An Introduction to Dynamic Meteorology.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Balanced Dynamics in Rotating, Stratified Flows
Balanced Dynamics in Rotating, Stratified Flows: An IPAM Tutorial Lecture James C. McWilliams Atmospheric and Oceanic Sciences, UCLA tutorial (n) 1. schooling on a topic of common knowledge. 2. opinion offered with incomplete proof or illustration. These are notes for a lecture intended to introduce a primarily mathematical audience to the idea of balanced dynamics in geophysical fluids, specifically in relation to climate modeling. A more formal presentation of some of this material is in McWilliams (2003). 1 A Fluid Dynamical Hierarchy The vast majority of the kinetic and available potential energy in the general circulation of the ocean and atmosphere, hence in climate, is constrained by approximately “balanced” forces, i.e., geostrophy in the horizontal plane (Coriolis force vs. pressure gradient) and hydrostacy in the vertical direction (gravitational buoyancy force vs. pressure gradient), with the various external and phase-change forces, molecular viscosity and diffusion, and parcel accelerations acting as small residuals in the momentum balance. This lecture is about the theoretical framework associated with this type of diagnostic force balance. Parametric measures of dynamical influence of rotation and stratification are the Rossby and Froude numbers, V V Ro = and F r = : (1) fL NH V is a characteristic horizontal velocity magnitude, f = 2Ω is Coriolis frequency (Ω is Earth’s rotation rate), N is buoyancy frequency for the stable density stratification, and (L; H) are (hor- izontal, vertical) length scales. For flows on the planetary scale and mesoscale, Ro and F r are typically not large. Furthermore, since for these flows the atmosphere and ocean are relatively thin, the aspect ratio, H λ = ; (2) L is small. -
Lecture 5: Saturn, Neptune, … A. P. Ingersoll [email protected] 1
Lecture 5: Saturn, Neptune, … A. P. Ingersoll [email protected] 1. A lot a new material from the Cassini spacecraft, which has been in orbit around Saturn for four years. This talk will have a lot of pictures, not so much models. 2. Uranus on the left, Neptune on the right. Uranus spins on its side. The obliquity is 98 degrees, which means the poles receive more sunlight than the equator. It also means the sun is almost overhead at the pole during summer solstice. Despite these extreme changes in the distribution of sunlight, Uranus is a banded planet. The rotation dominates the winds and cloud structure. 3. Saturn is covered by a layer of clouds and haze, so it is hard to see the features. Storms are less frequent on Saturn than on Jupiter; it is not just that clouds and haze makes the storms less visible. Saturn is a less active planet. Nevertheless the winds are stronger than the winds of Jupiter. 4. The thickness of the atmosphere is inversely proportional to gravity. The zero of altitude is where the pressure is 100 mbar. Uranus and Neptune are so cold that CH forms clouds. The clouds of NH3 , NH4SH, and H2O form at much deeper levels and have not been detected. 5. Surprising fact: The winds increase as you move outward in the solar system. Why? My theory is that power/area is smaller, small‐scale turbulence is weaker, dissipation is less, and the winds are stronger. Jupiter looks more turbulent, and it has the smallest winds. -
Estimation of Gravity Wave Momentum Flux with Spectroscopic Imaging
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Embry-Riddle Aeronautical University Physical Sciences - Daytona Beach College of Arts & Sciences 1-2005 Estimation of Gravity Wave Momentum Flux with Spectroscopic Imaging Jing Tang Farzad Kamalabadi Steven J. Franke Alan Z. Liu Embry Riddle Aeronautical University - Daytona Beach, [email protected] Gary R. Swenson Follow this and additional works at: https://commons.erau.edu/db-physical-sciences Part of the Oceanography and Atmospheric Sciences and Meteorology Commons Scholarly Commons Citation Tang, J., Kamalabadi, F., Franke, S. J., Liu, A. Z., & Swenson, G. R. (2005). Estimation of Gravity Wave Momentum Flux with Spectroscopic Imaging. IEEE Transactions on Geoscience and Remote Sensing, 43(1). Retrieved from https://commons.erau.edu/db-physical-sciences/21 This Article is brought to you for free and open access by the College of Arts & Sciences at Scholarly Commons. It