietitinae Arietites (Arietites) bucklandi 13 (5) + si 1a si 1a 3 Unterer Jura / lower jurassic Biostratigraphische Verbreitung der Unterklasse Ammonoidea im süddeutschen Unterjura. Biostratigraphisch Verbreitungsdaten zusammengestellt nach Angaben aus Schlegelmilch, R. (1998) Biostratigraphic distribution of subclass ammonoidea in the lower jurassic of southern germany. Biostratigraphical data combined by Hettangium Unter-Sinemurium Ober-Sinemurium Unter-Pliensbachium Ober-Pliensbachium Unter-Toarcium Ober-Toarcium informations from Schlegelmilch, R. (1998) alpha 1 alpha 2 alpha 3 beta gamma delta epsilon zeta he he 1 he 2a he 2b si 1a si 1b si 2a si 2b si 2c si 2d pb 1a pb 1b pb 1c pb 2a pb 2b tc 1a tc 1b tc 1c tc 2a tc 2b tc 2c Zonenleitart Subzonenleitart Arietites (Arietites) bucklandi macer 14 (1) + Arietites (Arietites) pinguis 14 (2) + + si 1b 1 Arietites (Arietites) solarium 14 (3) + Arietites (Arietites) bisulcatus 15 (1) ++ Arietites (Arietites) gallicus 15 (2) + Arietites (Paracoroniceras) charlesi 15 (3) + si 1b 1 Arietites (Paracoroniceras) oblongaries 16 (1) ++ Arietites (Paracoroniceras)
Recommended publications
  • La Col·Lecció Paleontològica Gómez-Alba Del MGB-MCNB
    Treb. Mus. Geol. Barcelona, 19 (2013): 59-149 La col·lecció paleontològica Gómez-Alba del MGB-MCNB Jaume Gallemí1, Vicent Vicedo1, Gregori López2 i Luis Troya2 Abstract GALLEMÍ, J., VICEDO, V., LÓPEZ, G. & TROYA, L. The Gómez-Alba palaeontological collection of the MGB-MCNB. We present the catalogue of the palaeontological collection belonging to the late Dr. Julio Gómez-Alba, former curator of Palaeontology at Barcelona’s Museum of Geology, now integrated in Barcelona’s Natural History Museum Consortium. He proposed the donation of his collection to the city of Barcelona in November 2010 and the Barcelona’s Institute of Culture (ICUB) accepted it on the 11th February 2011. Formed by 4.990 specimens and 25 batches, it is not the col- lection of a palaeontological researcher but that of a general palaeontologist. Many items in this collection were figured in a field guide authored by Gómez-Alba (1988) dealing with the fossils of Spain and Europe. The catalogue is, apart from some minor corrections, the literal transcription of the database originally associated to the collection that –since its acceptation– has neither been updated nor revised. Key words: catalogue, collection, palaeontology, Gómez-Alba, MGB-MCNB. Resumen GALLEMÍ, J., VICEDO, V., LÓPEZ, G. y TROYA, L. La colección paleontológica Gómez-Alba del MGB-MCNB. Se presenta el catálogo de la colección paleontológica que había pertenecido al recientemente fallecido Dr. Julio Gómez-Alba, antiguo conservador de Paleontología del Museo de Geología de Barcelona, actualmente integrado en el Consorcio del Museo de Ciencias Naturales de Barcelona. La propuesta de donación de la colección a la ciudad de Barcelona se realizó en noviembre de 2010 y fue aceptada por el Instituto de Cultura de Barcelona (ICUB) en fecha 11 de febrero de 2011.
