1 2 Title: 3 Heat advection processes leading to El Niño events as depicted by an ensemble of ocean 4 assimilation products 5 6 Authors: 7 Joan Ballester (1,2), Simona Bordoni (1), Desislava Petrova (2), Xavier Rodó (2,3) 8 9 Affiliations: 10 (1) California Institute of Technology (Caltech), Pasadena, California, United States 11 (2) Institut Català de Ciències del Clima (IC3), Barcelona, Catalonia, Spain 12 (3) Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain 13 14 Corresponding author: 15 Joan Ballester 16 California Institute of Technology (Caltech) 17 1200 E California Blvd, Pasadena, CA 91125, US 18 Mail Code: 131-24 19 Tel.: +1-626-395-8703 20 Email:
[email protected] 21 22 Manuscript 23 Submitted to Journal of Climate 24 1 25 26 Abstract 27 28 The oscillatory nature of El Niño-Southern Oscillation results from an intricate 29 superposition of near-equilibrium balances and out-of-phase disequilibrium processes between the 30 ocean and the atmosphere. Several authors have shown that the heat content stored in the equatorial 31 subsurface is key to provide memory to the system. Here we use an ensemble of ocean assimilation 32 products to describe how heat advection is maintained in each dataset during the different stages of 33 the oscillation. 34 Our analyses show that vertical advection due to surface horizontal convergence and 35 downwelling motion is the only process contributing significantly to the initial subsurface warming 36 in the western equatorial Pacific. This initial warming is found to be advected to the central Pacific 37 by the equatorial undercurrent, which, together with the equatorward advection associated with 38 anomalies in both the meridional temperature gradient and circulation at the level of the 39 thermocline, explains the heat buildup in the central Pacific during the recharge phase.