has been accepted for inclusion in Physical Sciences - Daytona Beach by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 1, JANUARY 2005 103 Estimation of Gravity Wave Momentum Flux With Spectroscopic Imaging Jing Tang, Student Member, IEEE, Farzad Kamalabadi, Member, IEEE, Steven J. Franke, Senior Member, IEEE, Alan Z. Liu, and Gary R. Swenson, Member, IEEE Abstract—Atmospheric gravity waves play a significant role waves is quantified by the divergence of the momentum flux. in the dynamics and thermal balance of the upper atmosphere. Using spectroscopic imaging to measure momentum flux will In this paper, we present a novel technique for automated contribute to the understanding of gravity wave processes and and robust calculation of momentum flux of high-frequency their influence on global circulation. -
Heat Advection Processes Leading to El Niño Events As
1 2 Title: 3 Heat advection processes leading to El Niño events as depicted by an ensemble of ocean 4 assimilation products 5 6 Authors: 7 Joan Ballester (1,2), Simona Bordoni (1), Desislava Petrova (2), Xavier Rodó (2,3) 8 9 Affiliations: 10 (1) California Institute of Technology (Caltech), Pasadena, California, United States 11 (2) Institut Català de Ciències del Clima (IC3), Barcelona, Catalonia, Spain 12 (3) Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain 13 14 Corresponding author: 15 Joan Ballester 16 California Institute of Technology (Caltech) 17 1200 E California Blvd, Pasadena, CA 91125, US 18 Mail Code: 131-24 19 Tel.: +1-626-395-8703 20 Email: [email protected] 21 22 Manuscript 23 Submitted to Journal of Climate 24 1 25 26 Abstract 27 28 The oscillatory nature of El Niño-Southern Oscillation results from an intricate 29 superposition of near-equilibrium balances and out-of-phase disequilibrium processes between the 30 ocean and the atmosphere. Several authors have shown that the heat content stored in the equatorial 31 subsurface is key to provide memory to the system. Here we use an ensemble of ocean assimilation 32 products to describe how heat advection is maintained in each dataset during the different stages of 33 the oscillation. 34 Our analyses show that vertical advection due to surface horizontal convergence and 35 downwelling motion is the only process contributing significantly to the initial subsurface warming 36 in the western equatorial Pacific. This initial warming is found to be advected to the central Pacific 37 by the equatorial undercurrent, which, together with the equatorward advection associated with 38 anomalies in both the meridional temperature gradient and circulation at the level of the 39 thermocline, explains the heat buildup in the central Pacific during the recharge phase. -
Symmetric Instability in the Gulf Stream
Symmetric instability in the Gulf Stream a, b c d Leif N. Thomas ⇤, John R. Taylor ,Ra↵aeleFerrari, Terrence M. Joyce aDepartment of Environmental Earth System Science,Stanford University bDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge cEarth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology dDepartment of Physical Oceanography, Woods Hole Institution of Oceanography Abstract Analyses of wintertime surveys of the Gulf Stream (GS) conducted as part of the CLIvar MOde water Dynamic Experiment (CLIMODE) reveal that water with negative potential vorticity (PV) is commonly found within the surface boundary layer (SBL) of the current. The lowest values of PV are found within the North Wall of the GS on the isopycnal layer occupied by Eighteen Degree Water, suggesting that processes within the GS may con- tribute to the formation of this low-PV water mass. In spite of large heat loss, the generation of negative PV was primarily attributable to cross-front advection of dense water over light by Ekman flow driven by winds with a down-front component. Beneath a critical depth, the SBL was stably strat- ified yet the PV remained negative due to the strong baroclinicity of the current, suggesting that the flow was symmetrically unstable. A large eddy simulation configured with forcing and flow parameters based on the obser- vations confirms that the observed structure of the SBL is consistent with the dynamics of symmetric instability (SI) forced by wind and surface cooling. The simulation shows that both strong turbulence and vertical gradients in density, momentum, and tracers coexist in the SBL of symmetrically unstable fronts. -