    [Show full text]
  • AALENIAN TMETOCERAS (AMMONOIDEA) from IBERIA Taxonomy, Habitats, and Evolution
    AALENIAN TMETOCERAS (AMMONOIDEA) FROM IBERIA Taxonomy, Habitats, and Evolution 1 2 3 S. R. Femandez-L6pez, M. H. Henriques, A. Linares, 1. Sandovae and M. S. Ureta1 'Dept. y UEI de Paleontologia Facultad de Ciencias Geo16gicas (UCM) elnstitutode Geologia Econ6mica (CSIC-UCM) 28040-Madrid, Spain 2Dept. Ci€mcias da Terra Centro de Geociencias Universidade de Coimbra 3049-Coimbra Codex, Portugal 3Dept. de Estratigrafia y Paleontologia Facultad de Ciencias Universidad de Granada 18071 Granada, Spain Abstract Several hundred Aalenian Tmetoceras from the Iberian Peninsula (N Lusitanian Basin, As­ turias, Basque-Cantabrian Basin, NE Cameros, NW Iberian Basin, Aragonese Platform, Tortosa Platform, Castilian Platform, Majorca and Betic Basin) have been reviewed. Two species of Aalenian Tmetoceras have been identified on the basis of morphological, bio­ chronological and palaeobiogeographical data: T. scissum and T. regleyi. T. scissum was dominant among the Tmetoceras populations developed in the Betic and Lusitanian basins during Opalinum, Murchisonae and Bradfordensis biochrons. Popu­ lations coniposed by evolute individuals of T. scissum inhabited shelfal or oceanic envi­ ronments. A chronocline, from rectiradiate and primitive forms to flexicostate and derived forms, can be recognized in these populations of T. scissum. In contrast, shallow epiconti­ nental platforms were inhabited by involute individuals of T. regleyi. This second species was phyletically derived from T. scissum, representing an adaptive radiation from popula­ tions of shelfal or oceanic basins to populations of epicontinental platforms. Asturias L��---:T NW Iberian Basin 14--=--�- Aragonese Platform +--Tortosa Platform 0� q@ Majorca SE Castilian Platform Central Castilian Platform Oriental sector of Median Subbetic Basin 250 km I Central sector with condensed sections of Median Subbetic Basin External Subbetic Basin Central sector with expanded sections of Median Subbetic Basin Figure 1.
    [Show full text]
  • Paléontologie Au Luxembourg (2) A
    Paléontologie au Luxembourg (2) A. Di Cencio, D. Sadki, R. Weis (eds.) R. Weis D. Sadki, A. Di Cencio, Les ammonites de la Minette Andrea Di Cencio, Driss Sadki, Paléontologie au Luxembourg (2) Luxembourg au Paléontologie Robert Weis (eds.) Ferrantia Travaux scientifiques du Musée national d'histoire naturelle Luxembourg www.mnhn.lu 83 2020 Ferrantia 83 2020 2020 83 Ferrantia est une revue publiée à intervalles non réguliers par le Musée national d’histoire naturelle à Luxembourg. Elle fait suite, avec la même tomaison, aux T M ’ L parus entre 1981 et 1999. Comité de rédaction: Eric Buttini Guy Colling Alain Frantz Thierry Helminger Ben Thuy Mise en page: Romain Bei Design: Thierry Helminger Prix du volume: 20 € Rédaction: Échange: Musée national d’histoire naturelle Exchange MnhnL Rédaction Ferrantia c/o Musée national d’histoire naturelle 25, rue Münster 25, rue Münster L-2160 Luxembourg L-2160 Luxembourg Tél +352 46 22 33 - 1 Tél +352 46 22 33 - 1 Fax +352 46 38 48 Fax +352 46 38 48 Internet: http://www.mnhn.lu/ferrantia/ Internet: http://www.mnhnl.lu/biblio/exchange email: [email protected] email: [email protected] Page de couverture: Bredyia subinsignis (Oppel, 1856), DOU833. Natural History Museum of Luxembourg. Citation: Di Cencio A., Sadki D., Weis R. (eds.) 2020. - Paléontologie au Luxembourg (2) - Les ammonites de la Minette. Ferrantia 83, Musée national d’histoire naturelle, Luxembourg, 129 p. Date de publication: 15 décembre 2020 (réception du manuscrit: 19 mai 2020) Impression: Imprimerie Centrale climatiquement neutre Impression | LU-319-JR8FDJV | www.natureOffice.com Ferrantia est publiée sous la licence Creative Commons BY-NC-ND 3.0 LU.