THE EARTH's GRAVITY OUTLINE the Earth's Gravitational Field
GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY OUTLINE The Earth's gravitational field 2 Newton's law of gravitation: Fgrav = GMm=r ; Gravitational field = gravitational acceleration g; gravitational potential, equipotential surfaces. g for a non–rotating spherically symmetric Earth; Effects of rotation and ellipticity – variation with latitude, the reference ellipsoid and International Gravity Formula; Effects of elevation and topography, intervening rock, density inhomogeneities, tides. The geoid: equipotential mean–sea–level surface on which g = IGF value. Gravity surveys Measurement: gravity units, gravimeters, survey procedures; the geoid; satellite altimetry. Gravity corrections – latitude, elevation, Bouguer, terrain, drift; Interpretation of gravity anomalies: regional–residual separation; regional variations and deep (crust, mantle) structure; local variations and shallow density anomalies; Examples of Bouguer gravity anomalies. Isostasy Mechanism: level of compensation; Pratt and Airy models; mountain roots; Isostasy and free–air gravity, examples of isostatic balance and isostatic anomalies. Background reading: Fowler §5.1–5.6; Lowrie §2.2–2.6; Kearey & Vine §2.11. GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY FIELD Newton's law of gravitation is: ¯ GMm F = r2 11 2 2 1 3 2 where the Gravitational Constant G = 6:673 10− Nm kg− (kg− m s− ). ¢ The field strength of the Earth's gravitational field is defined as the gravitational force acting on unit mass. From Newton's third¯ law of mechanics, F = ma, it follows that gravitational force per unit mass = gravitational acceleration g. g is approximately 9:8m/s2 at the surface of the Earth. A related concept is gravitational potential: the gravitational potential V at a point P is the work done against gravity in ¯ P bringing unit mass from infinity to P. -
History of Frontal Concepts Tn Meteorology
HISTORY OF FRONTAL CONCEPTS TN METEOROLOGY: THE ACCEPTANCE OF THE NORWEGIAN THEORY by Gardner Perry III Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June, 1961 Signature of'Author . ~ . ........ Department of Humangties, May 17, 1959 Certified by . v/ .-- '-- -T * ~ . ..... Thesis Supervisor Accepted by Chairman0 0 e 0 o mmite0 0 Chairman, Departmental Committee on Theses II ACKNOWLEDGMENTS The research for and the development of this thesis could not have been nearly as complete as it is without the assistance of innumerable persons; to any that I may have momentarily forgotten, my sincerest apologies. Conversations with Professors Giorgio de Santilw lana and Huston Smith provided many helpful and stimulat- ing thoughts. Professor Frederick Sanders injected thought pro- voking and clarifying comments at precisely the correct moments. This contribution has proven invaluable. The personnel of the following libraries were most cooperative with my many requests for assistance: Human- ities Library (M.I.T.), Science Library (M.I.T.), Engineer- ing Library (M.I.T.), Gordon MacKay Library (Harvard), and the Weather Bureau Library (Suitland, Md.). Also, the American Meteorological Society and Mr. David Ludlum were helpful in suggesting sources of material. In getting through the myriad of minor technical details Professor Roy Lamson and Mrs. Blender were indis-. pensable. And finally, whatever typing that I could not find time to do my wife, Mary, has willingly done. ABSTRACT The frontal concept, as developed by the Norwegian Meteorologists, is the foundation of modern synoptic mete- orology. The Norwegian theory, when presented, was rapidly accepted by the world's meteorologists, even though its several precursors had been rejected or Ignored. -
ATMOSPHERIC and OCEANIC FLUID DYNAMICS Fundamentals and Large-Scale Circulation