    [Show full text]
  • 6. Early Cretaceous Mollusks from Dsdp Hole 397A Off Northwest Africa
    6. EARLY CRETACEOUS MOLLUSKS FROM DSDP HOLE 397A OFF NORTHWEST AFRICA Jost Wiedmann, Institut für Geologie und Palàontologie, Universitát Tubingen, Federal Republic of Germany ABSTRACT Macro fossil remains in Hole 3 97 A off Cape Bojador, Tarfaya Basin, provide additional information about marine Lower Creta- ceous biostratigraphy and paleoenvironment. The ammonites have been referred to Neocomites gr. N. neocomiensis (d'Orbigny); Phyl- loceras (Hypophylloceras) thetys diegoi (Boule, Lemoine, and The- venin); and Protetragonites cf. P. crebrisulcatus (Uhlig). Although these are all long-ranging species groups, their combination support a late Hauterivian age. One bivalve (Legumenl sp.) and one gastro- pod remain {incertae sedis) are figured. The marine conditions of the off-shore Hauterivian are in con- trast to the Wealden-like terrigenous sedimentation in the on-shore Lower Cretaceous of the Tarfaya Basin, where an initial marine transgression can be recognized in the uppermost Aptian. The am- monites point to deep basinal, Tethyan relationships. INTRODUCTION bination of all data permits an appropriate age deter- mination. There has been increasing interest in the study of The stratigraphically more important specimen of macrofossils from drilled deep-sea sites (e.g., Renz, the first sample is the lytoceratid (Plate 1, Figures 2, 7) 1972; Kauffman, 1976). At Hole 397A, several poorly from Sample 39-2, CC. It belongs to the group of preserved macrofossil remains were recovered which, Protetragonites quadrisulcatus (d'Orbigny) ranging nevertheless, were worthy of study. throughout the complete Early Cretaceous (Wiedmann, At first, only four relatively well-preserved speci- 1962). By its degree of involution and course of con- mens of mollusks were treated.
    [Show full text]
  • Print This Article
    VOLUMINA JURASSICA, 2019, XVII: 81–94 DOI: 10.7306/VJ.17.5 Macroconch ammonites from the Štramberk Limestone deposited in the collections of the Czech Geological Survey (Tithonian, Outer Western Carpathians, Czech Republic) Zdeněk VAŠÍČEK1, Ondřej MALEK2 Key words: megaammonites, Tithonian, Silesian Unit, Outer Western Carpathians. Abstract. 11 specimens of large sized ammonites from the Štram�erk���������������������������������������������� �������������������������������������������Limestone deposited in the collections in �����������������rague represent ����� spe� cies. Two species �elong to the superfamily Lytoceratoidea, the remaining ones to the superfamily �erisphinctoidea. The perisphinctid specimens �elong to the Lower and the Upper Tithonian, and the lytoceratids pro�a�ly correspond to the same stratigraphic level. Two species, namely Ernstbrunnia blaschkei and Djurjuriceras mediterraneum were not known from the Štram�erk Limestone earlier. INTRODUCTION stone in the Silesian Unit of the Baška Development in the Outer Western Carpathians is located in the surroundings of When revising the palaeontological collections of the Štram�erk reaches (see Fig. 2). According to its ammonites, Czech Geological Survey in the depository at Lu�ná near the stratigraphic range is from Lower Tithonian to Lower Rakovník in the year 2017, Dr. Eva Kadlecová recorded an Berriasian (Vaší�ek, Skupien, 201�). unprocessed collection of large specimens of ammonites The quality of preservation of most specimens, their va� whose preservation and matrix suggested they had �een col� riety and the presence of species not descri�ed yet from the lected from the Štram�erk Limestone. The finds lack any Štram�erk Limestone has led to the presently su�mitted ta� data indicating where they had �een collected. It is possi�le xo nomic processing.
    [Show full text]
  • Assessing the Record and Causes of Late Triassic Extinctions
    Earth-Science Reviews 65 (2004) 103–139 www.elsevier.com/locate/earscirev Assessing the record and causes of Late Triassic extinctions L.H. Tannera,*, S.G. Lucasb, M.G. Chapmanc a Departments of Geography and Geoscience, Bloomsburg University, Bloomsburg, PA 17815, USA b New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104, USA c Astrogeology Team, U.S. Geological Survey, 2255 N. Gemini Rd., Flagstaff, AZ 86001, USA Abstract Accelerated biotic turnover during the Late Triassic has led to the perception of an end-Triassic mass extinction event, now regarded as one of the ‘‘big five’’ extinctions. Close examination of the fossil record reveals that many groups thought to be affected severely by this event, such as ammonoids, bivalves and conodonts, instead were in decline throughout the Late Triassic, and that other groups were relatively unaffected or subject to only regional effects. Explanations for the biotic turnover have included both gradualistic and catastrophic mechanisms. Regression during the Rhaetian, with consequent habitat loss, is compatible with the disappearance of some marine faunal groups, but may be regional, not global in scale, and cannot explain apparent synchronous decline in the terrestrial realm. Gradual, widespread aridification of the Pangaean supercontinent could explain a decline in terrestrial diversity during the Late Triassic. Although evidence for an impact precisely at the boundary is lacking, the presence of impact structures with Late Triassic ages suggests the possibility of bolide impact-induced environmental degradation prior to the end-Triassic. Widespread eruptions of flood basalts of the Central Atlantic Magmatic Province (CAMP) were synchronous with or slightly postdate the system boundary; emissions of CO2 and SO2 during these eruptions were substantial, but the contradictory evidence for the environmental effects of outgassing of these lavas remains to be resolved.
    [Show full text]
  • Hypophylloceras and the Classification of the Phylloceratidae 96 ©Geol
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte der Geologischen Bundesanstalt Jahr/Year: 1999 Band/Volume: 46 Autor(en)/Author(s): Rodda Peter U., Murphy Michael A. Artikel/Article: Hypophylloceras and the classification of the Phylloceratidae 96 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at HYPOPHYLLOCERAS AND THE CLASSIFICATION OF THE PHYLLOCERATIDAE Rodda, Peter U. a>, and Murphy, Michael A.(2) (1) California Academy of Sciences, San Francisco, CA, & University of Oregon, Eugene, OR, e-mail: [email protected] (2) University of California, Davis, CA, e-mail: [email protected] Critical to the history of the study of the Phylloceratidae were misidentifications of the Aptian species, Hypophylloceras onoense, by J. P. Smith (1898), whose illustration of the sutural development of "Phylloceras onoense" led to misconception of this taxon and introduced confusion in the classification of the family. Smith misidentified Phylloceras ramosum and juvenile Desmophyllites from the Upper Cretaceous of California as Phylloceras onoense, and what he described as the internal lobe of this Phylloceras was actually that of a juvenile desmoceratid On the basis of this supposed aberrancy Salfeld (1924) established Hypophylloceras, with P. onoense as type species. Wiedmann (1962) discovered that H. onoense has a lituid internal lobe as in other phylloceratids, and he reclassified Hypophylloceras as a subgenus of Phylloceras, assigning most Cretaceous phylloceratids to it. The Phylloceratidae is a conservative stock that has changed little over its long history. We suggest that heterochronous parallel developments, such as tetraphyllic endings of saddles, are common in the Phylloceratidae, and that the principal branches of the family arose as early as Early Jurassic.
    [Show full text]
  • Paleontological Contributions
    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS May 15, 1970 Paper 47 SIGNIFICANCE OF SUTURES IN PHYLOGENY OF AMMONOIDEA JURGEN KULLMANN AND JOST WIEDMANN Universinit Tubingen, Germany ABSTRACT Because of their complex structure ammonoid sutures offer best possibilities for the recognition of homologies. Sutures comprise a set of individual elements, which may be changed during the course of ontogeny and phylogeny as a result of heterotopy, hetero- morphy, and heterochrony. By means of a morphogenetic symbol terminology, sutural formulas may be established which show the composition of adult sutures as well as their ontogenetic development. WEDEKIND ' S terminology system is preferred because it is the oldest and morphogenetically the most consequent, whereas RUZHENTSEV ' S system seems to be inadequate because of its usage of different symbols for homologous elements. WEDEKIND ' S system includes only five symbols: E (for external lobe), L (for lateral lobe), I (for internal lobe), A (for adventitious lobe), U (for umbilical lobe). Investigations on ontogenetic development show that all taxonomic groups of the entire superorder Ammonoidea can be compared one with another by means of their sutural development, expressed by their sutural formulas. Most of the higher and many of the lower taxa can be solely characterized and arranged in phylogenetic relationship by use of their sutural formulas. INTRODUCTION Today very few ammonoid workers doubt the (e.g., conch shape, sculpture, growth lines) rep- importance of sutures as indication of ammonoid resent less complicated structures; therefore, phylogeny. The considerable advances in our numerous homeomorphs restrict the usefulness of knowledge of ammonoid evolution during recent these features for phylogenetic investigations.