ATMOSPHERIC AND OCEANIC FLUID DYNAMICS Fundamentals and Large-Scale Circulation Geoffrey K. Vallis Contents Preface xi Part I FUNDAMENTALS OF GEOPHYSICAL FLUID DYNAMICS 1 1 Equations of Motion 3 1.1 Time Derivatives for Fluids 3 1.2 The Mass Continuity Equation 7 1.3 The Momentum Equation 11 1.4 The Equation of State 14 1.5 The Thermodynamic Equation 16 1.6 Sound Waves 29 1.7 Compressible and Incompressible Flow 31 1.8 * More Thermodynamics of Liquids 33 1.9 The Energy Budget 39 1.10 An Introduction to Non-Dimensionalization and Scaling 43 2 Effects of Rotation and Stratification 51 2.1 Equations in a Rotating Frame 51 2.2 Equations of Motion in Spherical Coordinates 55 2.3 Cartesian Approximations: The Tangent Plane 66 2.4 The Boussinesq Approximation 68 2.5 The Anelastic Approximation 74 2.6 Changing Vertical Coordinate 78 2.7 Hydrostatic Balance 80 2.8 Geostrophic and Thermal Wind Balance 85 2.9 Static Instability and the Parcel Method 92 2.10 Gravity Waves 98 v vi Contents 2.11 * Acoustic-Gravity Waves in an Ideal Gas 100 2.12 The Ekman Layer 104 3 Shallow Water Systems and Isentropic Coordinates 123 3.1 Dynamics of a Single, Shallow Layer 123 3.2 Reduced Gravity Equations 129 3.3 Multi-Layer Shallow Water Equations 131 3.4 Geostrophic Balance and Thermal wind 134 3.5 Form Drag 135 3.6 Conservation Properties of Shallow Water Systems 136 3.7 Shallow Water Waves 140 3.8 Geostrophic Adjustment 144 3.9 Isentropic Coordinates 152 3.10 Available Potential Energy 155 4 Vorticity and Potential Vorticity 165 4.1 Vorticity and Circulation 165 -
Balanced Flow Natural Coordinates
Balanced Flow • The pressure and velocity distributions in atmospheric systems are related by relatively simple, approximate force balances. • We can gain a qualitative understanding by considering steady-state conditions, in which the fluid flow does not vary with time, and by assuming there are no vertical motions. • To explore these balanced flow conditions, it is useful to define a new coordinate system, known as natural coordinates. Natural Coordinates • Natural coordinates are defined by a set of mutually orthogonal unit vectors whose orientation depends on the direction of the flow. Unit vector tˆ points along the direction of the flow. ˆ k kˆ Unit vector nˆ is perpendicular to ˆ t the flow, with positive to the left. kˆ nˆ ˆ t nˆ Unit vector k ˆ points upward. ˆ ˆ t nˆ tˆ k nˆ ˆ r k kˆ Horizontal velocity: V = Vtˆ tˆ kˆ nˆ ˆ V is the horizontal speed, t nˆ ˆ which is a nonnegative tˆ tˆ k nˆ scalar defined by V ≡ ds dt , nˆ where s ( x , y , t ) is the curve followed by a fluid parcel moving in the horizontal plane. To determine acceleration following the fluid motion, r dV d = ()Vˆt dt dt r dV dV dˆt = ˆt +V dt dt dt δt δs δtˆ δψ = = = δtˆ t+δt R tˆ δψ δψ R radius of curvature (positive in = R δs positive n direction) t n R > 0 if air parcels turn toward left R < 0 if air parcels turn toward right ˆ dtˆ nˆ k kˆ = (taking limit as δs → 0) tˆ R < 0 ds R kˆ nˆ ˆ ˆ ˆ t nˆ dt dt ds nˆ ˆ ˆ = = V t nˆ tˆ k dt ds dt R R > 0 nˆ r dV dV dˆt = ˆt +V dt dt dt r 2 dV dV V vector form of acceleration following = ˆt + nˆ dt dt R fluid motion in natural coordinates r − fkˆ ×V = − fVnˆ Coriolis (always acts normal to flow) ⎛ˆ ∂Φ ∂Φ ⎞ − ∇ pΦ = −⎜t + nˆ ⎟ pressure gradient ⎝ ∂s ∂n ⎠ dV ∂Φ = − dt ∂s component equations of horizontal V 2 ∂Φ momentum equation (isobaric) in + fV = − natural coordinate system R ∂n dV ∂Φ = − Balance of forces parallel to flow. -
Contribution of Horizontal Advection to the Interannual Variability of Sea Surface Temperature in the North Atlantic
964 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 33 Contribution of Horizontal Advection to the Interannual Variability of Sea Surface Temperature in the North Atlantic NATHALIE VERBRUGGE Laboratoire d'Etudes en GeÂophysique et OceÂanographie Spatiales, Toulouse, France GILLES REVERDIN Laboratoire d'Etudes en GeÂophysique et OceÂanographie Spatiales, Toulouse, and Laboratoire d'OceÂanographie Dynamique et de Climatologie, Paris, France (Manuscript received 9 February 2002, in ®nal form 15 October 2002) ABSTRACT The interannual variability of sea surface temperature (SST) in the North Atlantic is investigated from October 1992 to October 1999 with special emphasis on analyzing the contribution of horizontal advection to this variability. Horizontal advection is estimated using anomalous geostrophic currents derived from the TOPEX/ Poseidon sea level data, average currents estimated from drifter data, scatterometer-derived Ekman drifts, and monthly SST data. These estimates have large uncertainties, in particular related to the sea level product, the average currents, and the mixed-layer depth, that contribute signi®cantly to the nonclosure of the surface tem- perature budget. The large scales in winter temperature change over a year present similarities with the heat ¯uxes integrated over the same periods. However, the amplitudes do not match well. Furthermore, in the western subtropical gyre (south of the Gulf Stream) and in the subpolar regions, the time evolutions of both ®elds are different. In both regions, advection is found to contribute signi®cantly to the interannual winter temperature variability. In the subpolar gyre, advection often contributes more to the SST variability than the heat ¯uxes. It seems in particular responsible for a low-frequency trend from 1994 to 1998 (increase in the subpolar gyre and decrease in the western subtropical gyre), which is not found in the heat ¯uxes and in the North Atlantic Oscillation index after 1996. -