    [Show full text]
  • Ammonites (Phylloceratina, Lytoceratina and Ancyloceratina) and Organic-Walled Dinoflagellate Cysts from the Late Barremian in B
    Cretaceous Research 47 (2014) 140e159 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Ammonites (Phylloceratina, Lytoceratina and Ancyloceratina) and organic-walled dinoflagellate cysts from the Late Barremian in Boljetin, eastern Serbia Zdenek Vasícek a, Dragoman Rabrenovic b, Petr Skupien c, Vladan J. Radulovic d,*, Barbara V. Radulovic d, Ivana Mojsic b a Institute of Geonics, Academy of Sciences of the Czech Republic, Studentská 1768, CZ 708 00 Ostrava-Poruba, Czech Republic b Department of Historical and Dynamic Geology, Faculty of Mining and Geology, University of Belgrade, Kamenicka 6, 11000 Belgrade, Serbia c Institute of Geological Engineering, VSB e Technical University of Ostrava, 17. listopadu 15, CZ-708 33 Ostrava-Poruba, Czech Republic d Department of Palaeontology, Faculty of Mining and Geology, University of Belgrade, Kamenicka 6, 11000 Belgrade, Serbia article info abstract Article history: Late Barremian ammonite fauna from the epipelagic marlstone and marly limestone interbeds of Boljetin Received 12 December 2012 Hill (Boljetinsko Brdo) of Danubic Unit (eastern Serbia) is described. The ammonite fauna includes Accepted in revised form 29 October 2013 representatives of three suborders (Phylloceratina, Lytoceratina and Ancyloceratina), specifically Hypo- Available online 14 December 2013 phylloceras danubiense n. sp., Lepeniceras lepense Rabrenovic, Holcophylloceras avrami n. sp., Phyllo- pachyceras baborense (Coquand), Phyllopachyceras petkovici n. sp., Phyllopachyceras eichwaldi eichwaldi Keywords: (Karakash), Phyllopachyceras ectocostatum Drushchits, Protetragonites crebrisulcatus (Uhlig), Macro- Ammonites ’ fl scaphites perforatus Avram, Acantholytoceras cf. subcirculare (Avram), Dissimilites cf. trinodosus (d Or- Organic-walled dino agellates fi Palaeoenvironment bigny) and Argvethites? sp. The taxonomic composition and percent abundance of the identi ed fi Late Barremian ammonites indicate that their taxa are predominantly con ned to the Tethyan realm.
    [Show full text]
  • (Campanian and Maestrichtian) Ammonites from Southern Alaska
    Upper Cretaceous (Campanian and Maestrichtian) Ammonites From Southern Alaska GEOLOGICAL SURVEY PI SSIONAL PAPER 432 Upper Cretaceous (Campanian and Maestrichtian) Ammonites From Southern Alaska By DAVID L. JONES GEOLOGICAL SURVEY PROFESSIONAL PAPER 432 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows: Jones, David Lawrence, 1930- Upper Cretaceous (Campanian and Maestrichtian) am­ monites from southern Alaska. Washington, U.S. Govt. Print. Off., 1963. iv, 53 p. illus., maps, diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 432) Part of illustrative matter folded in pocket. 1. Amnionoidea. 2. Paleontology-Cretaceous. 3. Paleontology- Alaska. I. Title. (Series) Bibliography: p. 47-^9. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract-__________________________ 1 Comparison with other areas Continued Introduction. ______________________ 1 Vancouver Island, British Columbia.. 13 Stratigraphic summary ______________ 2 California. ______________--_____--- 14 Matanuska Valley-Nelchina area. 2 Western interior of North America. __ 14 Chignik Bay area._____._-._____ 6 Gulf coast area___________-_-_--_-- 15 Herendeen Bay area____________ 8 Madagascar. ______________________ 15 Cape Douglas area______________ 9 Antarctica ________________________ 15 Deposition and ecologic conditions___. 11 Geographic distribution ________________ 16 Age and correlation ________________ 12 Systematic descriptions.________________ 22 Comparison with other areas _ _______ 13 Selected references._________--_---__-__ 47 Japan _________________________ 13 Index._____-______-_----_-------_---- 51 ILLUSTRATIONS [Plates 1-5 in pocket; 6-41 follow index] PLATES 1-3.
    [Show full text]
  • THE HETEROMORPHS and AMMONOID EXTINCTION by JOST WIEDMANN Geologisch-Palaontologischesinstitut, Universitat Tiibingen
    Biol. Rev. (1969), 44, pp. 563-602 563 THE HETEROMORPHS AND AMMONOID EXTINCTION BY JOST WIEDMANN Geologisch-PalaontologischesInstitut, Universitat Tiibingen (Received 19 May 1969) CONTENTS I. Introduction . 563 B. Developmental plasticity in space and time in heterornorphs . 590 11. Discussion . 565 C. Phylogenetic ‘laws’ and hetero- A. Triassic heteromorphs . 567 morphs . 590 B. Jurassic heteromorphs . 569 D. Factors in heteromorph evolution 592 E. Ammonoid extinction 593 C. Cretaceous heteromorphs . 572 . D. The course of heteromorph evolu- IV. Summary . 598 tion ..... 599 111. General remarks . A. Homologies and sutures in hetero- morphs and ammonoids . 588 I. INTRODUCTION The image of heteromorph ammonoids is today linked in our minds with notions of aberrant shell form, degeneration, typolysis and phylogenetic extinction. In most palaeontological works dealing with evolutionary principles the so-called heteromorphs are seen as a welcome illustration of the more or less synchronous extinction of com- plete Bauplane, a phenomenon which cannot be observed in nature and is therefore explicable only with difficulty. ‘There are furthermore aberrant forms which rapidly, one after another, show an ever stronger tendency to degenerate and produce biologically absurd structures which, if not directly lethal, have always been impartially understood as ridiculous for the basic concept of the ammonite form.’ (Translated from DacquC, 1935, p. 32.) ‘Just as the great ceratitoid group of ammonoids produced retrogressive as well as stationary and progressive forms during the Trias, so from one, or several, of the families just mentioned there arose decadent lines of descent. .Thus in Baculites the whole organization was affected by decadent influences, and it is therefore the most perfect impression of all-round retro- gression among the ammonoids.’ (Swinnerton, 1930, pp.
    [Show full text]
  • Triassic–Jurassic Extinction Event
    Triassic–Jurassic extinction event The Triassic–Jurassic extinction event marks the boundary between the Triassic and Jurassic % Marine extinction intensity during the Phanerozoic periods, 201.3 million years ago,[1] and is one of the major extinction events of the Phanerozoic P–Tr eon, profoundly affecting life on land and in the oceans. In the seas, a whole class (conodonts)[2] Cap K–Pg and 23–34% of marine genera disappeared.[3][4] O–S Tr–J Late D On land, all archosaurs other than (H) crocodylomorphs (Sphenosuchia and Crocodyliformes) and Avemetatarsalia (pterosaurs and dinosaurs), some remaining therapsids, and many of the large amphibians Millions of years ago became extinct. Statistical analysis of marine losses at this time suggests that the decrease in The blue graph shows the apparent percentage (not the absolute number) of marine animal genera becoming diversity was caused more by a decrease in extinct during any given time interval. It does not [5] speciation than by an increase in extinctions. represent all marine species, just those that are readily fossilized. The labels of the traditional "Big Five" extinction events and the more recently recognised End- Capitanian extinction event are clickable hyperlinks; see Contents Extinction event for more details. (source and image info) Effects Marine invertebrates Marine vertebrates Terrestrial vertebrates Current theories Gradual processes Extraterrestrial impact Volcanic eruptions References Literature External links Effects This event vacated terrestrial ecological niches, allowing the dinosaurs to assume the dominant roles in the Jurassic period. This event happened in less than 10,000 years and occurred just before Pangaea started to break apart.
    [Show full text]