REVIEW the Quasigeostrophic Omega Equation: Reappraisal
VOLUME 143 MONTHLY WEATHER REVIEW JANUARY 2015 REVIEW The Quasigeostrophic Omega Equation: Reappraisal, Refinements, and Relevance HUW C. DAVIES Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland (Manuscript received 29 March 2014, in final form 1 September 2014) ABSTRACT A two-component study is undertaken of the classical quasigeostrophic (QG) omega equation. First, a reappraisal is undertaken of extant formulations of the equation’s so-called forcing function. It pinpoints shortcomings of various formulations and prompts consideration of alternative forms. Particular consider- ation is given to the contribution of flow deformation to the forcing function, and to the role of the advection of the geostrophic flow by the thermal wind (the R vector). The latter is closely related to the Q vector, the horizontal component of the ageostrophic vorticity, and the forcing function itself. The reexamination pro- motes further examination of the physical interpretation and diagnostic use of the omega equation particu- larly for assessing richly structured subsynoptic flow features. Second, consideration is given to the dynamics associated with the equation and its more general utility. It is shown that the R vector is intrinsic to a quasigeostrophic cascade to finer-scaled flow, and that a fundamental feature of the QG omega equation—the in-phase relationship between cloud-diabatic heating and the at- tendant vertical velocity—has important potential ramifications for the assimilation of data in numerical weather prediction (NWP) models. Finally, it is shown that, in the context of considering NWP model output, mild generalizations of the quasigeostrophic R vector retain interpretative value for flow settings beyond geostrophy and warrant consideration when addressing some contemporary NWP challenges. -
Potential Vorticity Dynamics and Tropopause Fold
POTENTIAL VORTICITY DYNAMICS AND TROPOPAUSE FOLD M.D. ANDREI1,2, M. PIETRISI1,2, S. STEFAN1 1 University of Bucharest, Faculty of Physics, P.O.BOX MG 11, Magurele, Bucharest, Romania Emails: [email protected]; [email protected] 2 National Meteorological Administration, Bucuresti-Ploiesti Ave., No. 97, 013686, Bucharest, Romania Received November 1, 2017 Abstract. Extra tropical cyclones evolution depends a lot on the dynamically and thermodynamically interactions between the lower and the upper troposphere. The aim of this paper is to demonstrate the importance of dynamic tropopause fold in the development of a cyclone which affected Romania in 12th and 13th of November, 2016. The coupling between a positive potential vorticity anomaly and the jet stream has caused the fall of dynamic tropopause, which has a great influence in the cyclone deepening. This synoptic situation has resulted in a big amount of precipitation and strong wind gusts. For the study, ALARO limited area spectral model analyzes (e.g., 300 hPa Potential Vorticity, 1,5 PVU field height, 300 hPa winds, mean sea level pressure), data from the Romanian National Meteorological Administration meteorological stations, cross-sections and satellite images (water vapor and RGB) were used. Accordingly, the results of this study will be used in operational forecast, for similar situations which would appear in the future, and can improve it. Key words: potential vorticity, tropopause fold, cyclone. 1. INTRODUCTION Dynamic tropopause is the 1.5 or 2 PVU (potential vorticity units) surface that separates the dry, stable, stratospheric air from the humid, unstable, tropospheric air [1]. The dynamic tropopause fold corresponds to a positive potential vorticity anomaly, with high amplitude in the upper troposphere [2, 3], which induces a cyclonic circulation that propagates to the surface and reduce, under it, static stability.